The present invention relates to a transistor cell including an expansion region, to a transistor including a plurality of transistor cells including such an expansion region and to a method for manufacturing such a transistor.
The gate oxide of an n-trench MOSFET is protected during blocking mode from high field strengths by deep, highly doped p-regions. In this case, the highly doped regions have a greater depth than the trenches.
The disadvantage of this is that the conductivity of the transistor is degraded during forward operation.
German Patent Application No. DE 10 2007 023 885 B4 describes epitaxially produced expansion layers below the trench for improving the conductivity of the transistor during forward operation. The dopant concentration during the production of the epitaxial layers changes for a particular time period, so that an area is formed that has a higher doping concentration.
The disadvantage of this is that the doping concentration exhibits a high fluctuation of approximately 25% as a result of the dependency of the growth temperature of the epitaxial layer. This means that the adjustment of the doping concentration is problematic.
An object of the present invention is to overcome this disadvantage.
In accordance with an example embodiment of the present invention, a transistor cell includes a semiconductor substrate, which includes a front side and a rear side, the front side being situated opposite the rear side. An epitaxial layer is situated on the front side. Channel regions are situated on the epitaxial layer. Source regions are situated on the channel regions. A trench and field shielding regions extend from the front side of the semiconductor substrate into the epitaxial layer, the field shielding regions each being situated at a lateral distance to the trench. The trench has a shallower depth than the field shielding regions. According to the present invention, an implanted expansion region having a particular thickness is situated below the trench.
An advantage of this is that the conductivity of the transistor cell is high in the forward operation, a high blocking resistance being simultaneously ensured.
In one refinement of the present invention, the implanted expansion region is situated at a depth of 0.5 μm to 3 μm starting from the front side of the semiconductor substrate.
An advantage of this is that commercial implantation facilities may be used.
In one further embodiment of the present invention, the implanted expansion region is situated laterally to the trench. In other words, the implanted expansion region is situated both laterally to the trench as well as below the trench.
This may have the advantage that the current-carrying, implanted region is situated around the trench in a u-shaped manner. This improves the current distribution effect.
In one further embodiment of the present invention, the implanted expansion region is situated spaced apart from the trench.
In one refinement of the present invention, the implanted expansion region has the same conductor carrier type as the epitaxial layer, a doping concentration of the implanted expansion region being higher than a doping concentration of the epitaxial layer.
An advantage of this is that the conductivity of the transistor cell is increased.
In one further embodiment of the present invention, the doping concentration increases along the thickness of the implanted expansion region starting from a side facing the trench. In other words, the implanted expansion region has a retrograde profile.
An advantage of this is that the fields at the gate oxide are reduced and the JFET effect between the field shielding regions is reduced. This means, the conductivity in the forward case and the field load of the oxide in the blocking case are adapted to each other and optimized.
In one refinement of the present invention, the semiconductor substrate includes silicon carbide or gallium nitride.
The transistor according to the present invention includes a plurality of transistor cells, which include a semiconductor substrate that includes a front side and a rear side, the front side being situated opposite the rear side. An epitaxial layer is situated on the front side. Channel regions are situated on the epitaxial layer. Source regions are situated on the channel regions. A trench and field shielding regions extend from the front side of the semiconductor substrate into the epitaxial layer, the field shielding regions each being situated spaced apart from the trench. The trench has a shallower depth than the field shielding regions. According to the present invention, an implanted expansion region having a particular thickness is situated below the trench.
The advantage of this is that the conductivity of the transistor in the forward operation is high.
In one refinement of the present invention, the transistor is a MOSFET.
A method according to an example embodiment of the present invention for manufacturing a transistor including a plurality of transistor cells includes the production of an epitaxial layer on a front side of a semiconductor substrate, the epitaxial layer including doping agents, and the production of field shielding regions, which extend starting from a front side of the epitaxial layer into the epitaxial layer, the field shielding regions including doping agents. The method includes the production of channel regions, the channel regions being situated on the epitaxial layer and the channel regions including doping agents. The method includes the production of source regions, which are situated on the channel regions, the source regions including doping agents, and the implantation of an expansion region having a particular thickness starting from the front side at a depth of 0.5 μm to 3 μm, the expansion region including doping agents. The method includes the activation of the doping agents. In addition, the method includes the production of a plurality of trenches, which extend starting from the front side of the semiconductor substrate into the epitaxial layer, the trenches having a shallower depth than the field shielding regions, the application of first isolation areas on trench surfaces of the trenches, the production of gate electrodes, the production of second isolation areas, which are situated above the gate electrodes, the production of a first metal layer on the front side of the semiconductor substrate, and the production of a second metal layer on the rear side of the semiconductor substrate, the rear side being situated opposite the front side.
An advantage of this is that the doping concentration of the implanted expansion regions or of the expansion layer is more precisely adjustable than during the application of an epitaxial expansion layer.
Further advantages result from the following description of exemplary embodiments and from the figures.
The present invention is explained below with reference to preferred specific embodiments and to the figures.
Semiconductor substrate 101, epitaxial layer 102, channel regions 104 as well as implanted expansion region 112 are n-doped. The doping concentration of semiconductor 101 is between 1e18 cm{circumflex over ( )}-3 and 1e19 cm{circumflex over ( )}-3, the doping concentration of epitaxial layer 102 is between and 1e15 cm{circumflex over ( )}-3 and 1e17 cm{circumflex over ( )}-3 and the doping concentration of the channel regions is between 1e17 cm{circumflex over ( )}-3 and 1e18 cm{circumflex over ( )}-3. Source regions 103 and field shielding regions 108 are p-doped. The doping concentration of the source regions is between 1e18 cm{circumflex over ( )}-3 and 1e20 cm{circumflex over ( )}-3.
Alternatively, semiconductor substrate 101, epitaxial layer 102, channel regions 104 as well as implanted expansion region 112 are p-doped. Source regions 103 and field shielding regions 108 are n-doped.
Semiconductor substrate 101 includes silicon, silicon carbide or gallium nitride.
In one exemplary embodiment, the doping concentration increases within the thickness of implanted expansion region 112 along first main extension direction y starting from a side facing the trench. Implanted expansion region 112 this has a retrograde profile, which has a lower doping concentration in the direction of trench 105 than in the direction of the rear side metallization.
A transistor includes a plurality of transistor cells 100. Transistor cells 100 in this case are strung together along a second main extension direction x, which is situated perpendicularly to first main extension direction y. Such a transistor is, for example, a MOSFET.
The transistor is used in power electronic components, such as in inverters for electric vehicles or hybrid vehicles, in inverters for photovoltaic systems and wind turbines, as well as in traction drives and in high voltage rectifiers.
Number | Date | Country | Kind |
---|---|---|---|
10 2019 207 758.7 | May 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/063772 | 5/18/2020 | WO | 00 |