This application claims benefit of the Japanese Patent Application No. 2006-355084 filed on Dec. 28, 2006, the entire content of which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to magnetic sensing elements which utilize a tunneling effect and which are to be mounted on magnetic reproducing devices, such as hard disk drives, or other magnetic sensing devices. More particularly, the invention relates to a tunneling magnetic sensing element which includes a free magnetic layer having low magnetostriction λ and which has a high rate of change in resistance (ΔR/R), the element thus having excellent magnetic sensitivity and stability, and a method for manufacturing the same.
2. Description of the Related Art
In a tunneling magnetic sensing element (tunneling magnetoresistance element), the change in resistance is caused by a tunneling effect. When the magnetization direction of a pinned magnetic layer is antiparallel to the magnetization direction of a free magnetic layer, a tunnel current does not easily flow through an insulating barrier layer (tunnel barrier layer) provided between the pinned magnetic layer and the free magnetic layer, and the resistance is at a maximum. On the other hand, when the magnetization direction of the pinned magnetic layer is parallel to the magnetization direction of the free magnetic layer, the tunnel current flows easily, and the resistance is at a minimum.
By use of the principle described above, a change in electrical resistance caused by a variation in the magnetization of the free magnetic layer under an influence of an external magnetic field is captured as a change in voltage, and thus a leakage magnetic field from a recording medium is detected.
Japanese Unexamined Patent Application Publication No. 2006-196745 (Patent Document 1) describes a magnetoresistance element in which a layer that prevents oxygen diffusion is disposed between a magnetic layer and a protective layer.
Japanese Unexamined Patent Application Publication No. 2006-261453 (Patent Document 2) discloses a magnetoresistance element including a protective layer having a three-layered structure.
Furthermore, Japanese Unexamined Patent Application Publication No. 2006-60044 (Patent Document 3) discloses a method for manufacturing a tunneling magnetic sensing element in which two protective layers are stacked.
In tunneling magnetic sensing elements, problems to be solved include increasing detection sensitivity by achieving a high rate of change in resistance (ΔR/R) to improve the characteristics of read heads, and suppressing noise in read heads by reducing the magnetostriction λ of a free magnetic layer to a value close to zero to enhance stability.
In existing tunneling magnetic sensing elements, a protective layer composed of tantalum (Ta) is disposed on the free magnetic layer.
However, when heat treatment is performed, Ta diffuses into the free magnetic layer or induces interfacial strain and interfacial stress with respect to the free magnetic layer, resulting in an increase in the magnetostriction λ of the free magnetic layer.
For example, when an insulating barrier layer is composed of magnesium oxide (Mg—O) or a laminate of Mg and Mg—O, it is known that, in order to increase the rate of change in resistance (ΔR/R) of the tunneling magnetic sensing element, it is preferable to provide an enhancement layer having a body-centered cubic (bcc) structure in a portion of the free magnetic layer in contact with the insulating barrier layer. However, when the enhancement layer is provided, the magnetostriction of the free magnetic layer increases. Consequently, a material that decreases the magnetostriction of the free magnetic layer is used for the portion other than the enhancement layer of the free magnetic layer so as to prevent the magnetostriction of the free magnetic layer from increasing.
However, even when such a structure in which the rate of change in resistance (ΔR/R) can be increased and the magnetostriction λ of the free magnetic layer can be decreased is employed, if a protective layer composed of Ta is disposed on the free magnetic layer, the magnetostriction λ of the free magnetic layer eventually increases. Therefore, it is not possible to achieve both the effect of decreasing the magnetostriction of the free magnetic layer and the effect of increasing the rate of change in resistance (ΔR/R).
Patent Document 1 describes that by disposing an intermediate layer composed of platinum-manganese (PtMn) between a protective layer composed of Ta and a free magnetic layer, diffusion between the free magnetic layer and the protective layer can be prevented.
Furthermore, Patent Document 2 describes that, in a CPP magnetoresistance element in which a sensing current flows in the film thickness direction, by forming a protective layer with a three-layered structure on a magnetoresistive film, in which two layers on the magnetoresistive film side are composed of a material having low resistivity and the top layer is composed of Ta, it is possible to form the protective layer with an accurately controlled thickness.
However, neither Patent Document 1 nor Patent Document 2 describes a tunneling magnetic sensing element or discloses a structure of a protective layer in which the magnetostriction λ of the free magnetic layer is decreased without changing the composition and thickness of the free magnetic layer and with the crystal structure of the free magnetic layer being properly maintained.
In the tunneling magnetic sensing element described in Patent Document 3, two protective layers, i.e., a Ru layer and a Ta layer, are formed on a free magnetic layer during the manufacturing process. However, the Ta layer on the Ru layer is subsequently removed by etching, and the remaining Ru layer is oxidized to form a conductive oxide layer. The protective layer of the resulting tunneling magnetic sensing element is composed of oxide of Ru only. Patent Document 3 describes the invention in which the protective layer composed of oxide of Ru only is used as an electrode so that the rate of change in resistance (ΔR/R) is improved, but does not describe that the magnetostriction λ is decreased by optimizing the protective layer disposed on the free magnetic layer and that the magnetostriction λ is decreased with the crystal structures of the free magnetic layer and the insulating barrier layer being properly maintained.
In an aspect of the present invention, a tunneling magnetic sensing element includes a pinned magnetic layer whose magnetization direction is pinned in one direction, an insulating barrier layer disposed on the pinned magnetic layer, a free magnetic layer whose magnetization direction varies in response to an external magnetic field disposed on the insulating barrier layer, and a first protective layer composed of platinum (Pt) disposed on the free magnetic layer.
By forming the first protective layer, which is disposed in contact with the free magnetic layer, using Pt, it is believed that a layer disposed on the first protective layer does not easily diffuse into the free magnetic layer and the insulating barrier layer and that the crystallinity of the free magnetic layer is improved. Furthermore, it is believed that it is possible to reduce interfacial strain and interfacial stress caused by the protective layer in the free magnetic layer. Therefore, it is possible to decrease the magnetostriction λ of the free magnetic layer without changing the composition and thickness of the free magnetic layer while maintaining a high rate of change in resistance (ΔR/R).
The tunneling magnetic sensing element may further include a second protective layer composed of tantalum (Ta) disposed on the first protective layer. In this case, the first protective layer composed of Pt disposed on the free magnetic layer can appropriately prevent the second protective layer composed of Ta from diffusing into the free magnetic layer and the insulating barrier layer. It is possible to greatly decrease the magnetostriction λ of the free magnetic layer compared with the case where the protective layer is composed of Ta only as in the known art.
In another aspect of the present invention, a method for manufacturing a tunneling magnetic sensing element includes the steps of (a) forming a pinned magnetic layer and forming an insulating barrier layer on the pinned magnetic layer, (b) forming a free magnetic layer on the insulating barrier layer, and (c) forming a first protective layer composed of platinum (Pt) on the free magnetic layer.
Consequently, it is believed that it is possible to prevent the element of a layer formed on the first protective layer from easily diffusing into the free magnetic layer and to improve the crystallinity of the free magnetic layer. Furthermore, it is believed that it is possible to reduce interfacial strain and interfacial stress caused by the protective layer in the free magnetic layer. Therefore, it is possible to manufacture a tunneling magnetic sensing element in which the magnetostriction λ of the free magnetic layer is decreased without changing the composition and thickness of the free magnetic layer while maintaining a high rate of change in resistance (ΔR/R).
In another aspect, the step (c), after the first protective layer is formed, a second protective layer composed of tantalum (Ta) may be formed on the first protective layer.
In the tunneling magnetic sensing element of the present invention, it is believed that it is possible to prevent the element of a layer formed on the first protective layer composed of Pt from easily diffusing into the free magnetic layer and the insulating barrier layer, and to improve the crystallinity of the free magnetic layer. Therefore, it is possible to decrease the magnetostriction X of the free magnetic layer without changing the composition and thickness of the free magnetic layer while maintaining a high rate of change in resistance (ΔR/R).
A tunneling magnetic sensing element is mounted on the trailing end of a floating-type slider provided on a hard disk drive to detect a recorded magnetic field from a hard disk or the like. In the drawings, the X direction corresponds to the track width direction, the Y direction corresponds to the direction of a leakage magnetic field from a magnetic recording medium (height direction), and the Z direction corresponds to the travelling direction of the magnetic recording medium, such as a hard disk, and the lamination direction of the individual layers in the tunneling magnetic sensing element.
Referring to
The bottom layer in the laminate T1 is an underlying layer 1 composed of a nonmagnetic material, such as one or two or more elements selected from the group consisting of Ta, Hf, Nb, Zr, Ti, Mo, and W. A seed layer 2 is disposed on the underlying layer 1. The seed layer 2 is composed of NiFeCr or Cr. When the seed layer 2 is composed of NiFeCr, the seed layer 2 has a face-centered cubic (fcc) structure, and equivalent crystal planes represented as {111} planes are preferentially oriented in the direction parallel to the layer surface. When the seed layer 2 is composed of Cr, the seed layer 2 has a body-centered cubic (bcc) structure, and equivalent crystal planes represented as {110} planes are preferentially oriented in the direction parallel to the layer surface. Note that the underlying layer 1 may be omitted.
An antiferromagnetic layer 3 disposed on the seed layer 2 is preferably composed of an antiferromagnetic material containing X and Mn, wherein X is one or two or more elements selected from the group consisting of Pt, Pd, Ir, Rh, Ru, and Os.
The X—Mn alloys including such platinum-group elements X have excellent properties as antiferromagnetic materials. For example, they have excellent corrosion resistance and high blocking temperature and can generate large exchange coupling magnetic fields (Hex).
The antiferromagnetic layer 3 may be composed of an antiferromagnetic material containing X, X′, and Mn, wherein X′ is one or two or more elements selected from the group consisting of Ne, Ar, Kr, Xe, Be, B, C, N, Mg, Al, Si, P, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, Cd, Sn, Hf, Ta, W, Re, Au, Pb, and rare-earth elements.
A pinned magnetic layer 4 is disposed on the antiferromagnetic layer 3. The pinned magnetic layer 4 has a laminated ferrimagnetic structure in which a first pinned magnetic sublayer 4a, a nonmagnetic intermediate sublayer 4b, and a second pinned magnetic sublayer 4c are disposed in that order from the bottom. The magnetizations of the first pinned magnetic sublayer 4a and the second pinned magnetic sublayer 4c are directed antiparallel by an exchange coupling magnetic field at the interface with the antiferromagnetic layer 3 and by an antiferromagnetic exchange coupling magnetic field (RKKY interaction) through the nonmagnetic intermediate sublayer 4b. By forming the pinned magnetic layer 4 so as to have such a laminated ferrimagnetic structure, the magnetization of the pinned magnetic layer 4 can be stabilized. Furthermore, the apparent exchange coupling magnetic field generated at the interface between the pinned magnetic layer 4 and the antiferromagnetic layer 3 can be increased. For example, each of the first pinned magnetic sublayer 4a and the second pinned magnetic sublayer 4c has a thickness of about 10 to 24 Å, and the nonmagnetic intermediate sublayer 4b has a thickness of about 8 to 10 Å.
The first pinned magnetic sublayer 4a is composed of a ferromagnetic material, such as CoFe, NiFe, or CoFeNi. The nonmagnetic intermediate sublayer 4b is composed of a nonmagnetic conductive material, such as Ru, Rh, Ir, Cr, Re, or Cu. The second pinned magnetic sublayer 4c is composed of the same ferromagnetic material as that of the first pinned magnetic sublayer 4a or CoFeB.
An insulating barrier layer 5 is disposed on the pinned magnetic layer 4. The insulating barrier layer 5 is preferably composed of magnesium oxide (Mg—O), magnesium titanate (Mg—Ti—O), titanium oxide (Ti—O), or aluminum oxide (Al—O). In the case of Mg—O, the Mg content is preferably in a range of 40 to 60 atomic percent, and Mg50at %O50at % is most preferable. Alternatively, the insulating barrier layer 5 may be composed of a laminate of magnesium (Mg) and Mg—O. The insulating barrier layer 5 is formed by sputtering using a target composed of Mg, Mg—O, Mg—Ti—O, Ti—O, or Al—O. In the case of Mg—O, Ti—O, or Al—O, preferably, Mg, Ti, or Al, which is a metal, is formed into a layer with a thickness of 1 to 10 Å, and then oxidation is performed to form Mg—O, Ti—O, or Al—O, which is a metal oxide. In this case, because of the oxidation, the thickness of the metal oxide layer is larger than that of the metal layer of Mg, Ti, or Al formed by sputtering. Preferably, the resulting insulating barrier layer 5 has a thickness of about 1 to 20 Å. If the thickness of the insulating barrier layer 5 is excessively large, a tunnel current does not easily flow, which is undesirable.
A free magnetic layer 6 is disposed on the insulating barrier layer 5. The free magnetic layer 6 includes a soft magnetic layer 6b composed of a magnetic material, for example, a NiFe alloy, and an enhancement layer 6a composed of, for example, a CoFe alloy, the enhancement layer 6a being disposed between the soft magnetic layer 6b and the insulating barrier layer 5. The soft magnetic layer 6b is preferably composed of a magnetic material having excellent soft magnetic properties. The enhancement layer 6a is preferably composed of a magnetic material that has higher spin polarizability than that of the soft magnetic layer 6b. When the soft magnetic layer 6b is composed of a NiFe alloy, in view of reduction in the magnetostriction and magnetic sensitivity of the free magnetic layer 6, the Ni content is preferably about 81.5 to about 100 atomic percent.
By forming the enhancement layer 6a using a CoFe alloy having high spin polarizability, it is possible to increase the rate of change in resistance (ΔR/R). In particular, a CoFe alloy having a high Fe content has high spin polarizability, and thus is highly effective in increasing the rate of change in resistance (ΔR/R) of the element. The Fe content in the CoFe alloy is not particularly limited, but may be in a range of 10 to 100 atomic percent.
An excessively large thickness of the enhancement layer 6a affects the magnetic sensitivity of the free magnetic layer 6, resulting in a decrease in detection sensitivity. Consequently, the enhancement layer 6a has a thickness smaller than that of the soft magnetic layer 6b. The soft magnetic layer 6b has a thickness of, for example, about 30 to 70 Å, and the enhancement layer 6a has a thickness of about 10 Å. Preferably, the thickness of the enhancement layer 6a is about 6 to about 20 Å.
The free magnetic layer 6 may have a laminated ferrimagnetic structure in which a plurality of magnetic layers are laminated together, each two adjacent magnetic layers being separated by a nonmagnetic intermediate layer. The width in the track width direction (in the X direction) of the free magnetic layer 6 defines the track width Tw. A protective layer 7 is disposed on the free magnetic layer 6.
As described above, the laminate T1 is disposed on the lower shield layer 21. Each side face 11 in the track width direction (in the X direction) of the laminate T1 is formed as an inclined plane such that the width in the track width direction gradually decreases upward.
As shown in
A bias underlying layer (not shown) may be disposed between the lower insulating layer 22 and the hard bias layer 23. The bias underlying layer is composed of, for example, Cr, W, or Ti.
Each of the insulating layers 22 and 24 is composed of an insulating material, such as Al2O3 or SiO2. The insulating layers 24 and 22 insulate the upper and lower surfaces of the hard bias layer 23 so that a current flowing in the laminate T1 perpendicular to the interfaces between the individual layers is prevented from shunting from each side of the laminate T1. The hard bias layer 23 is composed of, for example, a cobalt-platinum (Co—Pt) alloy, a cobalt-chromium-platinum (Co—Cr—Pt) alloy, or the like.
An upper shield layer 26 composed of a Ni—Fe alloy or the like is disposed over the laminate T1 and the upper insulating layers 24.
In the embodiment shown in
The free magnetic layer 6 is magnetized in a direction parallel to the track width direction (the X direction) under the influence of a bias magnetic field from the hard bias layer 23. On the other hand, each of the first pinned magnetic sublayer 4a and the second pinned magnetic sublayer 4c constituting the pinned magnetic layer 4 is magnetized in a direction parallel to the height direction (the Y direction). Since the pinned magnetic layer 4 has the laminated ferrimagnetic structure, the first pinned magnetic sublayer 4a and the second pinned magnetic sublayer 4c are magnetized antiparallel to each other. While the magnetization of the pinned magnetic layer 4 is pinned (does not vary in response to an external magnetic field), the magnetization of the free magnetic layer 6 varies in response to an external magnetic field.
When the magnetization of the free magnetic layer 6 varies in response to an external magnetic field and when the magnetization directions of the second pinned magnetic sublayer 4c and the free magnetic layer 6 are antiparallel to each other, a tunnel current does not easily flow through the insulating barrier layer 5 provided between the second pinned magnetic sublayer 4c and the free magnetic layer 6, and the resistance is a maximum. On the other hand, when the magnetization directions of the second pinned magnetic sublayer 4c and the free magnetic layer 6 are parallel to each other, the tunnel current flows most easily, and the resistance is a minimum.
By use of the principle described above, a change in electrical resistance caused by a variation in the magnetization of the free magnetic layer 6 under an influence of an external magnetic field is captured as a change in voltage, and thus a leakage magnetic field from a magnetic recording medium is detected.
In the tunneling magnetic sensing element according to this embodiment, a first protective layer 7a composed of platinum (Pt) is disposed on the free magnetic layer 6.
Consequently, it is possible to reduce the magnetostriction λ of the free magnetic layer 6 to substantially zero without changing the composition and thickness of the free magnetic layer 6. Moreover, the rate of change in resistance (ΔR/R) is not greatly decreased compared with the known art.
The first protective layer 7a is formed on the free magnetic layer 6, for example, by sputtering Pt. The thickness of the first protective layer 7a is preferably about 5 to about 200 Å, and more preferably about 10 to about 200 Å.
If the thickness of the first protective layer 7a is less than about 5 Å, it is not possible to appropriately inhibit the element constituting the second protective layer 7b disposed on the first protective layer 7a from diffusing into the free magnetic layer 6 and the insulating barrier layer 5. This embodiment also includes a structure in which the protective layer 7 is composed of the first protective layer 7a only. In such a case, if the thickness of the first protective layer 7a is less than about 5 Å, the function of preventing oxidation, which is the original function of the protective layer, is degraded, which is undesirable. Therefore, the thickness of the first protective layer 7a is preferably about 5 Å or more.
In this embodiment, the free magnetic layer 6 preferably has a laminated structure including an enhancement layer 6a and a soft magnetic layer 6b. The enhancement layer 6a is composed of a CoFe alloy, has higher spin polarizability than the soft magnetic layer 6b, and is effective in increasing the rate of change in resistance (ΔR/R). In the known art, it is also possible to increase the rate of change in resistance (ΔR/R) by inserting the enhancement layer 6a between the insulating barrier layer 5 and the soft magnetic layer 6b. However, it is necessary to optimize the composition, etc. of the enhancement layer 6a in order to further increase the rate of change in resistance (ΔR/R). In such a case, the magnetostriction λ is increased. In contrast, according to this embodiment, by providing the first protective layer 7a composed of Pt on the free magnetic layer 6, without particularly changing the composition of the enhancement layer 6a or the structure of the remaining portion of the free magnetic layer 6, the magnetostriction λ of the free magnetic layer 6 can be more effectively reduced to substantially zero while maintaining a high rate of change in resistance (ΔR/R).
Although this embodiment also includes the structure in which the protective layer 7 includes only the first protective layer 7a composed of Pt, preferably, a second protective layer 7b is disposed on the first protective layer 7a as shown in
When the protective layer 7 includes two or more layers, the first protective layer 7a composed of Pt is disposed on and in contact with the free magnetic layer 6. Consequently, interdiffusion between the free magnetic layer 6 and the second protective layer 7b can be prevented, and the effect of decreasing the magnetostriction λ of the free magnetic layer 6 is further increased.
The second protective layer 7b may be composed of a metal, such as Ta, Ti, Al, Cu, Cr, Fe, Ni, Mn, Co, or V, or an oxide or nitride thereof, which is commonly used as a protective layer.
The second protective layer 7b is preferably composed of, for example, Ta from the standpoint of low electrical resistance and mechanical protection. Ta itself is easily oxidized and thus plays a role in adsorbing oxygen in the laminated structure. Therefore, even if oxygen enters the first protective layer 7a composed of Pt in the manufacturing process, the second protective layer 7b attracts oxygen and can prevent oxidation from affecting the free magnetic layer 6.
In the tunneling magnetic sensing element according to this embodiment, since the first protective layer 7a composed of Pt is inserted between the free magnetic layer 6 and the second protective layer 7b composed of Ta, it is believed that Ta is prevented from diffusing into the free magnetic layer 6 and the insulating barrier layer 5, and that the crystallinity of the free magnetic layer 6 is improved. It is also believed that interfacial strain and interfacial stress caused by the protective layer 7 in the free magnetic layer 6 can be reduced. Therefore, in this embodiment, it is possible to decrease the magnetostriction λ of the free magnetic layer 6 while maintaining a high rate of change in resistance (ΔR/R) compared with the known art. In particular, in the tunneling magnetic sensing element in which the insulating barrier layer 5 is composed of magnesium oxide (Mg—O) or a laminate of Mg and Mg—O, the enhancement layer 6a of the free magnetic layer 6 and the insulating barrier layer 5 each are maintained to have a body-centered cubic (bcc) structure satisfactorily, and a high rate of change in resistance (ΔR/R) can be obtained.
When the second protective layer 7b is formed, the thickness of the first protective layer 7a can be set in a range of about 5 to about 200 Å and can be set smaller than that when the protective layer 7 is composed of the first protective layer 7a alone. The thickness of the second protective layer 7b may be smaller or larger than the thickness of the first protective layer 7a. The total thickness of the protective layer 7 is about 100 to about 300 Å.
In this embodiment, when the insulating barrier layer 5 is composed of Mg—O or a laminate of Mg and Mg—O, preferably, the second pinned magnetic sublayer 4c is composed of CoFeB and has an amorphous structure. Consequently, the insulating barrier layer 5 can be formed so as to have a body-centered cubic (bcc) structure, and the enhancement layer 6a disposed on the insulating barrier layer 5 can be formed so as to have a body-centered cubic (bcc) structure.
A method for manufacturing the tunneling magnetic sensing element according to this embodiment will be described below.
In the step shown in
Subsequently, an insulating barrier layer 5 is formed by sputtering or the like on the second pinned magnetic sublayer 4c. Alternatively, an insulating barrier layer 5 may be formed by a method in which a metal layer is similarly formed by sputtering or the like, and then oxygen is introduced into the vacuum chamber to oxidize the metal layer. Instead of the metal layer, a semiconductor layer may be formed. Since the thickness of the metal layer or the semiconductor layer is increased by oxidation, the metal layer or the semiconductor layer is formed such that the thickness after oxidation corresponds to the thickness of the insulating barrier layer 5. Examples of the method of oxidation include radical oxidation, ion oxidation, plasma oxidation, and natural oxidation.
In this embodiment, preferably, the insulating barrier layer 5 is formed using magnesium oxide (Mg—O). In such a case, using a target composed of Mg—O having a predetermined compositional ratio, an insulating barrier layer 5 composed of Mg—O is formed by sputtering on the second pinned magnetic sublayer 4c. Alternatively, the insulating barrier layer 5 may be composed of a laminate of Mg and Mg—O formed by sputtering of Mg, followed by oxidation and further sputtering of Mg, or alternately sputtering Mg and Mg—O.
Subsequently, a free magnetic layer 6 including an enhancement layer 6a composed of CoFe and a soft magnetic layer 6b composed of NiFe is formed on the insulating barrier layer 5. Furthermore, a first protective layer 7a is formed using Pt on the free magnetic layer 6, and a second protective layer 7b is formed thereon using Ta. In such a manner, a laminate T1 in which the layers from the underlying layer 1 to the protective layer 7 are stacked is formed.
Subsequently, a resist layer 30 for lift-off processing is formed on the laminate T1, and then both side regions in the track width direction (in the X direction) of the laminate T1 not covered with the resist layer 30 for lift-off processing are removed by etching or the like (refer to
Subsequently, a lower insulating layer 22, a hard bias layer 23, and an upper insulating layer 24 are deposited in that order, at each side in the track width direction (in the X direction) of the laminate T1, on the lower shield layer 21 (refer to
Subsequently, the resist layer 30 for lift-off processing is removed, and an upper shield layer 26 is formed over the laminate T1 and the upper insulating layers 24.
The method for manufacturing the tunneling magnetic sensing element described above includes annealing treatment. Typical examples of annealing treatment include annealing treatment in a magnetic field for producing an exchange coupling magnetic field (Hex) between the antiferromagnetic layer 3 and the first pinned magnetic sublayer 4a. The annealing treatment is carried out at a temperature of 240° C. to 310° C.
In this embodiment, since the first protective layer 7a composed of Pt is formed directly on the free magnetic layer 6, even when the annealing treatment in the magnetic field or another annealing treatment is carried out, it is believed that it is possible to inhibit the constituent element, such as Ta, of the second protective layer 7b from diffusing into the free magnetic layer 6 and the insulating barrier layer 5 and that the crystallinity of the free magnetic layer 6 can be improved. Furthermore, since the first protective layer 7a composed of Pt is provided, it is believed that it is possible to reduce the interfacial strain and interfacial stress at the interface between the protective layer 7 and the free magnetic layer 6.
By the method described above, it is possible to appropriately and easily manufacture a tunneling magnetoresistance element in which the magnetostriction λ of the free magnetic layer 6 can be reduced to substantially zero while maintaining a high rate of change in resistance (ΔR/R) without changing the composition or thickness of the free magnetic layer 6.
The tunneling magnetic sensing elements according to this embodiment can also be used as magnetoresistive random access memory (MRAM) and magnetic sensors, in addition to for use in hard disk drives.
A tunneling magnetic sensing element shown in
A tunneling magnetic sensing element was fabricated as in Example 1 except that, without forming a first protective layer 7a, the protective layer 7 was formed so as to include one layer of Ta (200 Å) (Comparative Example 1).
With respect to the tunneling magnetic sensing element in each of Example 1 and Comparative Example 1, the magnetostriction (λ) of the free magnetic layer 6, the magnetic moment per unit area (Ms·t), the rate of change in resistance (ΔR/R), and element resistance R×element area A (RA) were measured. The results thereof are shown in Table 1 below.
On the basis of the results shown in Table 1, the magnetostriction (λ) in each of Example 1 and Comparative Example 1 is shown in a graph of
As is evident from Table 1 and
Furthermore, as is evident form Table 1 and
In the tunneling magnetic sensing element, when the RA (element resistance R×element area A) increases, it is not possible to achieve a higher recording density. Consequently, preferably, a high rate of change in resistance (ΔR/R) is obtained at a low range of RA (element resistance R×element area A). As shown in
A tunneling magnetic sensing element was fabricated as in Example 1 except that the insulating barrier layer 5 was formed using Al—O. An Al layer was formed by sputtering with a thickness of 3 Å on the second pinned magnetic sublayer 4c, followed by oxidation. Thereby, the insulating barrier layer composed of Al—O was obtained.
A tunneling magnetic sensing element was fabricated as in Example 2 except that, without forming a first protective layer 7a, the protective layer 7 was formed so as to include one layer of Ta (200 Å) (Comparative Example 2).
A tunneling magnetic sensing element was fabricated as in Example 1 except that the insulating barrier layer 5 was formed using Ti—O. A Ti layer was formed by sputtering with a thickness of 6 Å on the second pinned magnetic sublayer 4c, followed by oxidation. Thereby, the insulating barrier layer composed of Ti—O was obtained.
A tunneling magnetic sensing element was fabricated as in Example 3 except that, without forming a first protective layer 7a, the protective layer 7 was formed so as to include one layer of Ta (200 Å) (Comparative Example 3).
With respect to each of Examples 2 and 3 and Comparative Examples 2 and 3, the magnetostriction λ of the free magnetic layer was measured, and the results thereof are shown in Table 2 below together with the values of Example 1 and Comparative Example 1.
As is evident from Table 2, in the tunneling magnetic sensing elements in which the insulating barrier layer is composed of Al—O or Ti—O, by forming the protective layer 7 so as to have a laminated structure including the first protective layer composed of Pt and the second protective layer 7b composed of Ta, the magnetostriction λ of the free magnetic layer is decreased compared with the case where the protective layer 7 is composed of Ta only.
As is also evident from Table 2, in the tunneling magnetic sensing element in which the insulating barrier layer is composed of Mg—O, the effect of decreasing the magnetostriction λ of the free magnetic layer is large compared with the case where the insulating barrier layer is composed of Al—O or Ti—O. When the insulating barrier layer is composed of Mg—O, the crystallinity of the free magnetic layer formed thereon is believed to be higher than that of the free magnetic layer formed on the insulating barrier layer composed of Al—O or Ti—O. Consequently, it is believed that the crystallinity of the first protective layer 7a composed of Pt formed on the free magnetic layer is improved and the effect of preventing diffusion of the element from the second protective layer 7b is increased. As a result, it is believed that strain is not easily caused in the free magnetic layer, and the magnetostriction λ is greatly decreased.
Number | Date | Country | Kind |
---|---|---|---|
2006-355084 | Dec 2006 | JP | national |