Thin titanium nitride layers used in conjunction with tungsten

Abstract
Titanium nitride layers a less than 30 nm thickness are formed by physical vapor deposition and used as barrier layers for tungsten deposition. The titanium nitride layers are annealed in the presence of nitrogen or a nitrogen compound.
Description


BACKGROUND

[0001] The present invention relates to physical vapor deposition of titanium nitride.


[0002] Titanium nitride has been used as a barrier and adhesion layer in fabrication of tungsten plugs in semiconductor integrated circuits. Tungsten plugs interconnect different conductive layers separated by a dielectric. Frequently used dielectrics are silicon dioxide and silicon nitride. Tungsten does not adhere well to silicon dioxide and silicon nitride, so titanium nitride has been used to promote adhesion. In addition, titanium nitride serves as a barrier layer preventing a chemical reaction between WF6 (a compound from which the tungsten is deposited in a chemical vapor deposition process) and other materials present during tungsten deposition. See “Handbook of Semiconductor Manufacturing Technology” (2000), edited by Y. Nichi et al., pages 344-345.


[0003]
FIGS. 1, 2 illustrate a typical fabrication process. A dielectric layer 110 is deposited over a layer 120 which can be a metal or silicon layer. A via 130 is etched in the dielectric. A thin titanium layer 140 is deposited over dielectric 110 and into the via 130 to improve contact resistance (the titanium dissolves the native oxide on layer 120). Then titanium nitride layer 150 is deposited. Then tungsten 160 is deposited by chemical vapor deposition (CVD) from tungsten hexafluoride (WF6). Tungsten 160 fills the via. Layers 160, 150, 140 are removed from the top surface of dielectric 110 (by chemical mechanical polishing or some other process). See FIG. 2. The via remains filled, so the top surface of the structure is planar. Then a metal layer 210 is deposited. The layers 160, 150, 140 in via 130 provide an electrical contact between the layers 210 and 120.


[0004] Titanium nitride 150 can be deposited by a number of techniques, including sputtering and chemical vapor deposition (CVD). Sputtering is less complex and costly (see “Handbook of Semiconductor Manufacturing Technology”, cited above, page 411), but the titanium nitride layers deposited by sputtering have a more pronounced columnar grain structure. FIG. 3 illustrates columnar monocrystalline grains 150 G in titanium nitride layer 150. During deposition of tungsten 160, the WF6 molecules can diffuse between the TiN grains and react with titanium 140. This reaction produces titanium fluoride TiF3. TiF3 expands and causes failure of the TiN layer. The cracked TiN leads to a higher exposure of TiF3 to WF6, which in turn leads to the formation of volatile TiF4. TiF4 causes voids in the W film which are known as “volcanoes”. To avoid the volcanoes, the sputtered titanium nitride layers have been made as thick as 40 nm, and at any rate no thinner than 30 nm. In addition, the sputtered titanium nitride layers have been annealed in nitrogen atmosphere to increase the size of the TiN grains.



SUMMARY

[0005] The inventor has discovered that under some conditions thinner annealed layers of sputtered titanium nitride unexpectedly provide better protection against the volcanoes than thicker layers. In some embodiments, fewer volcanoes have been observed with a TiN layer thickness of 20 nm than with 30 nm. In fact, no volcanoes have been observed in some structures formed with the 20 nm TiN layers. Why the thinner TiN layers provide better protection is not clear. Without limiting the invention to any particular theory, it is suggested that perhaps one reason is a lower stress in the thinner annealed layers and a higher density of the TiN grains.


[0006] The invention is applicable to physical vapor deposition techniques other than sputtering. Additional features and embodiments of the invention are described below.







BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIGS. 1-3 are cross sectional views of prior art semiconductor structures in the process of fabrication.


[0008] FIGS. 4-6 are cross sectional and perspective views of semiconductor structures in the process of fabrication according to one embodiment of the present invention.







DESCRIPTION OF PREFERRED EMBODIMENTS

[0009]
FIG. 4 is a cross sectional and perspective view of a dual damascene semiconductor structure in the process of fabrication according to one embodiment of the present invention. Layer 120 is polysilicon formed by chemical vapor deposition (CVD) over a monocrystalline silicon wafer 410. Before fabrication of layer 120, the wafer 410 may have been processed to form devices such as MOS transistor 420. The transistor's source/drain regions 430 were formed in substrate 410, gate insulation 440 was formed over the substrate, and gate 450 was formed over the gate insulation. Other devices, including non-MOS devices, could be formed using known techniques. Layer 120 can also be part of substrate 410 (this embodiment is not shown in FIG. 4).


[0010] In the embodiment of FIG. 4, dielectric 460 was deposited over the wafer. Then layer 120 was formed as described above, and was patterned by a plasma etch. An exemplary thickness of layer 120 is 150 nm.


[0011] Dielectric layer 110 was deposited over the layer 120. In some embodiments, dielectric 110 was a combination of two silicon dioxide layers. The first layer was PSG (phosphosilicate glass) deposited by chemical vapor deposition (CVD). The second layer was silicon dioxide deposited by CVD from TEOS. The combined thickness of the two layers was approximately 900 nm.


[0012] Then a photoresist layer (not shown) was deposited and patterned photolithographically to define a via 464. In some embodiments, the mask opening defining the via was round in top view, with a diameter of 0.18 μm. The via was formed in layer 110 with a plasma etch.


[0013] The photoresist was removed, and another layer of photoresist (not shown) was deposited and patterned photolithographically to define a trench 470 in dielectric 110 for a tungsten interconnect. In some embodiments, the trench length was approximately 1 mm. The trench width was 0.22 μm. The trench was etched with a timed etch to a depth of approximately 250 nm. Via 464 was fully exposed at the bottom of the trench.


[0014] Then the top surface of the structure was exposed to RF plasma in argon atmosphere for 10 seconds. The argon flow was 5 sccm (standard cubic centimeters per minute). The RF power was 315 W. This operation removed native oxide from layer 120. Also, this operation smoothened (rounded) top edges 480 of trench 470 and via 464. The rounded edges are desirable to reduce stress in titanium nitride 150 (FIG. 5) at these edges so as to reduce the risk of volcano formation. The RF plasma operation was performed in a system of type ENDURA available from Applied Materials of Santa Clara, Calif.


[0015] Then titanium layer 140 (FIG. 5) was sputter deposited from a titanium target. The sputtering was performed at a temperature of 200° C. in argon atmosphere. The base pressure (the pressure before the argon flow was turned on) was 5×10−7 torr. The DC power was 4000 W, the RF power was 2500 W. The wafer AC bias was 150 W. The titanium deposition was performed in a system of type ENDURA, in an ionized metal plasma (IMP) chamber of type Vectra, available from Applied Materials.


[0016] The thickness of Ti layer 140 was varied. In one embodiment, the thickness was 10 nm. In another embodiment, the thickness was 36 nm.


[0017] Then titanium nitride 150 was deposited by reactive sputtering from a titanium target in a nitrogen atmosphere. The base pressure (the pressure before the nitrogen flow was turned on) was 5×10−7 torr. The nitrogen flow was 28 sccm (standard cubic centimeters per minute), the DC power was 4000 W, the RF power was 2500 W, the wafer bias was 150 W. The deposition temperature was 200° C. The deposition was performed in a system of type ENDURA, in an IMP chamber of type Vectra, available from Applied Materials.


[0018] The thickness of the TiN layer 150 was 20 nm in one embodiment, 30 nm in another embodiment.


[0019] Then the structure was heated to a temperature between 600° C. and 700° C. for 20 to 30 seconds in a nitrogen atmosphere. (This operation is referred to herein as Rapid Thermal Anneal, or RTA.) The base pressure was 100-120 torr, the nitrogen flow was 8 slm (standard liters per minute). The temperature was 620° C. in one embodiment, 670° C. in another embodiment. The anneal was performed in a system of type HEATPULSE 8800 available from AG Associates, Inc., of San Jose, Calif. The anneal is believed to have increased the lateral size of TiN grains 150 G (FIG. 3).


[0020] Then tungsten layer 160 was deposited by CVD in two stages. At the first stage, the chemical reaction was:


2WF6+3SiH4→2W+3SiF4+6H2


[0021] This stage lasted 10 seconds. Then the silane (SiH4) flow was turned off, and the hydrogen flow was turned on for the second stage. The chemical reaction was:


WF6(vapor)+3H2 (vapor)→W(solid)+6HF(vapor).


[0022] See S. Wolf, “Silicon Processing for the VLSI Era”, vol. 2 (1990), page 246, incorporated herein by reference. Both stages were performed in a system of type CONCEPT 1 available from Novellus Systems of San Jose, Calif. The silane flow was 20 sccm. The hydrogen flow was 12-15 slm (standard liters per minute). The WF6 flow was 350 sccm. The pressure was 40 torr. The temperature was 400° C.


[0023] Then the layers 160, 150, 140 were polished off the top of dielectric 110.2 by CMP. The resulting structure is shown in FIG. 6. Prior to CMP, the structure was examined for volcanoes using an optical microscope and SEM and STEM microscopes. The results are given in Table 1 below. The second column of Table 1 indicates the temperature of the Rapid Thermal Anneal, described above, performed after the deposition of TiN 150 before the deposition of tungsten 160. In Embodiment No. 1, the anneal was omitted.
1TABLE 1Ti/TiN thickness:Ti/TiN thickness:EmbodimentRTA10 nm/20 nm36 nm/30 nmNo.of TiNVolcanoes observed?Volcanoes observed?1.NoneYesYes2.620° C.NoYes, but fewer than inEmbodiment No. 13.670° C.NoNo


[0024] These results show, unexpectedly, that the use of thinner Ti and TiN layers in combination with the RTA can provide a better protection against the volcanoes than thicker layers without the RTA. The thinner layers can eliminate the volcanoes at the lower RTA temperature of 620° C. Lower RTA temperatures are desirable to reduce impurity diffusion during the RTA, to prevent melting or softening of materials having low melting temperatures (e.g. aluminum), and reduce wafer warping.


[0025] The invention is not limited to the particular materials, dimensions, structures, or fabrication processes described above. The invention is not limited to a thickness or composition of any particular layer, or the number, shape and size of vias 464 or trenches 470. The trench length, for example, is 2 μm in some embodiments, and other lengths are possible. The invention is not limited to the particular gas flow rates, temperatures, or any other fabrication parameters or equipment. Some embodiments use nitrogen sources other than pure nitrogen for the RTA or titanium nitride deposition. For example, ammonia (NH3) or H2/N2 can be used. The invention is not limited to the Rapid Thermal Anneal or to any particular anneal temperature. Non-rapid anneals can be used. The anneal can be performed with plasma or with other heating techniques, known or to be invented. The invention is applicable to TiN sputtered from a TiN target. The invention is applicable to single damascene, dual damascene, and other structures, for example, to tungsten plugs formed in contact vias in non-damascene structures, and to tungsten features other than plugs. Titanium 140 is omitted in some embodiments. The invention is applicable to different tungsten CVD techniques, including tungsten deposition from WCl6 rather than WF6. The invention is not limited by particular materials chosen for the layers 120, 110, 460. Some embodiments involve non-silicon semiconductor materials. The invention is not limited to any particular sputtering process, and further is applicable to TiN deposited by physical vapor deposition techniques other than sputtering. For example, pulsed laser deposition and other evaporation techniques can be used. See “Handbook of Semiconductor Manufacturing Technology” (2000), cited above, pages 395-413, incorporated herein by reference. Layer 120 (FIG. 4) can be a metal layer, and can be part of the second, third, or higher metallization layers. The term “layer”, as used herein, may refer to a combination of two or more other layers. The invention is defined by the appended claims.


Claims
  • 1. A fabrication method comprising: forming a titanium nitride layer over a substrate by physical vapor deposition, the titanium nitride layer being less than 30 nm thick; heating the titanium nitride layer while exposing the titanium nitride layer to nitrogen and/or a nitrogen compound; and then forming a tungsten layer over and in physical contact with the titanium nitride layer by chemical vapor deposition.
  • 2. The method of claim 1 wherein the titanium nitride layer is formed by sputtering.
  • 3. The method of claim 2 wherein the titanium nitride layer is less than 25 nm thick.
  • 4. The method of claim 2 wherein the titanium nitride layer is less than 22 nm thick.
  • 5. The method of claim 2 wherein the titanium nitride layer is about 20 nm thick.
  • 6. The method of claim 1 further comprising forming a titanium layer before the titanium nitride layer, the titanium nitride layer being in physical contact with the titanium layer.
  • 7. The method of claim 6 wherein the titanium layer is less than 36 nm thick.
  • 8. The method of claim 6 wherein the titanium layer is about 10 nm thick.
  • 9. The method of claim 1 wherein heating the titanium nitride layer comprises exposing the titanium nitride layer to the nitrogen and/or the nitrogen compound at a temperature above 600° C.
  • 10. The method of claim 1 wherein heating the titanium nitride layer comprises exposing the titanium nitride layer to the nitrogen and/or the nitrogen compound at a temperature of about 670° C. for 20-40 seconds.
  • 11. The method of claim 1 wherein heating the titanium nitride layer comprises exposing the titanium nitride layer to the nitrogen and/or the nitrogen compound at a temperature of about 620° C. for 20 -40 seconds.
  • 12. The method of claim 1 wherein the substrate is a semiconductor substrate.
  • 13. The method of claim 12 further comprising: forming a circuit element in or over the substrate; forming an insulating layer over the substrate and the circuit element; forming an opening in the insulating layer, the opening exposing the circuit element, the opening comprising a trench at least 2 μm long; wherein the titanium nitride layer and the tungsten layer are present in the opening and the tungsten layer electrically contacts the circuit element through the titanium nitride layer in the opening.
  • 14. The method of claim 13 wherein the trench is at least 1 mm long.
  • 15. The method of claim 14 further comprising depositing a titanium layer over the insulating layer before depositing the titanium nitride layer, wherein the tungsten in the opening electrically contacts the circuit element through the titanium and titanium nitride layers.
  • 16. The method of claim 15 wherein the trench does not penetrate the insulating layer but a via at the bottom of the trench penetrates the insulating layer and exposes the circuit element, wherein the titanium layer physically contacts the circuit element at the bottom of the via.
  • 17. The method of claim 14 wherein the circuit element is conductive.
  • 18. The method of claim 14 wherein the circuit element comprises a metal or semiconductor material.
  • 19. The method of claim 14 further comprising rounding top edges of the trench.
  • 20. The method of claim 14 wherein the opening comprises a via at a bottom of the trench, and the method further comprises rounding top edges of the trench and the via.
  • 21. A method for fabricating an integrated circuit, the method comprising: forming a circuit element in or over a semiconductor substrate; forming an insulating layer over the circuit element; forming an opening in the insulating layer to expose the circuit element at a bottom of the opening; forming a titanium layer over the insulating layer, the titanium layer overlaying sidewalls of the opening, the titanium layer being less than 15 nm thick; forming a titanium nitride layer over the titanium layer, the titanium nitride layer being less than 25 nm thick, the titanium nitride layer being formed by sputtering; heating the titanium nitride layer while exposing the titanium nitride layer to nitrogen and/or a nitrogen compound; forming a tungsten layer by chemical vapor deposition over the titanium nitride layer, the tungsten layer at least partially filling the opening and electrically contacting the circuit element through the titanium and titanium nitride layers.
  • 22. The method of claim 21 wherein the opening comprises a trench at least 2 μm long.
  • 23. The method of claim 21 wherein the opening comprises a trench at least 1 mm long.
  • 24. The method of claim 21 wherein heating the titanium nitride layer comprises heating the titanium nitride layer in an ambient temperature of about 670° C. for 20-40 seconds.
  • 25. The method of claim 21 wherein heating the titanium nitride layer comprises heating the titanium nitride layer in an ambient temperature of about 620° C. for 20 -40 seconds.
  • 26. A structure formed by the method of claim 1.
  • 27. A structure formed by the method of claim 21.
  • 28. A structure comprising: a substrate; a titanium nitride layer formed over the substrate and having substantially a columnar grain structure, the titanium nitride layer being less than 30 nm thick; a tungsten layer overlying and physically contacting the titanium nitride layer.
  • 29. The structure of claim 28 further comprising a titanium layer overlying the substrate and physically contacting the titanium nitride layer.
  • 30. The structure of claim 29 wherein the structure is a semiconductor integrated circuit.
  • 31. The structure of claim 30 further comprising: a circuit element formed in or over the substrate; an insulating layer overlying the circuit element and having an opening over the circuit element; wherein the tungsten layer electrically contacts the circuit element through the opening through the titanium nitride and titanium layers.
  • 32. The structure of claim 31 wherein the titanium nitride layer is less than 22 nm thick, and the titanium layer is less than 12 nm thick.
  • 33. The structure of claim 30 wherein the opening comprises a trench having a lateral dimension of at least 2 μm.
  • 34. The structure of claim 30 wherein the opening comprises a trench having a lateral dimension of at least 1 mm.