Wafer-level package with enhanced performance

Abstract
The present disclosure relates to a wafer-level package that includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes redistribution interconnects that connect the first device layer to package contacts on a bottom surface of the multilayer redistribution structure. Herein, the connections between the redistribution interconnects and the first device layer are solder-free. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to a wafer-level package and a process for making the same, and more particularly to a wafer-level package with enhanced thermal and electrical performance, and a packaging process to enhance thermal and electrical performance of a wafer-level package.


BACKGROUND

The wide utilization of cellular and wireless devices drives the rapid development of radio frequency (RF) technologies. The substrates on which RF devices are fabricated play an important role in achieving high level performance in the RF technologies. Fabrications of the RF devices on conventional silicon substrates may benefit from low cost of silicon materials, a large scale capacity of wafer production, well-established semiconductor design tools, and well-established semiconductor manufacturing techniques.


Despite the benefits of using conventional silicon substrates for the RF device fabrications, it is well known in the industry that the conventional silicon substrates may have two undesirable properties for the RF devices: harmonic distortion and low resistivity values. The harmonic distortion is a critical impediment to achieve high level linearity in the RF devices built over silicon substrates. In addition, the low resistivity encountered in the silicon substrates may degrade quality factors (Q) at high frequencies of microelectromechanical systems (MEMS) or other passive components.


In addition, high speed and high performance transistors are more densely integrated in RF devices. Consequently, the amount of heat generated by the RF devices will increase significantly due to the large number of transistors integrated in the RF devices, the large amount of power passing through the transistors, and the high operation speed of the transistors. Accordingly, it is desirable to package the RF devices in a configuration for better heat dissipation.


Wafer-level fan-out (WLFO) packaging technology and embedded wafer-level ball grid array (EWLB) technology currently attract substantial attention in portable RF applications. WLFO and EWLB technologies are designed to provide high density input/output ports (I/O) without increasing the size of a package. This capability allows for densely packaging the RF devices within a single wafer.


To accommodate the increased heat generation of the RF devices, to reduce deleterious harmonic distortion of the RF devices, and to utilize advantages of WLFO/EWLB packaging technologies, it is therefore an object of the present disclosure to provide an improved package design with enhanced thermal and electrical performance. Further, there is also a need to enhance the performance of the RF devices without increasing the package size.


SUMMARY

The present disclosure relates to a wafer-level package with enhanced thermal and electrical performance, and a packaging process to enhance thermal and electrical performance of a wafer-level package. The disclosed wafer-level package includes a first thinned die, a multilayer redistribution structure, a first mold compound, and a second mold compound. The first thinned die includes a first device layer and a first dielectric layer over the first device layer. Herein, the first device layer includes a number of first die contacts at a bottom surface of the first device layer. The multilayer redistribution structure includes a number of package contacts on a bottom surface of the multilayer redistribution structure and redistribution interconnects that connect the first die contacts to certain ones of the package contacts. The multilayer redistribution structure is free of glass fiber and connections between the redistribution interconnects and the first die contacts are solder-free. In addition, the first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The top surface of the first thinned die is exposed at a bottom of the opening. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.


In one embodiment of the wafer-level package, the first thinned die provides a microelectromechanical systems (MEMS) component.


In one embodiment of the wafer-level package, the first thinned die is formed from a silicon-on-insulator (SOI) structure. The first device layer of the first thinned die is formed from a silicon epitaxy layer of the SOI structure, and the first dielectric layer of the first thinned die is a buried oxide layer of the SOI structure.


According to another embodiment, the wafer-level package further includes a second intact die residing over the multilayer redistribution structure. Herein, the second intact die has a second device layer and an intact silicon substrate over the second device layer, and the first mold compound encapsulates the second intact die.


According to another embodiment, the wafer-level package further includes a third thinned die residing over the multilayer redistribution structure. Herein, the third thinned die has a third device layer and a second dielectric layer over the third device layer. The first mold compound extends beyond a top surface of the third thinned die to define a second opening within the first mold compound and over the third thinned die. The top surface of the third thinned die is exposed at a bottom of the second opening. The second mold compound fills the second opening and in contact with the top surface of the third thinned die.


In one embodiment of the wafer-level package, the first thinned die provides a MEMS component, the second intact die provides a complementary metal-oxide-semiconductor (CMOS) controller that controls the MEMS component, and the third thinned die is formed from a SOI structure. Herein, the third device layer of the third thinned die is formed from a silicon epitaxy layer of the SOI structure, and the second dielectric layer of the third thinned die is a buried oxide layer of the SOI structure.


In one embodiment of the wafer-level package, the second mold compound has a thermal conductivity greater than 2 W/m·K.


In one embodiment of the wafer-level package, the second mold compound has a thermal conductivity greater than 10 W/m·K.


In one embodiment of the wafer-level package, the second mold compound has an electrical resistivity greater that 1E6 Ohm-cm.


In one embodiment of the wafer-level package, the first mold compound and the second mold compound are formed from different materials.


In one embodiment of the wafer-level package, the first mold compound is formed from a same material as the second mold compound.


In one embodiment of the wafer-level package, the first mold compound is formed from a different material from the second mold compound.


In one embodiment of the wafer-level package, the bottom surface of the first device layer is in contact with the multilayer redistribution structure, and the first die contacts are directly connected to the redistribution interconnects.


In one embodiment of the wafer-level package, the first thinned die further includes a number of first pillars. Each of the first pillars extends from the first device layer to the multilayer redistribution structure and couples one of the first die contacts to a corresponding redistribution interconnect.


According to another embodiment, the wafer-level package further includes an underfilling layer that resides between the multilayer redistribution structure and the first mold compound, and underfills the first thinned die to encapsulate the first pillars.


In one embodiment of the wafer-level package, the underfilling layer is formed from a same material as the first mold compound.


In one embodiment of the wafer-level package, the top surface of the first thinned die exposed at the bottom of the opening is a top surface of the first dielectric layer.


In one embodiment of the wafer-level package, the first dielectric layer is formed from one of a group consisting of silicon oxide, silicon nitride, and aluminum nitride.


According to an exemplary process, a mold wafer having a first die and a first mold compound is provided. Herein, the first die includes a first device layer, a first dielectric layer over the first device layer, and a first silicon substrate over the first dielectric layer. The first device layer includes a number of first die contacts at a bottom surface of the first device layer. The first mold compound encapsulates sides of the first die such that the bottom surface of the first device layer and a top surface of the first silicon substrate are exposed. Next, a multilayer redistribution structure is formed underneath the mold wafer. The multilayer redistribution structure includes a number of package contacts on a bottom surface of the multilayer redistribution structure and redistribution interconnects that connect the first die contacts to certain ones of the package contacts. The multilayer redistribution structure is free of glass fiber and connections between the redistribution interconnects and the first die contacts are solder-free. The first silicon substrate of the first die is then removed substantially to provide a first thinned die and form a first opening within the first mold compound and over the first thinned die. A top surface of the first thinned die is exposed at a bottom of the opening. Lastly, a second mold compound is applied to substantially fill the opening and directly contact the top surface of the first thinned die.


Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 shows an exemplary wafer-level package with enhanced thermal and electrical performance according to one embodiment of the present disclosure.



FIG. 2 shows an alternative wafer-level package with enhanced thermal and electrical performance according to one embodiment of the present disclosure.



FIGS. 3-14 provide exemplary steps that illustrate a process to fabricate the exemplary wafer-level package shown in FIG. 1.





It will be understood that for clear illustrations, FIGS. 1-14 may not be drawn to scale.


DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


The present disclosure relates to a wafer-level package with enhanced thermal and electrical performance, and a packaging process to enhance thermal and electrical performance of a wafer-level package. FIG. 1 shows an exemplary wafer-level package 10 according to one embodiment of the present disclosure. For the purpose of this illustration, the exemplary wafer-level package 10 includes a thinned silicon-on-insulator (SOI) die 12, a thinned microelectromechanical systems (MEMS) die 14, a complementary metal-oxide-semiconductor (CMOS) controller die 16, a multilayer redistribution structure 18, a first mold compound 20, and a second mold compound 22. In different applications, the wafer-level package 10 may include fewer or more thinned MEMS/SOI dies and may include other dies, such as: thinned integrated passive device dies (not shown). For instance, in some applications, the wafer-level package 10 may only include thinned MEMS dies and CMOS controller dies; and in some applications, the wafer-level package 10 may only include thinned SOI dies.


In detail, the thinned SOI die 12 includes a first device layer 24 and a first dielectric layer 26 over a top surface of the first device layer 24. The first device layer 24 includes a number of first die contacts 28 at a bottom surface of the first device layer 24. Herein, the thinned SOI die 12 is formed from an SOI structure, which refers to a structure including a silicon substrate, a silicon epitaxy layer, and a buried oxide layer sandwiched between the silicon substrate and the silicon epitaxy layer. The first device layer 24 of the thinned SOI die 12 is formed by integrating electronic components (not shown) in or on the silicon epitaxy layer of the SOI structure. The first dielectric layer 26 of the thinned SOI die 12 is the buried oxide (BOX) layer of the SOI structure. In addition, the silicon substrate of the SOI structure is removed substantially to complete the thinned SOI die 12 (more details in the following discussion). The first device layer 24 has a thickness between 0.1 μm and 50 μm, and the first dielectric layer 26 has a thickness between 10 nm and 1000 nm.


The thinned MEMS die 14 includes a second device layer 30 and a second dielectric layer 32 over a top surface of the second device layer 30. The second device layer 30 includes a MEMS component 34 that is typically a switch, a number of second die contacts 36 at a bottom surface of the second device layer 30, and MEMS via-structures 38 extending from the MEMS component 34 to the second die contacts 36. Herein, the second device layer 30 may include a cavity, within which the MEMS component 34 is free to actuate. The second device layer 30 has a thickness between 0.5 μm and 100 μm, and may be formed from a combination of dielectric and metal layers (such as oxide, nitride, aluminum, titanium, copper, or the like). The second dielectric layer 32 has a thickness between 10 nm and 5000 nm, and may be formed from silicon oxide, silicon nitride, or aluminum nitride.


Notice that the thinned SOI die 12 and the thinned MEMS die 14 are both thinned dies, which have a device layer, a dielectric layer over the device layer, and essentially no silicon substrate over the dielectric layer. Herein, essentially no silicon substrate over the dielectric layer refers to at most 2 μm silicon substrate over the dielectric layer. In desired cases, each thinned die does not include any silicon substrate over the dielectric layer such that a top surface of each thinned die is a top surface of the dielectric layer. For other cases, the top surface of one thinned die may be a top surface of the thin silicon substrate.


The CMOS controller die 16 includes a third device layer 40 and a silicon substrate 42 over the third device layer 40. The third device layer 40 includes a CMOS controller 44 that controls the MEMS component 34 within the thinned MEMS die 14, a number of third die contacts 46 at a bottom surface of the third device layer 40, and controller via-structures 48 extending from the CMOS controller 44 to the third die contacts 46. The third device layer 40 has a thickness between 0.5 μm and 20 μm, and may be formed from a combination of dielectric and metal layers (such as oxide, nitride, aluminum, titanium, copper, or the like). The CMOS controller die 16 is an intact die, which includes an intact silicon substrate with a thickness between 50 μm and 250 μm or between 50 μm and 750 μm.


Herein, the multilayer redistribution structure 18 includes a first dielectric pattern 50 at the top, a number of redistribution interconnects 52, a second dielectric pattern 54, and a number of package contacts 56. In one embodiment, the thinned SOI die 12, the thinned MEMS die 14, and the CMOS controller die 16 reside directly over the multilayer redistribution structure 18. As such, the first device layer 24 of the thinned SOI die 12, the second device layer 30 of the thinned MEMS die 14, and the third device layer 40 of the CMOS controller die 16 are in contact with the first dielectric pattern 50. In addition, the first die contacts 28 at the bottom surface of the first device layer 24, the second die contacts 36 at the bottom surface of the second device layer 30, and the third die contacts 46 at the bottom surface of the third device layer 40 are exposed through the first dielectric pattern 50. The redistribution interconnects 52 are electrically coupled to the first, second, and third die contacts 28, 36, and 46 through the first dielectric pattern 50 and extend underneath the first dielectric pattern 50. The connections between the redistribution interconnects 52 and the first, second, and third die contacts 28, 36, and 46 are solder-free.


The second dielectric pattern 54 is formed underneath the first dielectric pattern 50 to partially encapsulate each redistribution interconnect 52. As such, a portion of each redistribution interconnect 52 is exposed through the second dielectric pattern 54. In different applications, there may be extra redistribution interconnects (not shown) electronically coupled to the redistribution interconnects 52 through the second dielectric pattern 54, and an extra dielectric pattern (not shown) formed underneath the second dielectric pattern 54 to partially encapsulate the extra redistribution interconnects.


In this embodiment, each package contact 56 is electronically coupled to a corresponding redistribution interconnect 52 through the second dielectric pattern 54. Consequently, the redistribution interconnects 52 connect certain ones of the first, second, and third die contacts 28, 36, and 46 to certain ones of the package contacts 56 on a bottom surface of the multilayer redistribution structure 18.


The multilayer redistribution structure 18 may be free of glass fiber or glass-free. Herein, the glass fiber refers to individual glass strands twisted to become a larger grouping. These glass strands may be then woven into a fabric. The first dielectric pattern 50 and the second dielectric pattern 54 may be formed of benzocyclobutene (BCB) or polyimide. The redistribution interconnects 52 may be formed of copper or other suitable metals. The package contacts 56 may be bump contacts formed of solder alloys, such as tin or tin alloys, or may be land grid arrays (LGA) contacts. A combination of the first dielectric pattern 50, the redistribution interconnects 52, and the second dielectric pattern 54 has a thickness between 2 μm and 300 μm.


The first mold compound 20 resides over a top surface of the multilayer redistribution structure 18, resides around the thinned SOI die 12 and the thinned MEMS die 14, and encapsulates the CMOS controller die 16.


Further, the first mold compound 20 extends beyond a top surface of the thinned SOI die 12 to define a first opening 58 within the first mold compound 20 and over the thinned SOI die 12, and extends beyond a top surface of the thinned MEMS die 14 to define a second opening 60 within the first mold compound 20 and over the thinned MEMS die 14. Herein, the top surface of the thinned SOI die 12 is exposed at a bottom of the first opening 58, and the top surface of the thinned MEMS die 14 is exposed at a bottom of the second opening 60.


The second mold compound 22 substantially fills the first and second openings 58 and 60, and is in contact with the top surface of the thinned SOI die 12 and the top surface of the thinned MEMS die 14. The second mold compound 22 has a thermal conductivity greater than 2 W/m·K or greater than 10 W/m·K, and has an electrical resistivity greater than 1E6 Ohm-cm. In general, the higher the thermal conductivity of the second mold compound 22, the better the thermal performance of the thinned SOI die 12 and the thinned MEMS die 14. Further, the high electrical resistivity of the second mold compound 22 may improve the quality factor (Q) at high frequencies of the MEMS component 34 of the thinned MEMS die 14.


The second mold compound 22 may be formed of thermoplastics or thermoset materials, such as PPS (poly phenyl sulfide), overmold epoxies doped with boron nitride or alumina thermal additives, or the like. The second mold compound 22 may be formed of the same or different material as the first mold compound 20. However, unlike the second mold compound 22, the first mold compound 20 does not have thermal conductivity or electrical resistivity requirements. In some applications, both the first mold compound 20 and the second mold compound 22 have a thermal conductivity greater than 2 W/m·K. In some applications, the first mold compound 20 has a thermal conductivity less than 2 W/m·K and the second mold compound 22 has a thermal conductivity greater than 2 W/m·K. In some applications, the first mold compound 20 has a thermal conductivity greater than 2 W/m·K and the second mold compound 22 has a thermal conductivity greater than 10 W/m·K. Herein, a portion of the second mold compound 22 may reside over a top surface of the first mold compound 20. Notice that the second mold compound 22 is separate from the CMOS controller die 16 by the first mold compound 20. A top surface of the CMOS controller die 16 is in contact with the first mold compound 20.


In another embodiment, the thinned SOI die 12, the thinned MEMS die 14, and the CMOS controller die 16 are connected to the multilayer redistribution structure 18 through a number of pillars as illustrated in FIG. 2. The thinned SOI die 12 further includes first pillars 62 that extend from the first device layer 24 to the multilayer redistribution structure 18 and couple the first die contacts 28 to the corresponding redistribution interconnects 52. The thinned MEMS die 14 further includes second pillars 64 that extend from the second device layer 30 to the multilayer redistribution structure 18 and couple the second die contacts 36 to the corresponding redistribution interconnects 52. The CMOS controller die 16 further includes third pillars 66 that extend from the third device layer 40 to the multilayer redistribution structure 18 and couple the third die contacts 46 to the corresponding redistribution interconnects 52. Since the first, second and third pillars 62, 64, and 66 are formed from electrically conductive materials, such as copper, the first, second, and third die contacts 28, 36, and 46 are still electrically coupled to corresponding package contacts 56.


In some applications, the wafer-level package 10 may further include an underfilling layer 68 to encapsulate the first, second, and third pillars 62, 64, and 66. The underfilling layer 68 resides between the top surface of the multilayer redistribution structure 18 and the first mold compound 20, and underfills the thinned SOI die 12, the thinned MEMS die 14, and the CMOS controller die 16. The underfilling layer 68 may be formed from the same or different material as the first mold compound 20. In some applications, the first mold compound 20 and the underfilling layer 68 may have a thermal conductivity greater than 2 W/m·K.



FIGS. 3-14 provide exemplary steps to fabricate the exemplary wafer-level package 10 shown in FIG. 1. Although the exemplary steps are illustrated in a series, the exemplary steps are not necessarily order dependent. Some steps may be done in a different order than that presented. Further, processes within the scope of this disclosure may include fewer or more steps than those illustrated in FIGS. 3-14.


Initially, an adhesive layer 70 is applied on a top surface of a carrier 72 as illustrated in FIG. 3. Then, an SOI die 12D, a MEMS die 14D, and the CMOS controller die 16 are attached to the adhesive layer 70 as illustrated in FIG. 4. In different applications, there might be fewer or more dies attached to the adhesive layer 70. For instance, in some applications, there may be only the SOI die 12D attached to the adhesive layer 70; and in some applications, there may be only the MEMS die 14D and the CMOS controller die 16 attached to the adhesive layer 70.


For the purpose of this illustration, the SOI die 12D includes the first device layer 24, the first dielectric layer 26 over the top surface of the first device layer 24, and a first silicon substrate 74 over the first dielectric layer 26. As such, the bottom surface of the first device layer 24 is a bottom surface of the SOI die 12D, and the backside of the first silicon substrate 74 is a top surface of the SOI die 12D. Herein, the SOI die 12D is formed from an SOI structure, which refers to a structure including a silicon substrate, a silicon epitaxy layer, and a buried oxide layer sandwiched between the silicon substrate and the silicon epitaxy layer. The first device layer 24 of the SOI die 12D is formed by integrating electronic components (not shown) in or on the silicon epitaxy layer of the SOI structure. The first dielectric layer 26 of the SOI die 12D is the buried oxide layer of the SOI structure. The first silicon substrate 74 of the SOI die 12D is the silicon substrate of the SOI structure. The SOI die 12D has a thickness between 25 μm and 250 μm or between 25 μm and 750 μm, and the first silicon substrate 74 has a thickness between 25 μm and 250 μm or between 25 μm and 750 μm, respectively.


The MEMS die 14D includes the second device layer 30, the second dielectric layer 32 over the top surface of the second device layer 30, and a second silicon substrate 76 over the second dielectric layer 32. As such, the bottom surface of the second device layer 30 is a bottom surface of the MEMS die 14D, and the backside of the second silicon substrate is a top surface of the MEMS die 14D. The MEMS die 14D has a thickness between 50 μm and 300 μm or between 50 μm and 800 μm, and the second silicon substrate 76 has a thickness between 50 μm and 250 μm or between 50 μm and 750 μm, respectively. In this embodiment, both the SOI die 12D and the MEMS die 14D are taller than the CMOS controller die 16. If there are only the MEMS die 14D and the CMOS controller die 16 attached to the adhesive layer 70, the CMOS controller die 16 is just shorter than the MEMS die 14D.


Next, the first mold compound 20 is applied over the adhesive layer 70 to encapsulate the SOI die 12D, the MEMS die 14D, and the CMOS controller die 16 as illustrated in FIG. 5. The first mold compound 20 may be applied by various procedures, such as sheet molding, overmolding, compression molding, transfer molding, dam fill encapsulation, or screen print encapsulation. The first mold compound 20 may be an organic epoxy resin system or the like, which can be used as an etchant barrier to protect the SOI die 12D, the MEMS die 14D, and the CMOS controller die 16 against etching chemistries such as potassium hydroxide (KOH), sodium hydroxide (NaOH), and acetylcholine (ACH). A curing process (not shown) is then used to harden the first mold compound 20. The curing temperature is between 100° C. and 320° C. depending on which material is used as the first mold compound 20. The adhesive layer 70 and the carrier 72 are then removed to expose the bottom surface of the first device layer 24, the bottom surface of the second device layer 30, and the bottom surface of the third device layer 40 as shown in FIG. 6. Removal of the adhesive layer 70 and the carrier 72 may be provided by heating the adhesive layer 70.


The first mold compound 20 is then thinned down to expose the first silicon substrate 74 of the SOI die 12D and the second silicon substrate 76 of the MEMS die 14D as shown in FIG. 7. The thinning procedure may be done with a mechanical grinding process. Since the CMOS controller die 16 has a lower height than both the MEMS die 14D and the SOI die 12D, the silicon substrate 42 of the CMOS controller die 16 is not exposed and still encapsulated by the first mold compound 20.


With reference to FIGS. 8 through 11, the multilayer redistribution structure 18 is formed according to one embodiment of the present disclosure. The first dielectric pattern 50 is firstly formed underneath the SOI die 12D, the MEMS die 14D, and the CMOS controller die 16, as illustrated in FIG. 8. As such, the first, second, and third die contacts 28, 36, and 46 are exposed through the first dielectric pattern 50. Next, the redistribution interconnects 52 are formed as illustrated in FIG. 9. The redistribution interconnects 52 are electrically coupled to the first, second, and third die contacts 28, 36, and 46 through the first dielectric pattern 50 and extend underneath the first dielectric pattern 50. Notice that the connections between the redistribution interconnects 52 and the first, second, and third die contacts 28, 36, and 46 are solder-free.


The second dielectric pattern 54 is formed underneath the first dielectric pattern 50 to partially encapsulate each redistribution interconnect 52 as illustrated in FIG. 10. As such, a portion of each redistribution interconnect 52 is exposed through the second dielectric pattern 54. Lastly, the package contacts 56 are applied to exposed portions of the redistribution interconnects 52 as illustrated in FIG. 11. The package contacts 56 may be applied by a standard bumping procedure or a land grid arrays process. Herein, the redistribution interconnects 52 connect certain ones of the first, second, and third die contacts 28, 36, and 46 to certain ones of the package contacts 56 on a bottom surface of the multilayer redistribution structure 18.


After the multilayer redistribution structure 18 is formed, the first silicon substrate 74 and the second silicon substrate 76 are removed substantially as illustrated in FIG. 12. The removal of the first silicon substrate 74 from the SOI die 12D provides the thinned SOI die 12 and forms the first opening 58 within the first mold compound 20 and over the thinned SOI die 12. The removal of the second silicon substrate 76 from the MEMS die 14D provides the thinned MEMS die 14 and forms the second opening 60 within the first mold compound 20 and over the thinned MEMS die 14. Herein, removing substantially a silicon substrate refers to removing at least 95% of the entire silicon substrate and remaining at most 2 μm silicon substrate. In desired cases, the first and second silicon substrates 74 and 76 are removed completely, such that the first dielectric layer 26 of the thinned SOI die 12 is exposed at the bottom of the first opening 58 and the second dielectric layer 32 of the thinned MEMS die 14 is exposed at the bottom of the second opening 60. Removing substantially the first and second silicon substrates 74 and 76 may be provided by an etching process with a wet/dry etchant chemistry, which may be TMAH, KOH, ACH, NaOH, or the like.


The second mold compound 22 is then applied to substantially fill the first and second openings 58 and 60, as illustrated in FIG. 13. The second mold compound 22 may be applied by various procedures, such as sheet molding, overmolding, compression molding, transfer molding, dam fill encapsulation, and screen print encapsulation. The second mold compound 22 directly resides over the top surface of the thinned SOI die 12 and the top surface of the thinned MEMS die 14. If there is no first silicon substrate 74 left in the first opening 58 and no second silicon substrate 76 left in the second opening 60, the second mold compound 22 directly resides over the first dielectric layer 26 and the second dielectric layer 32. In some cases, the second mold compound 22 may further reside over the first mold compound 20. A curing process (not shown) is followed to harden the second mold compound 22. The curing temperature is between 100° C. and 320° C. depending on which material is used as the second mold compound 22.


A top surface of the second mold compound 22 is then planarized to form the wafer-level package 10 as illustrated in FIG. 14. A mechanical grinding process may be used for planarization. Lastly, the wafer-level semiconductor package 10 may be marked, diced, and singulated into individual components (now shown).


Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. An apparatus comprising: a first thinned die comprising a first device layer and a first dielectric layer directly over the first device layer, wherein: the first device layer comprises a plurality of first die contacts at a bottom surface of the first device layer;a top surface of the first dielectric layer is a top surface of the first thinned die; andthe first dielectric layer has a thickness between 10 nm and 1000 nm;a multilayer redistribution structure comprising a plurality of package contacts on a bottom surface of the multilayer redistribution structure and redistribution interconnects that connect the plurality of first die contacts to certain ones of the plurality of package contacts, wherein the multilayer redistribution structure is free of glass fiber and connections between the redistribution interconnects and the plurality of first die contacts are solder-free;a first mold compound residing over the multilayer redistribution structure and around the first thinned die, and extending beyond the top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die, wherein the top surface of the first dielectric layer is exposed at a bottom of the opening; anda second mold compound filling the opening and directly over the top surface of the first dielectric layer.
  • 2. The apparatus of claim 1, wherein the first thinned die provides a microelectromechanical systems (MEMS) component.
  • 3. The apparatus of claim 1, wherein the first thinned die is formed from a silicon-on-insulator (SOI) structure, wherein the first device layer of the first thinned die is formed from a silicon epitaxy layer of the SOI structure, and the first dielectric layer of the first thinned die is a buried oxide layer of the SOI structure.
  • 4. The apparatus of claim 1, wherein the second mold compound has a thermal conductivity greater than 2 W/m·K.
  • 5. The apparatus of claim 1, wherein the second mold compound has a thermal conductivity greater than 10 W/m·K.
  • 6. The apparatus of claim 1, wherein the second mold compound has an electrical resistivity greater than 1E6 Ohm·cm.
  • 7. The apparatus of claim 1, wherein the first mold compound is formed from a same material as the second mold compound.
  • 8. The apparatus of claim 7, wherein the first mold compound and the second mold compound have a thermal conductivity greater than 2 W/m·K.
  • 9. The apparatus of claim 1, wherein the first mold compound and the second mold compound are formed from different materials.
  • 10. The apparatus of claim 9, wherein the first mold compound has a thermal conductivity greater than 2 W/m·K and the second mold compound has a thermal conductivity greater than 10 W/m-K.
  • 11. The apparatus of claim 1, wherein the bottom surface of the first device layer is in contact with the multilayer redistribution structure, and the plurality of first die contacts are directly connected to the redistribution interconnects.
  • 12. The apparatus of claim 1, wherein the first thinned die further comprises a plurality of first pillars, wherein each of the plurality of first pillars extends from the first device layer to the multilayer redistribution structure and couples one of the plurality of first die contacts to a corresponding redistribution interconnect.
  • 13. The apparatus of claim 12 further comprising an underfilling layer that resides between the multilayer redistribution structure and the first mold compound, and underfills the first thinned die to encapsulate the plurality of first pillars.
  • 14. The apparatus of claim 13 wherein the underfilling layer is formed from a same material as the first mold compound.
  • 15. The apparatus of claim 14, wherein the first mold compound and the underfilling layer have a thermal conductivity greater than 2 W/m-K.
  • 16. The apparatus of claim 1, wherein the first dielectric layer is formed from one of a group consisting of silicon oxide, silicon nitride, and aluminum nitride.
  • 17. The apparatus of claim 1, wherein the plurality of package contacts are bump contacts or land grid arrays (LGA) contacts.
  • 18. The apparatus of claim 1, wherein the multilayer redistribution structure is glass-free.
  • 19. An apparatus comprising: a first thinned die comprising a first device layer and a first dielectric layer over the first device layer, wherein the first device layer comprises a plurality of first die contacts at a bottom surface of the first device layer;a multilayer redistribution structure comprising a plurality of package contacts on a bottom surface of the multilayer redistribution structure and redistribution interconnects that connect the plurality of first die contacts to certain ones of the plurality of package contacts, wherein the multilayer redistribution structure is free of glass fiber and connections between the redistribution interconnects and the plurality of first die contacts are solder-free;a first mold compound residing over the multilayer redistribution structure and around the first thinned die, and extending beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die, wherein the top surface of the first thinned die is exposed at a bottom of the opening;a second mold compound filling the opening and in contact with the top surface of the first thinned die; anda second intact die residing over the multilayer redistribution structure, wherein: the second intact die has a second device layer and an intact silicon substrate over the second device layer; andthe first mold compound encapsulates the second intact die.
  • 20. The apparatus of claim 19, wherein the first thinned die provides a MEMS component and the second intact die provides a complementary metal-oxide-semiconductor (CMOS) controller that controls the MEMS component.
  • 21. The apparatus of claim 19 further comprising a third thinned die residing over the multilayer redistribution structure, wherein: the third thinned die has a third device layer and a second dielectric layer over the third device layer;the first mold compound extends beyond a top surface of the third thinned die to define a second opening within the first mold compound and over the third thinned die, wherein the top surface of the third thinned die is exposed at a bottom of the second opening; andthe second mold compound fills the second opening and in contact with the top surface of the third thinned die.
  • 22. The apparatus of claim 21, wherein the first thinned die provides a MEMS component, the second intact die provides a CMOS controller that controls the MEMS component, and the third thinned die is formed from a SOI structure, wherein the third device layer of the third thinned die is formed from a silicon epitaxy layer of the SOI structure, and the second dielectric layer of the third thinned die is a buried oxide layer of the SOI structure.
RELATED APPLICATIONS

This application claims the benefit of provisional patent application Ser. No. 62/339,322, filed May 20, 2016, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (223)
Number Name Date Kind
4093562 Kishimoto Jun 1978 A
4366202 Borovsky Dec 1982 A
5013681 Godbey et al. May 1991 A
5061663 Bolt et al. Oct 1991 A
5069626 Patterson et al. Dec 1991 A
5362972 Yazawa et al. Nov 1994 A
5391257 Sullivan et al. Feb 1995 A
5459368 Onishi et al. Oct 1995 A
5646432 Iwaki et al. Jul 1997 A
5648013 Uchida et al. Jul 1997 A
5699027 Tsuji et al. Dec 1997 A
5709960 Mays et al. Jan 1998 A
5729075 Strain Mar 1998 A
5831369 Fürbacher et al. Nov 1998 A
5920142 Onishi et al. Jul 1999 A
6072557 Kishimoto Jun 2000 A
6084284 Adamic, Jr. Jul 2000 A
6154366 Ma et al. Nov 2000 A
6154372 Kalivas et al. Nov 2000 A
6235554 Akram et al. May 2001 B1
6236061 Walpita May 2001 B1
6268654 Glenn et al. Jul 2001 B1
6271469 Ma et al. Aug 2001 B1
6377112 Rozsypal Apr 2002 B1
6423570 Ma et al. Jul 2002 B1
6426559 Bryan et al. Jul 2002 B1
6446316 Fürbacher et al. Sep 2002 B1
6578458 Akram et al. Jun 2003 B1
6649012 Masayuki et al. Nov 2003 B2
6713859 Ma Mar 2004 B1
6841413 Liu et al. Jan 2005 B2
6864156 Conn Mar 2005 B1
6902950 Ma et al. Jun 2005 B2
6943429 Glenn et al. Sep 2005 B1
6964889 Ma et al. Nov 2005 B2
6992400 Tikka et al. Jan 2006 B2
7042072 Kim et al. May 2006 B1
7049692 Nishimura et al. May 2006 B2
7109635 McClure et al. Sep 2006 B1
7183172 Lee et al. Feb 2007 B2
7238560 Sheppard et al. Jul 2007 B2
7279750 Jobetto Oct 2007 B2
7288435 Aigner et al. Oct 2007 B2
7307003 Reif et al. Dec 2007 B2
7393770 Wood et al. Jul 2008 B2
7427824 Iwamoto et al. Sep 2008 B2
7489032 Jobetto Feb 2009 B2
7596849 Carpenter et al. Oct 2009 B1
7619347 Bhattacharjee Nov 2009 B1
7635636 McClure et al. Dec 2009 B2
7714535 Yamazaki et al. May 2010 B2
7749882 Kweon et al. Jul 2010 B2
7790543 Abadeer et al. Sep 2010 B2
7843072 Park et al. Nov 2010 B1
7855101 Furman et al. Dec 2010 B2
7868419 Kerr et al. Jan 2011 B1
7910405 Okada et al. Mar 2011 B2
7960218 Ma et al. Jun 2011 B2
8004089 Jobetto Aug 2011 B2
8183151 Lake May 2012 B2
8420447 Tay et al. Apr 2013 B2
8503186 Lin et al. Aug 2013 B2
8643148 Lin et al. Feb 2014 B2
8664044 Jin et al. Mar 2014 B2
8772853 Hong et al. Jul 2014 B2
8791532 Graf et al. Jul 2014 B2
8802495 Kim et al. Aug 2014 B2
8803242 Marino et al. Aug 2014 B2
8816407 Kim et al. Aug 2014 B2
8835978 Mauder et al. Sep 2014 B2
8906755 Hekmatshoartabari et al. Dec 2014 B1
8921990 Park et al. Dec 2014 B2
8927968 Cohen et al. Jan 2015 B2
8941248 Lin et al. Jan 2015 B2
8963321 Lenniger et al. Feb 2015 B2
8983399 Kawamura et al. Mar 2015 B2
9165793 Wang et al. Oct 2015 B1
9349700 Hsieh et al. May 2016 B2
9368429 Ma et al. Jun 2016 B2
9461001 Tsai et al. Oct 2016 B1
9520428 Fujimori Dec 2016 B2
9613831 Morris et al. Apr 2017 B2
9646856 Meyer et al. May 2017 B2
9653428 Hiner et al. May 2017 B1
9786586 Shih Oct 2017 B1
9824974 Gao et al. Nov 2017 B2
9859254 Yu et al. Jan 2018 B1
9875971 Bhushan et al. Jan 2018 B2
9941245 Skeete et al. Apr 2018 B2
20010004131 Masayuki et al. Jun 2001 A1
20020070443 Mu et al. Jun 2002 A1
20020074641 Towle et al. Jun 2002 A1
20020127769 Ma et al. Sep 2002 A1
20020127780 Ma et al. Sep 2002 A1
20020137263 Towle et al. Sep 2002 A1
20020185675 Furukawa Dec 2002 A1
20030207515 Tan et al. Nov 2003 A1
20040164367 Park Aug 2004 A1
20040166642 Chen et al. Aug 2004 A1
20040219765 Reif et al. Nov 2004 A1
20050037595 Nakahata Feb 2005 A1
20050079686 Aigner et al. Apr 2005 A1
20050212419 Vazan et al. Sep 2005 A1
20060057782 Gardes et al. Mar 2006 A1
20060105496 Chen et al. May 2006 A1
20060108585 Gan et al. May 2006 A1
20060228074 Lipson et al. Oct 2006 A1
20060261446 Wood et al. Nov 2006 A1
20070020807 Geefay et al. Jan 2007 A1
20070069393 Asahi et al. Mar 2007 A1
20070075317 Kato et al. Apr 2007 A1
20070121326 Nall et al. May 2007 A1
20070158746 Ohguro Jul 2007 A1
20070181992 Lake Aug 2007 A1
20070190747 Humpston et al. Aug 2007 A1
20070194342 Kinzer Aug 2007 A1
20070252481 Iwamoto et al. Nov 2007 A1
20070276092 Kanae et al. Nov 2007 A1
20080050852 Hwang et al. Feb 2008 A1
20080050901 Kweon et al. Feb 2008 A1
20080164528 Cohen et al. Jul 2008 A1
20080265978 Englekirk Oct 2008 A1
20080272497 Lake Nov 2008 A1
20080315372 Kuan et al. Dec 2008 A1
20090008714 Chae Jan 2009 A1
20090010056 Kuo et al. Jan 2009 A1
20090014856 Knickerbocker Jan 2009 A1
20090179266 Abadeer et al. Jul 2009 A1
20090261460 Kuan et al. Oct 2009 A1
20100012354 Hedin et al. Jan 2010 A1
20100029045 Ramanathan et al. Feb 2010 A1
20100045145 Tsuda Feb 2010 A1
20100081232 Furman et al. Apr 2010 A1
20100081237 Wong et al. Apr 2010 A1
20100109122 Ding et al. May 2010 A1
20100120204 Kunimoto May 2010 A1
20100127340 Sugizaki May 2010 A1
20100173436 Ouellet et al. Jul 2010 A1
20100200919 Kikuchi Aug 2010 A1
20100314637 Kim et al. Dec 2010 A1
20110003433 Harayama et al. Jan 2011 A1
20110026232 Lin et al. Feb 2011 A1
20110036400 Murphy et al. Feb 2011 A1
20110062549 Lin Mar 2011 A1
20110068433 Kim et al. Mar 2011 A1
20110102002 Riehl et al. May 2011 A1
20110171792 Chang et al. Jul 2011 A1
20110272800 Chino Nov 2011 A1
20110272824 Pagaila Nov 2011 A1
20110294244 Hattori et al. Dec 2011 A1
20120003813 Chuang et al. Jan 2012 A1
20120045871 Lee et al. Feb 2012 A1
20120068276 Lin et al. Mar 2012 A1
20120094418 Grama et al. Apr 2012 A1
20120098074 Lin Apr 2012 A1
20120104495 Zhu et al. May 2012 A1
20120119346 Im et al. May 2012 A1
20120153393 Liang et al. Jun 2012 A1
20120168863 Zhu et al. Jul 2012 A1
20120256260 Cheng et al. Oct 2012 A1
20120292700 Khakifirooz et al. Nov 2012 A1
20120299105 Cai et al. Nov 2012 A1
20130001665 Zhu et al. Jan 2013 A1
20130015429 Hong et al. Jan 2013 A1
20130049205 Meyer Feb 2013 A1
20130099315 Zhu et al. Apr 2013 A1
20130105966 Kelkar et al. May 2013 A1
20130147009 Kim Jun 2013 A1
20130155681 Nall et al. Jun 2013 A1
20130196483 Dennard et al. Aug 2013 A1
20130200456 Zhu et al. Aug 2013 A1
20130280826 Scanlan et al. Oct 2013 A1
20130299871 Mauder et al. Nov 2013 A1
20140015131 Meyer et al. Jan 2014 A1
20140035129 Stuber et al. Feb 2014 A1
20140134803 Kelly et al. May 2014 A1
20140168014 Chih et al. Jun 2014 A1
20140197530 Meyer et al. Jul 2014 A1
20140210314 Bhattacharjee et al. Jul 2014 A1
20140219604 Hackler, Sr. et al. Aug 2014 A1
20140252566 Kerr et al. Sep 2014 A1
20140252567 Carroll et al. Sep 2014 A1
20140264813 Lin et al. Sep 2014 A1
20140264818 Lowe, Jr. et al. Sep 2014 A1
20140306324 Costa et al. Oct 2014 A1
20140327003 Fuergut et al. Nov 2014 A1
20140327150 Jung et al. Nov 2014 A1
20140346573 Adam et al. Nov 2014 A1
20140356602 Oh et al. Dec 2014 A1
20150015321 Dribinsky et al. Jan 2015 A1
20150108666 Engelhardt et al. Apr 2015 A1
20150115416 Costa et al. Apr 2015 A1
20150130045 Tseng et al. May 2015 A1
20150136858 Finn et al. May 2015 A1
20150197419 Cheng et al. Jul 2015 A1
20150235990 Cheng et al. Aug 2015 A1
20150235993 Cheng et al. Aug 2015 A1
20150243881 Sankman et al. Aug 2015 A1
20150255368 Costa Sep 2015 A1
20150262844 Meyer et al. Sep 2015 A1
20150279789 Mahajan et al. Oct 2015 A1
20150311132 Kuo et al. Oct 2015 A1
20150364344 Yu et al. Dec 2015 A1
20150380394 Jang et al. Dec 2015 A1
20150380523 Hekmatshoartabari et al. Dec 2015 A1
20160002510 Champagne et al. Jan 2016 A1
20160079137 Leipold et al. Mar 2016 A1
20160093580 Scanlan et al. Mar 2016 A1
20160126196 Leipold et al. May 2016 A1
20160133591 Hong et al. May 2016 A1
20160155706 Yoneyama et al. Jun 2016 A1
20160284568 Morris et al. Sep 2016 A1
20160343592 Costa et al. Nov 2016 A1
20160343604 Costa et al. Nov 2016 A1
20160347609 Yu et al. Dec 2016 A1
20160362292 Chang Dec 2016 A1
20170024503 Connelly Jan 2017 A1
20170053938 Whitefield Feb 2017 A1
20170190572 Pan et al. Jul 2017 A1
20170263539 Gowda et al. Sep 2017 A1
20180269188 Yu et al. Sep 2018 A1
20190172842 Whitefield Jun 2019 A1
20190189599 Baloglu et al. Jun 2019 A1
Foreign Referenced Citations (15)
Number Date Country
103811474 May 2014 CN
103872012 Jun 2014 CN
2996143 Mar 2016 EP
S505733 Feb 1975 JP
H11220077 Aug 1999 JP
200293957 Mar 2002 JP
2002252376 Sep 2002 JP
2006005025 Jan 2006 JP
2007227439 Sep 2007 JP
2008235490 Oct 2008 JP
2008279567 Nov 2008 JP
2009026880 Feb 2009 JP
2009530823 Aug 2009 JP
2011243596 Dec 2011 JP
2007074651 Jul 2007 WO
Non-Patent Literature Citations (204)
Entry
Notice of Allowance for U.S. Appl. No. 15/287,273, dated Jun. 30, 2017, 8 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jul. 21, 2017, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Sep. 7, 2017, 5 pages.
Extended European Search Report for European Patent Application No. 15184861.1, dated Jan. 25, 2016, 6 pages.
Office Action of the Intellectual Property Office for Taiwanese Patent Application No. 104130224, dated Jun. 15, 2016, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/885,202, dated Apr. 14, 2016, 5 pages.
Final Office Action for U.S. Appl. No. 14/885,202, dated Sep. 27, 2016, 7 pages.
Advisory Action for U.S. Appl. No. 14/885,202, dated Nov. 29, 2016, 3 pages.
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jan. 27, 2017, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jul. 24, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/885,243, dated Aug. 31, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated May 27, 2011, 13 pages.
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated Nov. 4, 2011, 20 pages.
Search Report for Japanese Patent Application No. 2011-229152, created on Feb. 22, 2013, 58 pages.
Office Action for Japanese Patent Application No. 2011-229152, drafted May 10, 2013, 7 pages.
Final Rejection for Japanese Patent Application No. 2011-229152, drafted Oct. 25, 2013, 2 pages.
International Search Report and Written Opinion for PCT/US2016/045809, dated Oct. 7, 2016, 11 pages.
Raskin, Jean-Pierre et al., “Substrate Crosstalk Reduction Using SOI Technology,” IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997, pp. 2252-2261.
Rong, B., et al., “Surface-Passivated High-Resistivity Silicon Substrates for RFICs,” IEEE Electron Device Letters, vol. 25, No. 4, Apr. 2004, pp. 176-178.
Sherman, Lilli M., “Plastics that Conduct Heat,” Plastics Technology Online, Jun. 2001, Retrieved May 17, 2016, http://www.ptonline.com/articles/plastics-that-conduct-heat, Gardner Business Media, Inc., 5 pages.
Tombak, A., et al., “High-Efficiency Cellular Power Amplifiers Based on a Modified LDMOS Process on Bulk Silicon and Silicon-On-Insulator Substrates with Integrated Power Management Circuitry,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 1862-1869.
Yamanaka, A., et al., “Thermal Conductivity of High-Strength Polyetheylene Fiber and Applications for Cryogenic Use,” International Scholarly Research Network, ISRN Materials Science, vol. 2011, Article ID 718761, May 25, 2011, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 18, 2013, 20 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Nov. 26, 2013, 21 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/852,648, dated Jan. 27, 2014, 4 pages.
Advisory Action for U.S. Appl. No. 13/852,648, dated Mar. 7, 2014, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jun. 16, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Sep. 26, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jan. 22, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jun. 24, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Oct. 22, 2015, 20 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Feb. 19, 2016, 12 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 20, 2016, 14 pages.
Non-Final Office Action for U.S. Appl. No. 14/315,765, dated Jan. 2, 2015, 6 pages.
Final Office Action for U.S. Appl. No. 14/315,765, dated May 11, 2015, 17 pages.
Advisory Action for U.S. Appl. No. 14/315,765, dated Jul. 22, 2015, 3 pages.
Non-Final Office Action for U.S. Appl. No. 14/260,909, dated Mar. 20, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 14/260,909, dated Aug. 12, 2015, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/261,029, dated Dec. 5, 2014, 15 pages.
Notice of Allowance for U.S. Appl. No. 14/261,029, dated Apr. 27, 2015, 10 pages.
Corrected Notice of Allowability for U.S. Appl. No. 14/261,029, dated Nov. 17, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/529,870, dated Feb. 12, 2016, 14 pages.
Notice of Allowance for U.S. Appl. No. 14/529,870, dated Jul. 15, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/293,947, dated Apr. 7, 2017, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/293,947, dated Aug. 14, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/715,830, dated Apr. 13, 2016, 16 pages.
Final Office Action for U.S. Appl. No. 14/715,830, dated Sep. 6, 2016, 13 pages.
Advisory Action for U.S. Appl. No. 14/715,830, dated Oct. 31, 2016, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Feb. 10, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Mar. 2, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/851,652, dated Oct. 7, 2016, 10 pages.
Notice of Allowance for U.S. Appl. No. 14/851,652, dated Apr. 11, 2017, 9 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Jul. 24, 2017, 6 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Sep. 6, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/959,129, dated Oct. 11, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/173,037, dated Jan. 10, 2017, 8 pages.
Final Office Action for U.S. Appl. No. 15/173,037, dated May 2, 2017, 13 pages.
Advisory Action for U.S. Appl. No. 15/173,037, dated Jul. 20, 2017, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/173,037, dated Aug. 9, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Feb. 15, 2017, 10 pages.
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Jun. 6, 2017, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/229,780, dated Jun. 30, 2017, 12 pages.
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Aug. 7, 2017, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/408,560, dated Sep. 25, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/287,202, dated Aug. 25, 2017, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/353,346, dated May 23, 2017, 15 pages.
Notice of Allowance for U.S. Appl. No. 15/353,346, dated Sep. 25, 2017, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/795,915, dated Feb. 23, 2018, 6 pages.
Non-Final Office Action for U.S. Appl. No. 15/387,855, dated Jan. 16, 2018, 7 pages.
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Feb. 28, 2018, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jan. 17, 2018, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Feb. 23, 2018, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/498,040, dated Feb. 20, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/491,064, dated Jan. 2, 2018, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,415, dated Mar. 27, 2018, 14 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,621, dated Mar. 26, 2018, 16 pages.
International Preliminary Report on Patentability for PCT/US2016/045809, dated Feb. 22, 2018, 8 pages.
Ali, K. Ben et al., “RF SOI CMOS Technology on Commercial Trap-Rich High Resistivity SOI Wafer,” 2012 IEEE International SOI Conference (SOI), Oct. 1-4, 2012, Napa, California, IEEE, 2 pages.
Anderson, D.R., “Thermal Conductivity of Polymers,” Sandia Corporation, Mar. 8, 1966, pp. 677-690.
Author Unknown, “96% Alumina, thick-film, as fired,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/DataSheet.aspx?MatGUID=3996a734395a4870a9739076918c4297&ckck=1.
Author Unknown, “CoolPoly D5108 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 2 pages.
Author Unknown, “CoolPoly D5506 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Dec. 12, 2013, 2 pages.
Author Unknown, “CoolPoly D-Series—Thermally Conductive Dielectric Plastics,” Cool Polymers, Retrieved Jun. 24, 2013, http://coolpolymers.com/dseries.asp, 1 page.
Author Unknown, “CoolPoly E2 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Aug. 8, 2007, http://www.coolpolymers.com/Files/DS/Datasheet_e2.pdf, 1 page.
Author Unknown, “CoolPoly E3605 Thermally Conductive Polyamide 4,6 (PA 4,6),” Cool Polymers, Inc., Aug. 4, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e3605.pdf.
Author Unknown, “CoolPoly E5101 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 27, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e5101.pdf.
Author Unknown, “CoolPoly E5107 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 1 page, http://coolpolymers.com/Files/DS/Datasheet_e5107.pdf.
Author Unknown, “CoolPoly Selection Tool,” Cool Polymers, Inc., 2006, 1 page, http://www.coolpolymers.com/select.asp?Application=Substrates+%26+Electcronic_Packaging.
Author Unknown, “CoolPoly Thermally Conductive Plastics for Dielectric Heat Plates,” Cool Polymers, Inc., 2006, 2 pages, http://www.coolpolymers.com/heatplate.asp.
Author Unknown, “CoolPoly Thermally Conductive Plastics for Substrates and Electronic Packaging,” Cool Polymers, Inc., 2005, 1 page.
Author Unknown, “Electrical Properties of Plastic Materials,” Professional Plastics, Oct. 28, 2011, http://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf, accessed Dec. 18, 2014, 4 pages.
Author Unknown, “Fully Sintered Ferrite Powders,” Powder Processing and Technology, LLC, Date Unknown, 1 page.
Author Unknown, “Heat Transfer,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/heattrans.html, 2 pages.
Author Unknown, “Hysol UF3808,” Henkel Corporation, Technical Data Sheet, May 2013, 2 pages.
Author Unknown, “PolyOne Therma-Tech™ LC-5000C TC LCP,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/datasheettext.aspx?matguid=89754e8bb26148d083c5ebb05a0cbff1.
Author Unknown, “Sapphire Substrate,” from CRC Handbook of Chemistry and Physics, Date Unknown, 1 page.
Author Unknown, “Thermal Properties of Plastic Materials,” Professional Plastics, Aug. 21, 2010, http://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf, accessed Dec. 18, 2014, 4 pages.
Author Unknown, “Thermal Properties of Solids,” PowerPoint Presentation, No Date, 28 slides, http://www.phys.huji.ac.il/Phys_Hug/Lectures/77602/PHONONS_2_thermal.pdf.
Author Unknown, “Thermal Resistance & Thermal Conductance,” C-Therm Technologies Ltd., accessed Sep. 19, 2013, 4 pages, http://www.ctherm.com/products/tci_thermal_conductivity/helpful_links_tools/thermal_resistance_thermal_conductance/.
Author Unknown, “The Technology: AKHAN's Approach and Solution: The Miraj Diamond™ Platform,” 2015, accessed Oct. 9, 2016, http://www.akhansemi.com/technology.html#the-miraj-diamond-platform, 5 pages.
Beck, D., et al., “CMOS on FZ-High Resistivity Substrate for Monolithic Integration of SiGe-RF-Circuitry and Readout Electronics,” IEEE Transactions on Electron Devices, vol. 44, No. 7, Jul. 1997, pp. 1091-1101.
Botula, A., et al., “A Thin-Film SOI 180nm CMOS RF Switch Technology,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF '09), Jan. 2009, pp. 1-4.
Carroll, M., et al., “High-Resistivity SOI CMOS Cellular Antenna Switches,” Annual IEEE Compound Semiconductor Integrated Circuit Symposium, (CISC 2009), Oct. 2009, pp. 1-4.
Colinge, J.P., et al., “A Low-Voltage, Low-Power Microwave SOI MOSFET,” Proceedings of 1996 IEEE International SOI Conference, Oct. 1996, pp. 128-129.
Costa, J. et al., “Integrated MEMS Switch Technology on SOI-CMOS,” Proceedings of Hilton Head Workshop: A Solid-State Sensors, Actuators and Microsystems Workshop, Jun. 1-5, 2008, Hilton Head Island, SC, IEEE, pp. 900-903.
Costa, J. et al., “Silicon RFCMOS SOI Technology with Above-IC MEMS Integration for Front End Wireless Applications,” Bipolar/BiCMOS Circuits and Technology Meeting, 2008, BCTM 2008, IEEE, pp. 204-207.
Costa, J., “RFCMOS SOI Technology for 4G Reconfigurable RF Solutions,” Session WEC1-2, Proceedings of the 2013 IEEE International Microwave Symposium, 4 pages.
Esfeh, Babak Kazemi et al., “RF Non-Linearities from Si-Based Substrates,” 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Apr. 2-4, 2014, IEEE, 3 pages.
Finne, R. M. et al., “A Water-Amine-Complexing Agent System for Etching Silicon,” Journal of The Electrochemical Society, vol. 114, No. 9, Sep. 1967, pp. 965-970.
Gamble, H. S. et al., “Low-Loss CPW Lines on Surface Stabilized High-Resistivity Silicon,” IEEE Microwave and Guided Wave Letters, vol. 9, No. 10, Oct. 1999, pp. 395-397.
Huang, Xingyi, et al., “A Review of Dielectric Polymer Composites with High Thermal Conductivity,” IEEE Electrical Insulation Magazine, vol. 27, No. 4, Jul./Aug. 2011, pp. 8-16.
Joshi, V. et al., “MEMS Solutions in RF Applications,” 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Oct. 2013, IEEE, 2 pages.
Jung, Boo Yang, et al., “Study of FCMBGA with Low CTE Core Substrate,” 2009 Electronic Components and Technology Conference, May 2009, pp. 301-304.
Kerr, D.C., et al., “Identification of RF Harmonic Distortion on Si Substrates and Its Reduction Using a Trap-Rich Layer,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF 2008), Jan. 2008, pp. 151-154.
Lederer, D., et al., “New Substrate Passivation Method Dedicated to HR SOI Wafer Fabrication with Increased Substrate Resistivity,” IEEE Electron Device Letters, vol. 26, No. 11, Nov. 2005, pp. 805-807.
Lederer, Dimitri et al., “Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers,” Solid-State Electronics, vol. 47, No. 11, Nov. 2003, pp. 1927-1936.
Lee, Kwang Hong et al., “Integration of III-V materials and SI-CMOS through double layer transfer process,” Japanese Journal of Applied Physics, vol. 54, Jan. 2015, pp. 030209-1 to 030209-5.
Lee, Tzung-Yin, et al., “Modeling of SOI FET for RF Switch Applications,” IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, Anaheim, CA, IEEE, pp. 479-482.
Lu, J.Q., et al., “Evaluation Procedures for Wafer Bonding and Thinning of Interconnect Test Structures for 3D ICs,” Proceedings of the IEEE 2003 International Interconnect Technology Conference, Jun. 2-4, 2003, pp. 74-76.
Mamunya, YE.P., et al., “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, vol. 38, 2002, pp. 1887-1897.
Mansour, Raafat R., “RF MEMS-CMOS Device Integration,” IEEE Microwave Magazine, vol. 14, No. 1, Jan. 2013, pp. 39-56.
Mazuré, C. et al., “Advanced SOI Substrate Manufacturing,” 2004 IEEE International Conference on Integrated Circuit Design and Technology, 2004, IEEE, pp. 105-111.
Micak, R. et al., “Photo-Assisted Electrochemical Machining of Micromechanical Structures,” Proceedings of Micro Electro Mechanical Systems, Feb. 7-10, 1993, Fort Lauderdale, FL, IEEE, pp. 225-229.
Morris, Art, “Monolithic Integration of RF-MEMS within CMOS,” 2015 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Apr. 27-29, 2015, IEEE, 2 pages.
Niklaus, F., et al., “Adhesive Wafer Bonding,” Journal of Applied Physics, vol. 99, No. 3, 031101 (2006), 28 pages.
Parthasarathy, S., et al., “RF SOI Switch FET Design and Modeling Tradeoffs for GSM Applications,” 2010 23rd International Conference on VLSI Design, (VLSID '10), Jan. 2010, pp. 194-199.
Raskin, J.P., et al., “Coupling Effects in High-Resistivity SIMOX Substrates for VHF and Microwave Applications,” Proceedings of 1995 IEEE International SOI Conference, Oct. 1995, pp. 62-63.
Bernheim et al., “Chapter 9: Lamination,” Tools and Manufacturing Engineers Handbook (book), Apr. 1, 1996, Society of Manufacturing Engineers, p. 9-1.
Fillion R. et al., “Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics,” Electronic Components and Technology Conference, vol. 1, May 1994, IEEE, 5 pages.
Henawy, Mahmoud Al et al., “New Thermoplastic Polymer Substrate for Microstrip Antennas at 60 GHz,” German Microwave Conference, Mar. 15-17, 2010, Berlin, Germany, IEEE, pp. 5-8.
International Search Report and Written Opinion for PCT/US2017/046744, dated Nov. 27, 2017, 17 pages.
International Search Report and Written Opinion for PCT/US2017/046758, dated Nov. 16, 2017, 19 pages.
International Search Report and Written Opinion for PCT/US2017/046779, dated Nov. 29, 2017, 17 pages.
Non-Final Office Action for U.S. Appl. No. 15/616,109, dated Oct. 23, 2017, 16 pages.
Corrected Notice of Allowability for U.S. Appl. No. 14/851,652, dated Oct. 20, 2017, 5 pages.
Final Office Action for U.S. Appl. No. 15/262,457, dated Dec. 19, 2017, 12 pages.
Supplemental Notice of Allowability and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/287,273, dated Oct. 18, 2017, 6 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Nov. 2, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/872,910, dated Nov. 17, 2017, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/648,082, dated Nov. 29, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/652,826, dated Nov. 3, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/229,780, dated Oct. 3, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/652,867, dated Oct. 10, 2017, 5 pages.
Final Office Action for U.S. Appl. No. 15/616,109, dated Apr. 19, 2018, 18 pages.
Notice of Allowance for U.S. Appl. No. 15/795,915, dated Jun. 15, 2018, 7 pages.
Final Office Action for U.S. Appl. No. 15/387,855, dated May 24, 2018, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Apr. 19, 2018, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/491,064, dated Apr. 30, 2018, 9 pages.
Notice of Allowance for U.S. Appl. No. 15/616,109, dated Jul. 2, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/676,621, dated Jun. 5, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,693, dated May 3, 2018, 14 pages.
Notice of Allowance for U.S. Appl. No. 15/789,107, dated May 18, 2018, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/695,629, dated Jul. 11, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/387,855, dated Aug. 10, 2018, 7 pages.
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Sep. 28, 2018, 16 pages.
Notice of Allowance for U.S. Appl. No. 15/676,693, dated Jul. 20, 2018, 8 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/676,693, dated Aug. 29, 2018, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/914,538, dated Aug. 1, 2018, 9 pages.
First Office Action for Chinese Patent Application No. 201510746323.X, dated Nov. 2, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Jan. 9, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/945,418, dated Nov. 1, 2018, 13 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Jan. 11, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/695,579, dated Jan. 28, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/695,579, dated Mar. 20, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/992,613, dated Feb. 27, 2019, 15 pages.
International Preliminary Report on Patentability for PCT/US2017/046744, dated Feb. 21, 2019, 11 pages.
International Preliminary Report on Patentability for PCT/US2017/046758, dated Feb. 21, 2019, 11 pages.
International Preliminary Report on Patentability for PCT/US2017/046779, dated Feb. 21, 2019, 11 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated May 13, 2019, 8 pages.
Final Office Action for U.S. Appl. No. 15/992,613, dated May 24, 2019, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/992,639, dated May 9, 2019, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/873,152, dated May 24, 2019, 11 pages.
Notice of Allowance for U.S. Appl. No. 16/168,327, dated Jun. 28, 2019, 7 pages.
Lin, Yueh, Chin, et al., “Enhancement-Mode GaN MIS-HEMTs With LaHfOx Gate Insulator for Power Application,” IEEE Electronic Device Letters, vol. 38, Issue 8, 2017, 4 pages.
Shukla, Shishir, et al., “GaN-on-Si Switched Mode RF Power Amplifiers for Non-Constant Envelope Signals,” IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, 2017, pp. 88-91.
Tsai, Szu-Ping., et al., “Performance Enhancement of Flip-Chip Packaged AlGAaN/GaN HEMTs by Strain Engineering Design,” IEEE Transcations on Electron Devices, vol. 63, Issue 10, Oct. 2016, pp. 3876-3881.
Tsai, Chun-Lin, et al., “Smart GaN platform; Performance & Challenges,” IEEE International Electron Devices Meeting, 2017, 4 pages.
Notice of Reasons for Refusal for Japanese Patent Application No. 2015-180657, dated Jul. 9, 2019, 4 pages.
Advisory Action for U.S. Appl. No. 15/992,613, dated Jul. 29, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/975,230, dated Jul. 22, 2019, 7 pages.
Final Office Action for U.S. Appl. No. 15/873,152, dated Aug. 8, 2019, 13 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Aug. 28, 2019, 8 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US19/25591, dated Jun. 21, 2019, 7 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034645, dated Sep. 19, 2019, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034699, dated Oct. 29, 2019, 13 pages.
Notice of Allowance for U.S. Appl. No. 15/992,613, dated Sep. 23, 2019, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated Oct. 9, 2019, 15 pages.
Non-Final Office Action for U.S. Appl. No. 15/816,637, dated Oct. 31, 2019, 10 pages.
Advisory Action for U.S. Appl. No. 15/873,152, dated Oct. 11, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/873,152, dated Dec. 10, 2019, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/527,702, dated Jan. 10, 2020, 10 pages.
Office Action for Japanese Patent Application No. 2018-526613, dated Nov. 5, 2019, 8 pages.
Final Office Action for U.S. Appl. No. 16/204,214, dated Mar. 6, 2020, 14 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Feb. 5, 2020, 5 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/063460, dated Feb. 25, 2020, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055317, dated Feb. 6, 2020, 17 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055321, dated Jan. 27, 2020, 23 pages.
Intention to Grant for European Patent Application No. 17757646.9, dated Feb. 27, 2020, 55 pages.
Decision of Rejection for Japanese Patent Application No. 2015-180657, dated Mar. 17, 2020, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Apr. 15, 2020, 9 pages.
Notice of Allowance for U.S. Appl. No. 15/816,637, dated Apr. 2, 2020, 8 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Apr. 1, 2020, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/527,702, dated Apr. 9, 2020, 8 pages.
Advisory Action for U.S. Appl. No. 16/204,214, dated Apr. 15, 2020, 3 pages.
Related Publications (1)
Number Date Country
20170334710 A1 Nov 2017 US
Provisional Applications (1)
Number Date Country
62339322 May 2016 US