This disclosure relates to structures and processes for forming advanced transistors with improved operational characteristics, including enhanced punch through suppression.
Fitting more transistors onto a single die is desirable to reduce cost of electronics and improve their functional capability. A common strategy employed by semiconductor manufacturers is to simply reduce gate size of a field effect transistor (FET), and proportionally shrink area of the transistor source, drain, and required interconnects between transistors. However, a simple proportional shrink is not always possible because of what are known as “short channel effects”. Short channel effects are particularly acute when channel length under a transistor gate is comparable in magnitude to depletion depth of an operating transistor, and include reduction in threshold voltage, severe surface scattering, drain induced barrier lowering (DIBL), source-drain punch through, and electron mobility issues.
Conventional solutions to mitigate some short channel effects can involve implantation of pocket or halo implants around the source and the drain. Halo implants can be symmetrical or asymmetrical with respect to a transistor source and drain, and typically provide a smoother dopant gradient between a transistor well and the source and drains. Unfortunately, while such implants improve some electrical characteristics such as threshold voltage rolloff and drain induced barrier lowering, the resultant increased channel doping adversely affects electron mobility, primarily because of the increased dopant scattering in the channel.
Many semiconductor manufacturers have attempted to reduce short channel effects by employing new transistor types, including fully or partially depleted silicon on insulator (SOI) transistors. SOI transistors are built on a thin layer of silicon that overlies an insulator layer, have an undoped or low doped channel that minimizes short channel effects, and do not require either deep well implants or halo implants for operation. Unfortunately, creating a suitable insulator layer is expensive and difficult to accomplish. Early SOI devices were built on insulative sapphire wafers instead of silicon wafers, and are typically only used in specialty applications (e.g. military avionics or satellite) because of the high costs. Modern SOI technology can use silicon wafers, but require require expensive and time consuming additional wafer processing steps to make an insulative silicon oxide layer that extends across the entire wafer below a surface layer of device-quality single-crystal silicon.
One common approach to making such a silicon oxide layer on a silicon wafer requires high dose ion implantation of oxygen and high temperature annealing to form a buried oxide (BOX) layer in a bulk silicon wafer. Alternatively, SOI wafers can be fabricated by bonding a silicon wafer to another silicon wafer (a “handle” wafer) that has an oxide layer on its surface. The pair of wafers are split apart, using a process that leaves a thin transistor quality layer of single crystal silicon on top of the BOX layer on the handle wafer. This is called the “layer transfer” technique, because it transfers a thin layer of silicon onto a thermally grown oxide layer of the handle wafer.
As would be expected, both BOX formation or layer transfer are costly manufacturing techniques with a relatively high failure rate. Accordingly, manufacture of SOI transistors not an economically attractive solution for many leading manufacturers. When cost of transistor redesign to cope with “floating body” effects, the need to develop new SOI specific transistor processes, and other circuit changes is added to SOI wafer costs, it is clear that other solutions are needed.
Another possible advanced transistor that has been investigated uses multiple gate transistors that, like SOI transistors, minimize short channel effects by having little or no doping in the channel. Commonly known as a finFET (due to a fin-like shaped channel partially surrounded by gates), use of finFET transistors has been proposed for transistors having 28 nanometer or lower transistor gate size. But again, like SOI transistors, while moving to a radically new transistor architecture solves some short channel effect issues, it creates others, requiring even more significant transistor layout redesign than SOI. Considering the likely need for complex non-planar transistor manufacturing techniques to make a finFET, and the unknown difficulty in creating a new process flow for finFET, manufacturers have been reluctant to invest in semiconductor fabrication facilities capable of making finFETs.
Unlike silicon on insulator (SOI) transistors, nanoscale bulk CMOS transistors (those typically having a gate length less than 100 nanometers) are subject to significant adverse short channel effects, including body leakage through both drain induced barrier lowering (DIBL) and source drain punch through. Punch through is associated with the merging of source and drain depletion layers, causing the drain depletion layer to extend across a doped substrate and reach the source depletion layer, creating a conduction path or leakage current between the source and drain. This results in a substantial increase in required transistor electrical power, along with a consequent increase in transistor heat output and decrease in operational lifetime for portable or battery powered devices using such transistors.
An improved transistor manufacturable on bulk CMOS substrates is seen in
In operation, a bias voltage 122 VBS may be applied to source 104 to further modify operational threshold voltage, and P+ terminal 126 can be connected to P-well 114 at connection 124 to close the circuit. The gate stack includes a gate electrode 102, gate contact 118 and a gate dielectric 108. Gate spacers 130 are included to separate the gate from the source and drain, and optional Source/Drain Extensions (SDE) 132, or “tips” extend the source and drain under the gate spacers and gate dielectric 108, somewhat reducing the gate length and improving electrical characteristics of FET 100.
In this exemplary embodiment, the FET 100 is shown as an N-channel transistor having a source and drain made of N-type dopant material, formed upon a substrate as P-type doped silicon substrate providing a P-well 114 formed on a substrate 116. However, it will be understood that, with appropriate change to substrate or dopant material, a non-silicon P-type semiconductor transistor formed from other suitable substrates such as Gallium Arsenide based materials may be substituted. The source 104 and drain 106 can be formed using conventional dopant implant processes and materials, and may include, for example, modifications such as stress inducing source/drain structures, raised and/or recessed source/drains, asymmetrically doped, counter-doped or crystal structure modified source/drains, or implant doping of source/drain extension regions according to LDD (low doped drain) techniques. Various other techniques to modify source/drain operational characteristics can also be used, including, in certain embodiments, use of heterogeneous dopant materials as compensation dopants to modify electrical characteristics.
The gate electrode 102 can be formed from conventional materials, preferably including, but not limited to, metals, metal alloys, metal nitrides and metal silicides, as well as laminates thereof and composites thereof. In certain embodiments the gate electrode 102 may also be formed from polysilicon, including, for example, highly doped polysilicon and polysilicon-germanium alloy. Metals or metal alloys may include those containing aluminum, titanium, tantalum, or nitrides thereof, including titanium containing compounds such as titanium nitride. Formation of the gate electrode 102 can include silicide methods, chemical vapor deposition methods and physical vapor deposition methods, such as, but not limited to, evaporative methods and sputtering methods. Typically, the gate electrode 102 has an overall thickness from about 1 to about 500 nanometers.
The gate dielectric 108 may include conventional dielectric materials such as oxides, nitrides and oxynitrides. Alternatively, the gate dielectric 108 may include generally higher dielectric constant dielectric materials including, but not limited to hafnium oxides, hafnium silicates, zirconium oxides, lanthanum oxides, titanium oxides, barium-strontium-titanates and lead-zirconate-titanates, metal based dielectric materials, and other materials having dielectric properties. Preferred hafnium-containing oxides include HfO2, HfZrOx, HfSiOx, HfTiOx, HfAlOx, and the like. Depending on composition and available deposition processing equipment, the gate dielectric 108 may be formed by such methods as thermal or plasma oxidation, nitridation methods, chemical vapor deposition methods (including atomic layer deposition methods) and physical vapor deposition methods. In some embodiments, multiple or composite layers, laminates, and compositional mixtures of dielectric materials can be used. For example, a gate dielectric can be formed from a SiO2-based insulator having a thickness between about 0.3 and 1 nm and the hafnium oxide based insulator having a thickness between 0.5 and 4 nm. Typically, the gate dielectric has an overall thickness from about 0.5 to about 5 nanometers.
The channel region 110 is formed below the gate dielectric 108 and above the highly doped screening region 112. The channel region 110 also contacts and extends between, the source 104 and the drain 106. Preferably, the channel region includes substantially undoped silicon having a dopant concentration less than 5×1017 dopant atoms per cm3 adjacent or near the gate dielectric 108. Channel thickness can typically range from 5 to 50 nanometers. In certain embodiments the channel region 110 is formed by epitaxial growth of pure or substantially pure silicon on the screening region.
As disclosed, the threshold voltage set region 111 is positioned under the gate dielectric 108, spaced therefrom, and above screening region 112, and is typically formed as a thin doped layer. Suitably varying dopant concentration, thickness, and separation from the gate dielectric and the screening region allows for controlled slight adjustments of threshold voltage in the operating FET 100. In certain embodiments, the threshold voltage set region 111 is doped to have a concentration between about 1×1018 dopant atoms per cm3 and about 1×1019 dopant atoms per cm3. The threshold voltage set region 111 can be formed by several different processes, including 1) in-situ epitaxial doping, 2) epitaxial growth of a thin layer of silicon followed by a tightly controlled dopant implant, 3) epitaxial growth of a thin layer of silicon followed by dopant diffusion of atoms from the screening region 112, or 4) by any combination of these processes (e.g. epitaxial growth of silicon followed by both dopant implant and diffusion from the screening layer 112).
Position of a highly doped screening region 112 typically sets depth of the depletion zone of an operating FET 100. Advantageously, the screening region 112 (and associated depletion depth) are set at a depth that ranges from one comparable to the gate length (Lg/1) to a depth that is a large fraction of the gate length (Lg/5). In preferred embodiments, the typical range is between Lg/3 to Lg/1.5. Devices having an Lg/2 or greater are preferred for extremely low power operation, while digital or analog devices operating at higher voltages can often be formed with a screening region between Lg/5 and Lg/2. For example, a transistor having a gate length of 32 nanometers could be formed to have a screening region that has a peak dopant density at a depth below the gate dielectric of about 16 nanometers (Lg/2), along with a threshold voltage set region at peak dopant density at a depth of 8 nanometers (Lg/4).
In certain embodiments, the screening region 112 is doped to have a concentration between about 5×1018 dopant atoms per cm3 and about 1×1020 dopant atoms per cm3, significantly more than the dopant concentration of the undoped channel, and at least slightly greater than the dopant concentration of the optional threshold voltage set region 111. As will be appreciated, exact dopant concentrations and screening region depths can be modified to improve desired operating characteristics of FET 100, or to take in to account available transistor manufacturing processes and process conditions.
To help control leakage, the punch through suppression region 113 is formed beneath the screening region 112. Typically, the punch through suppression region 113 is formed by direct implant into a lightly doped well, but it may be formed by out-diffusion from the screening region, in-situ growth, or other known process. Like the threshold voltage set region 111, the punch through suppression region 113 has a dopant concentration less than the screening region 112, typically set between about 1×1018 dopant atoms per cm3 and about 1×1019 dopant atoms per cm3. In addition, the punch through suppression region 113 dopant concentration is set higher than the overall dopant concentration of the well substrate. As will be appreciated, exact dopant concentrations and depths can be modified to improve desired operating characteristics of FET 100, or to take in to account available transistor manufacturing processes and process conditions.
Forming such a FET 100 is relatively simple compared to SOI or finFET transistors, since well developed and long used planar CMOS processing techniques can be readily adapted.
Together, the structures and the methods of making the structures allow for FET transistors having both a low operating voltage and a low threshold voltage as compared to conventional nanoscale devices. Furthermore, DDC transistors can be configured to allow for the threshold voltage to be statically set with the aid of a voltage body bias generator. In some embodiments the threshold voltage can even be dynamically controlled, allowing the transistor leakage currents to be greatly reduced (by setting the voltage bias to upwardly adjust the VT for low leakage, low speed operation), or increased (by downwardly adjusting the VT for high leakage, high speed operation). Ultimately, these structures and the methods of making structures provide for designing integrated circuits having FET devices that can be dynamically adjusted while the circuit is in operation. Thus, transistors in an integrated circuit can be designed with nominally identical structure, and can be controlled, modulated or programmed to operate at different operating voltages in response to different bias voltages, or to operate in different operating modes in response to different bias voltages and operating voltages. In addition, these can be configured post-fabrication for different applications within a circuit.
As will be appreciated, concentrations of atoms implanted or otherwise present in a substrate or crystalline layers of a semiconductor to modify physical and electrical characteristics of a semiconductor are be described in terms of physical and functional regions or layers. These may be understood by those skilled in the art as three-dimensional masses of material that have particular averages of concentrations. Or, they may be understood as sub-regions or sub-layers with different or spatially varying concentrations. They may also exist as small groups of dopant atoms, regions of substantially similar dopant atoms or the like, or other physical embodiments. Descriptions of the regions based on these properties are not intended to limit the shape, exact location or orientation. They are also not intended to limit these regions or layers to any particular type or number of process steps, type or numbers of layers (e.g., composite or unitary), semiconductor deposition, etch techniques, or growth techniques utilized. These processes may include epitaxially formed regions or atomic layer deposition, dopant implant methodologies or particular vertical or lateral dopant profiles, including linear, monotonically increasing, retrograde, or other suitable spatially varying dopant concentration. To ensure that desired dopant concentrations are maintained, various dopant anti-migration techniques, are contemplated, including low temperature processing, carbon doping, in-situ dopant deposition, and advanced flash or other annealing techniques. The resultant dopant profile may have one or more regions or layers with different dopant concentrations, and the variations in concentrations and how the regions or layers are defined, regardless of process, may or may not be detectable via techniques including infrared spectroscopy, Rutherford Back Scattering (RBS), Secondary Ion Mass Spectroscopy (SIMS), or other dopant analysis tools using different qualitative or quantitative dopant concentration determination methodologies.
To better appreciate one possible transistor structure,
As seen in
This is better seen with respect to the following Table 1, which indicates expected performance improvements for a range of punch through dosage and threshold voltage:
Alternative dopant profiles are contemplated. As seen in
As seen in
Yet another variation in dopant profile is seen in
As seen in
In contrast to the narrow screen region peak dopant concentration of
In Step 302, the process begins at the well formation, which may be one of many different processes according to different embodiments and examples. As indicated in 303, the well formation may be before or after STI (shallow trench isolation) formation 304, depending on the application and results desired. Boron (B), indium (I) or other P-type materials may be used for P-type implants, and arsenic (As) or phosphorous (P) and other N-type materials may be used for N-type implants. For the PMOS well implants, the P+ implant may be implanted within a range from 10 to 80 keV, and at NMOS well implants, the boron implant B+ implant may be within a range of 0.5 to 5 keV, and within a concentration range of 1×1013 to 8×1013/cm2. A germanium implant Ge+, may be performed within a range of 10 to 60 keV, and at a concentration of 1×1014 to 5×1014/cm2. To reduce dopant migration, a carbon implant, C+ may be performed at a range of 0.5 to 5 keV, and at a concentration of 1×1013 to 8×1013/cm2. Well implants may include sequential implant, and/or epitaxial growth and implant, of punch through suppression regions, screen regions having a higher dopant density than the punch through suppression region, and threshold voltage set regions (which previously discussed are typically formed by implant or diffusion of dopants into a grown epitaxial layer on the screening region).
In some embodiments the well formation 302 may include a beam line implant of Ge/B (N), As (P), followed by an epitaxial (EPI) pre-clean process, and followed finally non-selective blanket EPI deposition, as shown in 302A. Alternatively, the well may be formed using a plasma implant of B (N), As (P), followed by an EPI pre-clean, then finally a non-selective (blanket) EPI deposition, 302B. The well formation may alternatively include a solid-source diffusion of B(N), As(P), followed by an EPI pre-clean, and followed finally by a non-selective (blanket) EPI deposition, 302C. The well formation may alternatively include a solid-source diffusion of B(N), As(P), followed by an EPI pre-clean, and followed finally by a non-selective (blanket) EPI deposition, 302D. As yet another alternative, well formation may simply include well implants, followed by in-situ doped selective EPI of B (N), P (P). Embodiments described herein allow for any one of a number of devices configured on a common substrate with different well structures and according to different parameters.
Shallow trench isolation (STI) formation 304, which, again, may occur before or after well formation 302, may include a low temperature trench sacrificial oxide (TSOX) liner 304A at a temperature lower than 900° C. The gate stack 306 may be formed or otherwise constructed in a number of different ways, from different materials, and of different work functions. One option is a poly/SiON gate stack 306A. Another option is a gate-first process 306B that includes SiON/Metal/Poly and/or SiON/Poly, followed by High-K/Metal Gate. Another option, a gate-last process 306C includes a high-K/metal gate stack wherein the gate stack can either be formed with “Hi-K first-Metal gate last” flow or a and “Hi-K last-Metal gate last” flow. Yet another option, 306D is a metal gate that includes a tunable range of work functions depending on the device construction, N(NMOS)/P(PMOS)/N(PMOS)/P(NMOS)/Mid-gap or anywhere in between. In one example, N has a work function (WF) of 4.05V±200 mV, and P has a WF of 5.01V±200 mV.
Next, in Step 308, Source/Drain tips may be implanted, or optionally may not be implanted depending on the application. The dimensions of the tips can be varied as required, and will depend in part on whether gate spacers (SPCR) are used. In one option, there may be no tip implant in 308A. Next, in optional steps 310 and 312, PMOS or NMOS EPI layers may be formed in the source and drain regions as performance enhancers for creating strained channels. For gate-last gate stack options, in Step 314, a Gate-last module is formed. This may be only for gate-last processes 314A.
Die supporting multiple transistor types, including those with and without a punch through suppression, those having different threshold voltages, and with and without static or dynamic biasing are contemplated. Systems on a chip (SoC), advanced microprocessors, radio frequency, memory, and other die with one or more digital and analog transistor configurations can be incorporated into a device using the methods described herein. According to the methods and processes discussed herein, a system having a variety of combinations of DDC and/or transistor devices and structures with or without punch through suppression can be produced on silicon using bulk CMOS. In different embodiments, the die may be divided into one or more areas where dynamic bias structures, static bias structures or no-bias structures exist separately or in some combination. In a dynamic bias section, for example, dynamically adjustable devices may exist along with high and low VT devices and possibly DDC logic devices.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This application claims the benefit of U.S. Provisional Application No. 61/247,300, filed Sep. 30, 2009, the disclosure of which is incorporated by reference herein. This application also claims the benefit of U.S. Provisional Application No. 61/262,122, filed Nov. 17, 2009, the disclosure of which is incorporated by reference herein, and U.S. patent application Ser. No. 12/708,497, titled “Electronic Devices and Systems, and Methods for Making and Using the Same”, filed Feb. 18, 2010, the disclosure of which is incorporated by reference herein. This application also claims the benefit of U.S. Provisional Application No. 61/357,492, filed Jun. 22, 2010, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3958266 | Athanas | May 1976 | A |
4000504 | Berger | Dec 1976 | A |
4021835 | Etoh et al. | May 1977 | A |
4242691 | Kotani et al. | Dec 1980 | A |
4276095 | Beilstein, Jr. et al. | Jun 1981 | A |
4315781 | Henderson | Feb 1982 | A |
4518926 | Swanson | May 1985 | A |
4559091 | Allen et al. | Dec 1985 | A |
4578128 | Mundt et al. | Mar 1986 | A |
4617066 | Vasudev | Oct 1986 | A |
4662061 | Malhi | May 1987 | A |
4761384 | Neppl et al. | Aug 1988 | A |
4780748 | Cunningham et al. | Oct 1988 | A |
4819043 | Yazawa et al. | Apr 1989 | A |
4885477 | Bird et al. | Dec 1989 | A |
4908681 | Nishida et al. | Mar 1990 | A |
4945254 | Robbins | Jul 1990 | A |
4956311 | Liou et al. | Sep 1990 | A |
5034337 | Mosher et al. | Jul 1991 | A |
5144378 | Hikosaka | Sep 1992 | A |
5156989 | Williams et al. | Oct 1992 | A |
5156990 | Mitchell | Oct 1992 | A |
5166765 | Lee et al. | Nov 1992 | A |
5208473 | Komori et al. | May 1993 | A |
5294821 | Iwamatsu | Mar 1994 | A |
5298763 | Shen et al. | Mar 1994 | A |
5369288 | Usuki | Nov 1994 | A |
5373186 | Schubert et al. | Dec 1994 | A |
5384476 | Nishizawa et al. | Jan 1995 | A |
5426328 | Yilmaz et al. | Jun 1995 | A |
5444008 | Han et al. | Aug 1995 | A |
5552332 | Tseng et al. | Sep 1996 | A |
5559368 | Hu et al. | Sep 1996 | A |
5608253 | Liu et al. | Mar 1997 | A |
5622880 | Burr et al. | Apr 1997 | A |
5624863 | Helm et al. | Apr 1997 | A |
5625568 | Edwards et al. | Apr 1997 | A |
5641980 | Yamaguchi et al. | Jun 1997 | A |
5663583 | Matloubian et al. | Sep 1997 | A |
5712501 | Davies et al. | Jan 1998 | A |
5719422 | Burr et al. | Feb 1998 | A |
5726488 | Watanabe et al. | Mar 1998 | A |
5726562 | Mizuno | Mar 1998 | A |
5731626 | Eaglesham et al. | Mar 1998 | A |
5736419 | Naem | Apr 1998 | A |
5753555 | Hada | May 1998 | A |
5754826 | Gamal et al. | May 1998 | A |
5756365 | Kakumu | May 1998 | A |
5763921 | Okumura et al. | Jun 1998 | A |
5780899 | Hu et al. | Jul 1998 | A |
5847419 | Imai et al. | Dec 1998 | A |
5856003 | Chiu | Jan 1999 | A |
5861334 | Rho | Jan 1999 | A |
5877049 | Liu et al. | Mar 1999 | A |
5885876 | Dennen | Mar 1999 | A |
5889315 | Farrenkopf et al. | Mar 1999 | A |
5895954 | Yasumura et al. | Apr 1999 | A |
5899714 | Farremkopf et al. | May 1999 | A |
5918129 | Fulford, Jr. et al. | Jun 1999 | A |
5923067 | Voldman | Jul 1999 | A |
5923987 | Burr | Jul 1999 | A |
5936868 | Hall | Aug 1999 | A |
5946214 | Heavlin et al. | Aug 1999 | A |
5985705 | Seliskar | Nov 1999 | A |
5989963 | Luning et al. | Nov 1999 | A |
6001695 | Wu | Dec 1999 | A |
6020227 | Bulucea | Feb 2000 | A |
6043139 | Eaglesham et al. | Mar 2000 | A |
6060345 | Hause et al. | May 2000 | A |
6060364 | Maszara et al. | May 2000 | A |
6066533 | Yu | May 2000 | A |
6072217 | Burr | Jun 2000 | A |
6087210 | Sohn | Jul 2000 | A |
6087691 | Hamamoto | Jul 2000 | A |
6088518 | Hsu | Jul 2000 | A |
6091286 | Blauschild | Jul 2000 | A |
6096611 | Wu | Aug 2000 | A |
6103562 | Son et al. | Aug 2000 | A |
6121153 | Kikkawa | Sep 2000 | A |
6147383 | Kuroda | Nov 2000 | A |
6153920 | Gossmann et al. | Nov 2000 | A |
6157073 | Lehongres | Dec 2000 | A |
6175582 | Naito et al. | Jan 2001 | B1 |
6184112 | Maszara et al. | Feb 2001 | B1 |
6190979 | Radens et al. | Feb 2001 | B1 |
6194259 | Nayak et al. | Feb 2001 | B1 |
6198157 | Ishida et al. | Mar 2001 | B1 |
6218892 | Soumyanath et al. | Apr 2001 | B1 |
6218895 | De et al. | Apr 2001 | B1 |
6221724 | Yu et al. | Apr 2001 | B1 |
6229188 | Aoki et al. | May 2001 | B1 |
6232164 | Tsai et al. | May 2001 | B1 |
6235597 | Miles | May 2001 | B1 |
6245618 | An et al. | Jun 2001 | B1 |
6268640 | Park et al. | Jul 2001 | B1 |
6271070 | Kotani et al. | Aug 2001 | B2 |
6271551 | Schmitz et al. | Aug 2001 | B1 |
6288429 | Iwata et al. | Sep 2001 | B1 |
6297132 | Zhang et al. | Oct 2001 | B1 |
6300177 | Sundaresan et al. | Oct 2001 | B1 |
6313489 | Letavic et al. | Nov 2001 | B1 |
6319799 | Ouyang et al. | Nov 2001 | B1 |
6320222 | Forbes et al. | Nov 2001 | B1 |
6323525 | Noguchi et al. | Nov 2001 | B1 |
6326666 | Bernstein et al. | Dec 2001 | B1 |
6335233 | Cho et al. | Jan 2002 | B1 |
6358806 | Puchner | Mar 2002 | B1 |
6380019 | Yu et al. | Apr 2002 | B1 |
6391752 | Colinge et al. | May 2002 | B1 |
6426260 | Hshieh | Jul 2002 | B1 |
6426279 | Huster et al. | Jul 2002 | B1 |
6432754 | Assaderaghi et al. | Aug 2002 | B1 |
6444550 | Hao et al. | Sep 2002 | B1 |
6444551 | Ku et al. | Sep 2002 | B1 |
6449749 | Stine | Sep 2002 | B1 |
6461920 | Shirahata | Oct 2002 | B1 |
6461928 | Rodder | Oct 2002 | B2 |
6472278 | Marshall et al. | Oct 2002 | B1 |
6482714 | Hieda et al. | Nov 2002 | B1 |
6489224 | Burr | Dec 2002 | B1 |
6492232 | Tang et al. | Dec 2002 | B1 |
6500739 | Wang et al. | Dec 2002 | B1 |
6503801 | Rouse et al. | Jan 2003 | B1 |
6503805 | Wang et al. | Jan 2003 | B2 |
6506640 | Ishida et al. | Jan 2003 | B1 |
6518623 | Oda et al. | Feb 2003 | B1 |
6521470 | Lin et al. | Feb 2003 | B1 |
6534373 | Yu | Mar 2003 | B1 |
6541328 | Whang et al. | Apr 2003 | B2 |
6541829 | Nishinohara et al. | Apr 2003 | B2 |
6548842 | Bulucea et al. | Apr 2003 | B1 |
6551885 | Yu | Apr 2003 | B1 |
6552377 | Yu | Apr 2003 | B1 |
6573129 | Hoke et al. | Jun 2003 | B2 |
6576535 | Drobny et al. | Jun 2003 | B2 |
6600200 | Lustig et al. | Jul 2003 | B1 |
6620671 | Wang et al. | Sep 2003 | B1 |
6624488 | Kim | Sep 2003 | B1 |
6627473 | Oikawa et al. | Sep 2003 | B1 |
6630710 | Augusto | Oct 2003 | B1 |
6660605 | Liu | Dec 2003 | B1 |
6662350 | Fried et al. | Dec 2003 | B2 |
6667200 | Sohn et al. | Dec 2003 | B2 |
6670260 | Yu et al. | Dec 2003 | B1 |
6693333 | Yu | Feb 2004 | B1 |
6730568 | Sohn | May 2004 | B2 |
6737724 | Hieda et al. | May 2004 | B2 |
6743291 | Ang et al. | Jun 2004 | B2 |
6743684 | Liu | Jun 2004 | B2 |
6751519 | Satya et al. | Jun 2004 | B1 |
6753230 | Sohn et al. | Jun 2004 | B2 |
6760900 | Rategh et al. | Jul 2004 | B2 |
6770944 | Nishinohara | Aug 2004 | B2 |
6787424 | Yu | Sep 2004 | B1 |
6797553 | Adkisson et al. | Sep 2004 | B2 |
6797602 | Kluth et al. | Sep 2004 | B1 |
6797994 | Hoke et al. | Sep 2004 | B1 |
6808004 | Kamm et al. | Oct 2004 | B2 |
6808994 | Wang | Oct 2004 | B1 |
6813750 | Usami et al. | Nov 2004 | B2 |
6821825 | Todd et al. | Nov 2004 | B2 |
6821852 | Rhodes | Nov 2004 | B2 |
6822297 | Nandakumar et al. | Nov 2004 | B2 |
6831292 | Currie et al. | Dec 2004 | B2 |
6835639 | Rotondaro et al. | Dec 2004 | B2 |
6852602 | Kanzawa et al. | Feb 2005 | B2 |
6852603 | Chakravarthi et al. | Feb 2005 | B2 |
6881641 | Wieczorek et al. | Apr 2005 | B2 |
6881987 | Sohn | Apr 2005 | B2 |
6891439 | Jachne et al. | May 2005 | B2 |
6893947 | Martinez et al. | May 2005 | B2 |
6900519 | Cantell et al. | May 2005 | B2 |
6901564 | Stine et al. | May 2005 | B2 |
6916698 | Mocuta et al. | Jul 2005 | B2 |
6917237 | Tschanz et al. | Jul 2005 | B1 |
6927463 | Iwata et al. | Aug 2005 | B2 |
6928128 | Sidiropoulos | Aug 2005 | B1 |
6930007 | Bu et al. | Aug 2005 | B2 |
6930360 | Yamauchi et al. | Aug 2005 | B2 |
6957163 | Ando | Oct 2005 | B2 |
6963090 | Passlack et al. | Nov 2005 | B2 |
6995397 | Yamashita et al. | Feb 2006 | B2 |
7002214 | Boyd et al. | Feb 2006 | B1 |
7008836 | Algotsson et al. | Mar 2006 | B2 |
7015546 | Herr et al. | Mar 2006 | B2 |
7015741 | Tschanz et al. | Mar 2006 | B2 |
7022559 | Barnak et al. | Apr 2006 | B2 |
7036098 | Eleyan et al. | Apr 2006 | B2 |
7038258 | Liu et al. | May 2006 | B2 |
7039881 | Regan | May 2006 | B2 |
7045456 | Murto et al. | May 2006 | B2 |
7057216 | Ouyang et al. | Jun 2006 | B2 |
7061058 | Chakravarthi et al. | Jun 2006 | B2 |
7064039 | Liu | Jun 2006 | B2 |
7064399 | Babcock et al. | Jun 2006 | B2 |
7071103 | Chan et al. | Jul 2006 | B2 |
7078325 | Curello et al. | Jul 2006 | B2 |
7078776 | Nishinohara et al. | Jul 2006 | B2 |
7089513 | Bard et al. | Aug 2006 | B2 |
7089515 | Hanafi et al. | Aug 2006 | B2 |
7091093 | Noda et al. | Aug 2006 | B1 |
7105399 | Dakshina-Murthy et al. | Sep 2006 | B1 |
7109099 | Tan et al. | Sep 2006 | B2 |
7119381 | Passlack | Oct 2006 | B2 |
7122411 | Mouli | Oct 2006 | B2 |
7127687 | Signore | Oct 2006 | B1 |
7132323 | Haensch et al. | Nov 2006 | B2 |
7169675 | Tan et al. | Jan 2007 | B2 |
7170120 | Datta et al. | Jan 2007 | B2 |
7176137 | Perug et al. | Feb 2007 | B2 |
7186598 | Yamauchi et al. | Mar 2007 | B2 |
7189627 | Wu et al. | Mar 2007 | B2 |
7199430 | Babcock et al. | Apr 2007 | B2 |
7202517 | Dixit et al. | Apr 2007 | B2 |
7208354 | Bauer | Apr 2007 | B2 |
7211871 | Cho | May 2007 | B2 |
7221021 | Wu et al. | May 2007 | B2 |
7223646 | Miyashita et al. | May 2007 | B2 |
7226833 | White et al. | Jun 2007 | B2 |
7226843 | Weber et al. | Jun 2007 | B2 |
7230680 | Fujisawa et al. | Jun 2007 | B2 |
7235822 | Li | Jun 2007 | B2 |
7256639 | Koniaris et al. | Aug 2007 | B1 |
7259428 | Inaba | Aug 2007 | B2 |
7260562 | Czajkowski et al. | Aug 2007 | B2 |
7294877 | Rueckes et al. | Nov 2007 | B2 |
7297994 | Wieczorek et al. | Nov 2007 | B2 |
7301208 | Handa et al. | Nov 2007 | B2 |
7304350 | Misaki | Dec 2007 | B2 |
7307471 | Gammie et al. | Dec 2007 | B2 |
7312500 | Miyashita et al. | Dec 2007 | B2 |
7323754 | Ema et al. | Jan 2008 | B2 |
7332439 | Lindert et al. | Feb 2008 | B2 |
7348629 | Chu et al. | Mar 2008 | B2 |
7354833 | Liaw | Apr 2008 | B2 |
7380225 | Joshi et al. | May 2008 | B2 |
7398497 | Sato et al. | Jul 2008 | B2 |
7402207 | Besser et al. | Jul 2008 | B1 |
7402872 | Murthy et al. | Jul 2008 | B2 |
7416605 | Zollner et al. | Aug 2008 | B2 |
7427788 | Li et al. | Sep 2008 | B2 |
7442971 | Wirbeleit et al. | Oct 2008 | B2 |
7449733 | Inaba et al. | Nov 2008 | B2 |
7462908 | Bol et al. | Dec 2008 | B2 |
7469164 | Du-Nour | Dec 2008 | B2 |
7470593 | Rouh et al. | Dec 2008 | B2 |
7485536 | Jin et al. | Feb 2009 | B2 |
7487474 | Ciplickas et al. | Feb 2009 | B2 |
7491988 | Tolchinsky et al. | Feb 2009 | B2 |
7494861 | Chu et al. | Feb 2009 | B2 |
7496862 | Chang et al. | Feb 2009 | B2 |
7496867 | Turner et al. | Feb 2009 | B2 |
7498637 | Yamaoka et al. | Mar 2009 | B2 |
7501324 | Babcock et al. | Mar 2009 | B2 |
7503020 | Allen et al. | Mar 2009 | B2 |
7507999 | Kusumoto et al. | Mar 2009 | B2 |
7514766 | Yoshida | Apr 2009 | B2 |
7521323 | Surdeanu et al. | Apr 2009 | B2 |
7531393 | Doyle et al. | May 2009 | B2 |
7531836 | Liu et al. | May 2009 | B2 |
7538364 | Twynam | May 2009 | B2 |
7538412 | Schulze et al. | May 2009 | B2 |
7562233 | Sheng et al. | Jul 2009 | B1 |
7564105 | Chi et al. | Jul 2009 | B2 |
7566600 | Mouli | Jul 2009 | B2 |
7569456 | Ko et al. | Aug 2009 | B2 |
7586322 | Xu et al. | Sep 2009 | B1 |
7592241 | Takao | Sep 2009 | B2 |
7595243 | Bulucea et al. | Sep 2009 | B1 |
7598142 | Ranade et al. | Oct 2009 | B2 |
7605041 | Ema et al. | Oct 2009 | B2 |
7605060 | Meunier-Beillard et al. | Oct 2009 | B2 |
7605429 | Bertsein et al. | Oct 2009 | B2 |
7608496 | Chu | Oct 2009 | B2 |
7615802 | Elpelt et al. | Nov 2009 | B2 |
7622341 | Chudzik et al. | Nov 2009 | B2 |
7638380 | Pearce | Dec 2009 | B2 |
7642140 | Bae et al. | Jan 2010 | B2 |
7644377 | Saxe et al. | Jan 2010 | B1 |
7645665 | Kubo et al. | Jan 2010 | B2 |
7651920 | Siprak | Jan 2010 | B2 |
7655523 | Babcock et al. | Feb 2010 | B2 |
7673273 | Madurawe et al. | Mar 2010 | B2 |
7675126 | Cho | Mar 2010 | B2 |
7675317 | Perisetty | Mar 2010 | B2 |
7678638 | Chu et al. | Mar 2010 | B2 |
7681628 | Joshi et al. | Mar 2010 | B2 |
7682887 | Dokumaci et al. | Mar 2010 | B2 |
7683442 | Burr et al. | Mar 2010 | B1 |
7696000 | Liu et al. | Apr 2010 | B2 |
7704822 | Jeong | Apr 2010 | B2 |
7704844 | Zhu et al. | Apr 2010 | B2 |
7709828 | Braithwaite et al. | May 2010 | B2 |
7723750 | Zhu et al. | May 2010 | B2 |
7737472 | Kondo et al. | Jun 2010 | B2 |
7741138 | Cho | Jun 2010 | B2 |
7741200 | Cho et al. | Jun 2010 | B2 |
7745270 | Shah et al. | Jun 2010 | B2 |
7750374 | Capasso et al. | Jul 2010 | B2 |
7750381 | Hokazono et al. | Jul 2010 | B2 |
7750405 | Nowak | Jul 2010 | B2 |
7750682 | Bernstein et al. | Jul 2010 | B2 |
7755144 | Li et al. | Jul 2010 | B2 |
7755146 | Helm et al. | Jul 2010 | B2 |
7759206 | Luo et al. | Jul 2010 | B2 |
7759714 | Itoh et al. | Jul 2010 | B2 |
7761820 | Berger et al. | Jul 2010 | B2 |
7795677 | Bangsaruntip et al. | Sep 2010 | B2 |
7808045 | Kawahara et al. | Oct 2010 | B2 |
7808410 | Kim et al. | Oct 2010 | B2 |
7811873 | Mochizuki | Oct 2010 | B2 |
7811881 | Cheng et al. | Oct 2010 | B2 |
7818702 | Mandelman et al. | Oct 2010 | B2 |
7821066 | Lebby et al. | Oct 2010 | B2 |
7829402 | Matocha et al. | Nov 2010 | B2 |
7831873 | Trimberger et al. | Nov 2010 | B1 |
7846822 | Seebauer et al. | Dec 2010 | B2 |
7855118 | Hoentschel et al. | Dec 2010 | B2 |
7859013 | Chen et al. | Dec 2010 | B2 |
7863163 | Bauer | Jan 2011 | B2 |
7867835 | Lee et al. | Jan 2011 | B2 |
7883977 | Babcock et al. | Feb 2011 | B2 |
7888205 | Herner et al. | Feb 2011 | B2 |
7888747 | Hokazono | Feb 2011 | B2 |
7895546 | Lahner et al. | Feb 2011 | B2 |
7897495 | Ye et al. | Mar 2011 | B2 |
7906413 | Cardone et al. | Mar 2011 | B2 |
7906813 | Kato | Mar 2011 | B2 |
7910419 | Fenouillet-Beranger et al. | Mar 2011 | B2 |
7919791 | Flynn et al. | Apr 2011 | B2 |
7926018 | Moroz et al. | Apr 2011 | B2 |
7935984 | Nakano | May 2011 | B2 |
7941776 | Majumder et al. | May 2011 | B2 |
7945800 | Gomm et al. | May 2011 | B2 |
7948008 | Liu et al. | May 2011 | B2 |
7952147 | Ueno et al. | May 2011 | B2 |
7960232 | King et al. | Jun 2011 | B2 |
7960238 | Kohli et al. | Jun 2011 | B2 |
7968400 | Cai | Jun 2011 | B2 |
7968411 | Williford | Jun 2011 | B2 |
7968440 | Seebauer | Jun 2011 | B2 |
7968459 | Bedell et al. | Jun 2011 | B2 |
7989900 | Haensch et al. | Aug 2011 | B2 |
7994573 | Pan | Aug 2011 | B2 |
8004024 | Furukawa et al. | Aug 2011 | B2 |
8012827 | Yu et al. | Sep 2011 | B2 |
8029620 | Kim et al. | Oct 2011 | B2 |
8039332 | Bernard et al. | Oct 2011 | B2 |
8046598 | Lee | Oct 2011 | B2 |
8048791 | Hargrove et al. | Nov 2011 | B2 |
8048810 | Tsai et al. | Nov 2011 | B2 |
8051340 | Cranford, Jr. et al. | Nov 2011 | B2 |
8053340 | Colombeau et al. | Nov 2011 | B2 |
8063466 | Kurita | Nov 2011 | B2 |
8067279 | Sadra et al. | Nov 2011 | B2 |
8067280 | Wang et al. | Nov 2011 | B2 |
8067302 | Li | Nov 2011 | B2 |
8076719 | Zeng et al. | Dec 2011 | B2 |
8097529 | Krull et al. | Jan 2012 | B2 |
8103983 | Agarwal et al. | Jan 2012 | B2 |
8105891 | Yeh et al. | Jan 2012 | B2 |
8106424 | Schruefer | Jan 2012 | B2 |
8106481 | Rao | Jan 2012 | B2 |
8110487 | Griebenow et al. | Feb 2012 | B2 |
8114761 | Mandrekar et al. | Feb 2012 | B2 |
8119482 | Bhalla et al. | Feb 2012 | B2 |
8120069 | Hynecek | Feb 2012 | B2 |
8129246 | Babcock et al. | Mar 2012 | B2 |
8129797 | Chen et al. | Mar 2012 | B2 |
8134159 | Hokazono | Mar 2012 | B2 |
8143120 | Kerr et al. | Mar 2012 | B2 |
8143124 | Challa et al. | Mar 2012 | B2 |
8143678 | Kim et al. | Mar 2012 | B2 |
8148774 | Mori et al. | Apr 2012 | B2 |
8163619 | Yang et al. | Apr 2012 | B2 |
8169002 | Chang et al. | May 2012 | B2 |
8170857 | Joshi et al. | May 2012 | B2 |
8173499 | Chung et al. | May 2012 | B2 |
8173502 | Yan et al. | May 2012 | B2 |
8176461 | Trimberger | May 2012 | B1 |
8178430 | Kim et al. | May 2012 | B2 |
8179530 | Levy et al. | May 2012 | B2 |
8183096 | Wirbeleit | May 2012 | B2 |
8183107 | Mathur et al. | May 2012 | B2 |
8185865 | Gupta et al. | May 2012 | B2 |
8187959 | Pawlak et al. | May 2012 | B2 |
8188542 | Yoo et al. | May 2012 | B2 |
8196545 | Kurosawa | Jun 2012 | B2 |
8201122 | Dewey, III et al. | Jun 2012 | B2 |
8214190 | Joshi et al. | Jul 2012 | B2 |
8217423 | Liu et al. | Jul 2012 | B2 |
8225255 | Ouyang et al. | Jul 2012 | B2 |
8227307 | Chen et al. | Jul 2012 | B2 |
8236661 | Dennard et al. | Aug 2012 | B2 |
8239803 | Kobayashi | Aug 2012 | B2 |
8247300 | Babcock et al. | Aug 2012 | B2 |
8255843 | Chen et al. | Aug 2012 | B2 |
8258026 | Bulucea | Sep 2012 | B2 |
8266567 | El Yahyaoui et al. | Sep 2012 | B2 |
8286180 | Foo | Oct 2012 | B2 |
8288798 | Passlack | Oct 2012 | B2 |
8299562 | Li et al. | Oct 2012 | B2 |
8324059 | Guo et al. | Dec 2012 | B2 |
20010014495 | Yu | Aug 2001 | A1 |
20020033511 | Babcock et al. | Mar 2002 | A1 |
20020042184 | Nandakumar et al. | Apr 2002 | A1 |
20030006415 | Yokogawa et al. | Jan 2003 | A1 |
20030047763 | Hieda et al. | Mar 2003 | A1 |
20030122203 | Nishinohara | Jul 2003 | A1 |
20030173626 | Burr | Sep 2003 | A1 |
20030183856 | Wieczorek | Oct 2003 | A1 |
20030215992 | Sohn et al. | Nov 2003 | A1 |
20040053457 | Sohn | Mar 2004 | A1 |
20040075118 | Heinemann et al. | Apr 2004 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040084731 | Matsuda et al. | May 2004 | A1 |
20040087090 | Grudowski et al. | May 2004 | A1 |
20040126947 | Sohn | Jul 2004 | A1 |
20040175893 | Vatus et al. | Sep 2004 | A1 |
20040180488 | Lee | Sep 2004 | A1 |
20050056877 | Rueckes et al. | Mar 2005 | A1 |
20050106824 | Alberto et al. | May 2005 | A1 |
20050116282 | Pattanayak et al. | Jun 2005 | A1 |
20050250289 | Babcock et al. | Nov 2005 | A1 |
20050280075 | Ema et al. | Dec 2005 | A1 |
20060017100 | Bol et al. | Jan 2006 | A1 |
20060022270 | Boyd et al. | Feb 2006 | A1 |
20060049464 | Rao | Mar 2006 | A1 |
20060068555 | Huilong et al. | Mar 2006 | A1 |
20060068586 | Pain | Mar 2006 | A1 |
20060071278 | Takao | Apr 2006 | A1 |
20060091481 | Li et al. | May 2006 | A1 |
20060154428 | Dokumaci | Jul 2006 | A1 |
20060157794 | Doyle et al. | Jul 2006 | A1 |
20060197158 | Babcock et al. | Sep 2006 | A1 |
20060203581 | Joshi et al. | Sep 2006 | A1 |
20060220114 | Miyashita et al. | Oct 2006 | A1 |
20060223248 | Venugopal et al. | Oct 2006 | A1 |
20070040222 | Van Camp et al. | Feb 2007 | A1 |
20070117326 | Tan et al. | May 2007 | A1 |
20070158790 | Rao | Jul 2007 | A1 |
20070212861 | Chidambarrao et al. | Sep 2007 | A1 |
20070238253 | Tucker | Oct 2007 | A1 |
20080067589 | Ito et al. | Mar 2008 | A1 |
20080108208 | Arevalo et al. | May 2008 | A1 |
20080138953 | Challa et al. | Jun 2008 | A1 |
20080169493 | Lee et al. | Jul 2008 | A1 |
20080169516 | Chung | Jul 2008 | A1 |
20080197439 | Goerlach et al. | Aug 2008 | A1 |
20080227250 | Ranade et al. | Sep 2008 | A1 |
20080237661 | Ranade et al. | Oct 2008 | A1 |
20080258198 | Bojarczuk et al. | Oct 2008 | A1 |
20080272409 | Sonkusale et al. | Nov 2008 | A1 |
20090003105 | Itoh et al. | Jan 2009 | A1 |
20090057746 | Sugll et al. | Mar 2009 | A1 |
20090057762 | Bangsaruntip et al. | Mar 2009 | A1 |
20090108350 | Cai et al. | Apr 2009 | A1 |
20090121298 | Furukawa et al. | May 2009 | A1 |
20090134468 | Tsuchiya et al. | May 2009 | A1 |
20090224319 | Kohli | Sep 2009 | A1 |
20090302388 | Cai et al. | Dec 2009 | A1 |
20090309140 | Khamankar et al. | Dec 2009 | A1 |
20090311837 | Kapoor | Dec 2009 | A1 |
20090321849 | Miyamura et al. | Dec 2009 | A1 |
20100012988 | Yang et al. | Jan 2010 | A1 |
20100038724 | Anderson et al. | Feb 2010 | A1 |
20100100856 | Mittal | Apr 2010 | A1 |
20100148153 | Hudait et al. | Jun 2010 | A1 |
20100149854 | Vora | Jun 2010 | A1 |
20100187641 | Zhu et al. | Jul 2010 | A1 |
20100207182 | Paschal | Aug 2010 | A1 |
20100270600 | Inukai et al. | Oct 2010 | A1 |
20110059588 | Kang | Mar 2011 | A1 |
20110073961 | Dennard et al. | Mar 2011 | A1 |
20110074498 | Thompson et al. | Mar 2011 | A1 |
20110079860 | Verhulst | Apr 2011 | A1 |
20110079861 | Shifren et al. | Apr 2011 | A1 |
20110095811 | Chi et al. | Apr 2011 | A1 |
20110147828 | Murthy et al. | Jun 2011 | A1 |
20110169082 | Zhu et al. | Jul 2011 | A1 |
20110175170 | Wang et al. | Jul 2011 | A1 |
20110180880 | Chudzik et al. | Jul 2011 | A1 |
20110193164 | Zhu | Aug 2011 | A1 |
20110212590 | Wu et al. | Sep 2011 | A1 |
20110230039 | Mowry et al. | Sep 2011 | A1 |
20110242921 | Tran et al. | Oct 2011 | A1 |
20110248352 | Shifren | Oct 2011 | A1 |
20110294278 | Eguchi et al. | Dec 2011 | A1 |
20110309447 | Arghavani et al. | Dec 2011 | A1 |
20120021594 | Gurtej et al. | Jan 2012 | A1 |
20120034745 | Colombeau et al. | Feb 2012 | A1 |
20120056275 | Cai et al. | Mar 2012 | A1 |
20120065920 | Nagumo et al. | Mar 2012 | A1 |
20120108050 | Chen et al. | May 2012 | A1 |
20120132998 | Kwon et al. | May 2012 | A1 |
20120138953 | Cai et al. | Jun 2012 | A1 |
20120146155 | Hoentschel et al. | Jun 2012 | A1 |
20120167025 | Gillespie et al. | Jun 2012 | A1 |
20120187491 | Zhu et al. | Jul 2012 | A1 |
20120190177 | Kim et al. | Jul 2012 | A1 |
20120223363 | Kronholz et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
0274278 | Jul 1988 | EP |
0312237 | Apr 1989 | EP |
0531621 | Mar 1993 | EP |
0683 515 | Nov 1995 | EP |
0889502 | Jan 1999 | EP |
1 450 394 | Aug 2004 | EP |
59193066 | Nov 1984 | JP |
4186774 | Jul 1992 | JP |
8153873 | Jun 1996 | JP |
8288508 | Nov 1996 | JP |
2004087671 | Mar 2004 | JP |
794094 | Jan 2008 | KR |
WO2011062788 | May 2011 | WO |
Entry |
---|
Matsuhashi et al., “High-performance double-layer epitaxial-channel PMOSFET compatible with a single gate CMOSFET”, Proceedings of 1996 VLSI Symp. on VLSI Tech., pp. 36-37. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2011/041156; dated Sep. 21, 2011; 12 pages. |
Yan, et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Transactions on Electron Devices, IEEE Service Center, Pisacataway, NJ, US, vol. 39, No. 7, Jul. 1, 1992 pp. 1704-1710. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2011/041165; dated Nov. 2, 2011; 6 pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US10/48998; 10 pages, Jan. 6, 2011. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2010/049000; 9 pages, Jan. 12, 2011. |
Shao, et al. “Boron diffusion in silicon: the anomalies and control by point defect engineering” Materials Science and Engineering R: Reports, vol. 42, No. 3-4, Nov. 1, 2003 pp. 65-114. |
USPTO Office Action for U.S. Appl. No. 12/895,695, filed Sep. 30, 2010 in the name of Lucian Shifren, et al. 27 pages, dated May 27, 2011. |
USPTO Office Action for U.S. Appl. No. 12/895,695, filed Sep. 30, 2010 in the name of Lucian Shifren, et al. 30 pages, dated Oct. 24, 2011. |
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000. |
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998. |
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999. |
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997. |
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19, 1998. |
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116, 1996. |
Werner, P et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998. |
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15 μm n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995. |
Chau, R et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001. |
Ducroquet, F et al. “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Si1−yCy Channel”, ECS 210th Meeting, Abstract 1033, 2006. |
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961. 2006. |
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610, 2000. |
Hokazono, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008. |
Hokazono, A et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4, 2009. |
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, 2001. |
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996. |
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002. |
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814, Apr. 1998. |
Ohguro, T et al., “An 0.18-μm CMOS for Mixed Digital and Analog Aplications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383, Jul. 1999. |
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002. |
US 7,011,991, 03/2006, Li (withdrawn). |
Komaragiri, R. et al., “Depletion-Free Poly Gate Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836, Dec. 13-15, 2004. |
Samsudin, K et al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forecast sub-15nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93, 2006. |
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570, Apr. 1999. |
Banerjee, et al. “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE vol. 7275 7275OE, 2009. |
Cheng, et al. “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, Electron Devices Meeting (IEDM), Dec. 2009. |
Cheng, et al. “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Feturing Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, Symposium on VLSI Technology Digest of Technical Papers, pp. 212-213, 2009. |
Drennan, et al. “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, pp. 169-176, Sep. 2006. |
Hook, et al. “Lateral Ion Implant Straggle and Mask Proximity Effect”, IEEE Transactions on Electron Devices, vol. 50, No. 9, pp. 1946-1951, Sep. 2003. |
Hori, et al., “A 0.1 μm CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and In-Situ Doped Ions”, Proceedsing of the International Electron Devices Meeting, New York, IEEE, US, pp. 909-911, Dec. 5, 1993. |
Matshuashi, et al. “High-Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers, pp. 36-37, 1996. |
Shao, et al., “Boron Diffusion in Silicon: The Anomalies and Control by Point Defect Engineering”, Materials Science and Engineering R: Reports, vol. 42, No. 3-4, pp. 65-114, Nov. 1, 2003. |
Sheu, et al. “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, pps. 2792-2798, Nov. 2006. |
Number | Date | Country | |
---|---|---|---|
20110121404 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61247300 | Sep 2009 | US | |
61262122 | Nov 2009 | US | |
61357492 | Jun 2010 | US |