The present disclosure relates to an air-cavity module and a process for making the same, and more particularly to an air-cavity module with enhanced device isolation, and a process for enhancing isolation performance between devices within the air-cavity module.
Silicon-on-insulator (SOI) structures are widely used to form semiconductor packages due to the low cost of silicon materials, large scale capacity of wafer production, well-established semiconductor design tools, and well-established semiconductor manufacturing techniques. Within a conventional semiconductor package formed from a SOI structure, parasitic coupling effects between devices are dominated by both the vertical parasitic coupling through the silicon handle layer of the SOI structure and the lateral parasitic coupling through the shallow trench isolation (STI) within the epitaxial layer.
For modern communication applications, a high degree of isolation between signal paths is highly desired. This in turn requires a low degree of parasitic coupling between devices. Normally, a significant spacing between devices, like switches, is used to ensure good isolation between different signal paths. However, the significant spacing between the devices will largely increase the solution area and cost.
Accordingly, there remains a need for improved semiconductor package designs with SOI structures to reduce parasitic coupling effects between devices within the semiconductor package. In addition, there is also a need to keep the size and cost of the final semiconductor package effective.
The present disclosure relates to an air-cavity module with enhanced device isolation. The disclosed air-cavity module has a thinned semiconductor die and a first mold compound. The thinned semiconductor die includes a back-end-of-line (BEOL) layer, an epitaxial layer, and a buried oxide (BOX) layer. The BEOL layer has an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion. The epitaxial layer resides over the upper surface of the BEOL layer and includes an air-cavity, a first device section, and a second device section. Herein, the air-cavity is over the first surface portion and not over the second surface portion. The first device section and the second device section are located on opposite sides of the air-cavity. The first device section and the second device section are over the second surface portion and not over the first surface portion. The BOX layer has a number of discrete holes and is over the epitaxial layer. The discrete holes are over the first surface portion and not over the second surface portion, and directly in connection with the air-cavity. The first mold compound resides directly over at least a portion of the BOX layer, within which the discrete holes are located. The first mold compound does not enter into the air-cavity of the epitaxial layer through the discrete holes within the BOX layer.
In one embodiment of the air-cavity module, the first mold compound has a relative permittivity of no more than 7.
In one embodiment of the air-cavity module, the first mold compound has a relative permittivity of no more than 4.
In one embodiment of the air-cavity module, the first mold compound is formed of polymer granules. Each polymer granule is larger than any of the discrete holes.
In one embodiment of the air-cavity module, a diameter of each discrete hole is between 0.1 μm and 100 μm, and a diameter of each polymer granule is between 0.2 μm and 500 μm
The apparatus of claim 4 wherein a diameter of each of the plurality of discrete holes is between 0.2 μm and 1 μm, and a diameter of each polymer granule is between 0.5 μm and 50 μm.
In one embodiment of the air-cavity module, a shape of each discrete hole is one of a group consisting of a cuboid, a cylinder, and a circular truncated cone.
According to another embodiment, the air-cavity further includes a thermally enhanced mold compound that resides over the first mold compound.
In one embodiment of the air-cavity module, the first mold compound and the thermally enhanced mold compound are formed from an identical material.
In one embodiment of the air-cavity module, the first mold compound and the thermally enhanced mold compound are formed from different materials.
In one embodiment of the air-cavity module, the epitaxial layer further includes isolation sections. Herein, the isolation sections surround the first device section and the second device section, and separate the first device section and the second device section from the air-cavity. The isolation sections are over the second surface portion and not over the first surface portion.
In one embodiment of the air-cavity module, the first device section includes a first source, a first drain, and a first channel for a first field effect transistor (FET), and the second device section includes a second source, a second drain, and a second channel for a second FET.
In one embodiment of the air-cavity module, the first mold compound is directly over the entire BOX layer.
According to another embodiment, the air-cavity module further includes a low permittivity mold compound. Herein, the first mold compound resides directly over a first portion of the BOX layer, within which the discrete holes are located. The low permittivity mold compound resides directly over second portions of the BOX layer, within which the discrete holes are not located. The low permittivity mold compound at least partially encapsulates the sides of the first mold compound.
In one embodiment of the air-cavity module, the low permittivity mold compound has a relative permittivity of no more than 7.
According to another embodiment, the air-cavity module further includes a thermally enhanced mold compound that resides over the first mold compound. The low permittivity mold compound at least partially encapsulates the sides of the thermally enhanced mold compound.
In one embodiment of the air-cavity module, the low permittivity mold compound and the thermally enhanced mold compound are formed from an identical material.
In one embodiment of the air-cavity module, the low permittivity mold compound and the thermally enhanced mold compound are formed from different materials.
According to another embodiment, the air-cavity module is included in a laminate-based semiconductor package. Besides the air-cavity module, the laminate-based semiconductor package also includes a module substrate and a second mold compound. Herein, the thinned semiconductor die is a flip-chip die and further includes a number of interconnects extending from a lower surface of the BEOL layer towards an upper surface of the module substrate. The second mold compound resides over the upper surface of the module substrate and encapsulates at least sides of the first mold compound and the thinned semiconductor die.
According to another embodiment, the air-cavity module is included in a wafer-level package. Besides the air-cavity module, the wafer-level package also includes a multilayer redistribution structure and a second mold compound. Herein, the thinned semiconductor die resides directly over an upper surface of the multilayer redistribution structure. The second mold compound resides over the upper surface of multilayer redistribution structure and encapsulates at least sides of the first mold compound and the thinned semiconductor die.
According to another embodiment, an air-cavity module has a thinned semiconductor die and a first mold compound. The thinned semiconductor die includes a BEOL layer, an epitaxial layer, and a BOX layer. The BEOL layer has an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion. The epitaxial layer resides over the upper surface of the BEOL layer and includes air-cavities, support structures, a first device section, and a second device section. Herein, the air-cavities and the support structures are over the first surface portion and not over the second surface portion. The first device section and the second device section are over the second surface portion and not over the first surface portion. The air-cavities are in between the first device section and the second device section. The air-cavities are separated from each other by the support structures. The BOX layer has a number of discrete holes and is over the epitaxial layer. The discrete holes are over the first surface portion and not over the second surface portion. Each air-cavity is directly in connection with at least one discrete hole. The support structures provide mechanical support to a first portion of the BOX layer, within which the discrete holes are located. The first mold compound directly resides over at least the first portion of the BOX layer and does not enter into the air-cavity of the epitaxial layer through the discrete holes within the BOX layer.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
It will be understood that for clear illustrations,
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The present disclosure relates to an air-cavity module with enhanced device isolation, and a process for making the same.
In detail, the thinned semiconductor die 12 includes a back-end-of-line (BEOL) layer 20, an epitaxial layer 22 over an upper surface of the BEOL layer 20, and a buried oxide (BOX) layer 24 over the epitaxial layer 22. Herein, the upper surface of the BEOL layer 20 includes a first surface portion SP1 and a second surface portion SP2, which surrounds the first surface portion SP1. The epitaxial layer 22 includes the air-cavity 14, a first device section 26, a second device section 28, and isolation sections 30. The first device section 26 and the second device section 28 are located on opposite sides of the air-cavity 14, and both the first device section 26 and the second device section 28 are surrounded by the isolation sections 30. As such, the air-cavity 14 is isolated from the first device section 26 and the second device section 28 by the isolation sections 30. The isolation sections 30 may be formed by shallow trench isolation (STI). The air-cavity 14 is over the first surface portion SP1 and not over the second surface portion SP2. The first device section 26, the second device section 28, and the isolation sections 30 are over the second surface portion SP2 and not over the first surface portion SP1. In different applications, the epitaxial layer 22 may include more device sections and more air-cavities between adjacent device sections.
In one embodiment, the first device section 26 and the second device section 28 may be used to form field effect transistor (FET) switches. The first device section 26 may include a first source 32, a first drain 34, and a first channel 36 between the first source 32 and the first drain 34. The isolation sections 30 surround the first source 32 and the first drain 34. In addition, there is a first gate dielectric 38 and a first gate structure 40 aligned below the first channel 36 and formed within the BEOL layer 20. Herein, the first gate dielectric 38 and the first gate structure 40 are underlying the second surface portion SP2 and not underlying the first surface portion SP1. The first source 32, the first drain 34, and the first channel 36 within the epitaxial layer 22, and the first gate dielectric 38 and the first gate structure 40 within the BEOL layer 20 form a first FET switch. Similarly, the second device section 28 may include a second source 42, a second drain 44, and a second channel 46 between the second source 42 and the second drain 44. The isolation sections 30 surround the second source 42 and the second drain 44. In addition, there is a second gate dielectric 48 and a second gate structure 50 aligned below the second channel 46 and formed within the BEOL layer 20. Herein, the second gate dielectric 48 and the second gate structure 50 are underlying the second surface portion SP2 and not underlying the first surface portion SP1. The second source 42, the second drain 44, and the second channel 46 within the epitaxial layer 22, and the second gate dielectric 48 and the second gate structure 50 within the BEOL layer 20 form a second FET switch.
It is clear to those skilled in the art that the first FET switch formed from the first device section 26 and the second FET switch formed from the second device section 28 are laterally separated by the air-cavity 14. Since the relative permittivity of the air (around 1) is very small (compared to other materials, such as silicon, silicon oxide, or thermal conductive polymer, which may be used between the first device section 26 and the second device section 28), a lateral parasitic coupling effect between the first device section 26 and the second device section 28 is low. The first FET switch and the second FET switch have superior isolation. For a designated isolation, using an air-cavity may reduce the lateral distance between the first FET switch and the second FET switch, and consequently result in significant die area reduction.
The BOX layer 24 has a number of discrete holes 52, which are directly in connection with the air-cavity 14 in the epitaxial layer 22. The discrete holes 52 may or may not have the same size. The shape of each discrete hole 52 may be a cuboid, a cylinder, or a circular truncated cone that has a larger opening close to the air-cavity 14 and has a smaller opening close to the first mold compound 16. As shown in
The first mold compound 16 is formed over the thinned semiconductor die 12 and in contact with the BOX layer 24. The first mold compound 16 may have a thickness between 1 μm and 250 μm, and may be formed from large granularity polymers that cannot go through any of the discrete holes 52 into the air-cavity 14. The polymer granules used for the first mold compound 16 may or may not have the same size. The smallest polymer granule is larger than any of the discrete holes 52. The diameter of one discrete hole 52 may be between 0.1 μm and 100 μm or between 0.2 μm and 1 μm. The diameter of one polymer granule may be from 0.2 μm and 500 μm or between 0.5 μm and 50 μm. Notice that, there are no air gaps between the polymer granules. Resins of the polymer granules may fill the gaps between the polymer granules. In addition, the first mold compound 16 may be formed from low relative permittivity materials with the relative permittivity being no more than 7 or no more than 4. Organic thermoset and thermoplastic polymer with large granularity may be used for the first mold compound 16. Because the first mold compound 16 is adjacent to the first device section 26 and the second device section 28, a vertical parasitic coupling effect between the first device section 26 and the second device section 28 is low. Most parasitic field lines between the first device section 26 and the second device section 28 close through the first mold compound 16.
Further, the thermally enhanced mold compound 18 is formed over the first mold compound 16. Unlike the first mold compound 16, the thermally enhanced mold compound 18 does not have a granularity requirement or a relative permittivity requirement. The thermally enhanced mold compound 18 may have a thickness between 50 μm and 1000 μm, and may be formed of thermal conductive polymer with fine granularity (<500 μm or preferably <50 μm). The thermally enhanced mold compound 18 may have a thermal conductivity between 10 W/m·K and 50 W/mK, or between 1 W/m·K and 500 W/m·K or greater. The higher the thermal conductivity of the thermally enhanced mold compound 18, the better the heat dissipation performance of the air-cavity module 10.
In different applications, the BOX layer 24 may include fewer or more discrete holes 52 with different configurations. As shown in
In another embodiment of the air-cavity module 10, an epitaxial layer 22′ may further include support structures 54 over the first surface portion SP1 of the BEOL layer 20, as illustrated in
In some applications, the thermally enhanced mold compound 18 may be formed from the same material as the first mold compound 16, as illustrated in
In detail, the module substrate 60 may be formed from a laminate material, and the thinned semiconductor die 12 is coupled to an upper surface of the module substrate 60 through the interconnects 66. The second mold compound 64 resides over the upper surface of the module substrate 60 and encapsulates at least sides of the thinned semiconductor die 12, sides of the first mold compound 16, and sides of the thermally enhanced mold compound 18. In some applications, a portion of the thermally enhanced mold compound 18 may reside over an upper surface of the second mold compound 64 (not shown). Herein, the second mold compound 64 may be formed from the same or different material as the thermally enhanced mold compound 18. The second mold compound 64 does not have a relative permittivity or thermal conductivity requirement. One exemplary material used to form the second mold compound 64 is an organic epoxy resin system. The underfilling layer 62 resides between the upper surface of the module substrate 60 and the second mold compound 64, such that the underfilling layer 62 encapsulates the interconnects 66 and underfills the thinned semiconductor die 12 between the lower surface of the BEOL layer 20 and the upper surface of the module substrate 60. Herein, the underfilling layer 62 may be formed from the same or different material as the second mold compound 64.
In detail, the thinned semiconductor die 12 resides directly over an upper surface of the multilayer redistribution structure 70. As such, the BEOL layer 20 of the thinned semiconductor die 12 is in contact with the first dielectric pattern 72. In addition, input/output (I/O) ports (not shown) at the bottom surface of the BEOL layer 20 are exposed through the first dielectric pattern 72. The redistribution interconnects 74 are electrically coupled to the I/O ports (not shown) through the first dielectric pattern 72 and extend underneath the first dielectric pattern 72. The connections between the redistribution interconnects 74 and the I/O ports are solder-free. The second dielectric pattern 76 is formed underneath the first dielectric pattern 72 to partially encapsulate each redistribution interconnect 74. As such, a portion of each redistribution interconnect 74 is exposed through the second dielectric pattern 76. In different applications, there may be extra redistribution interconnects (not shown) electronically coupled to the redistribution interconnects 74 through the second dielectric pattern 76, and an extra dielectric pattern (not shown) formed underneath the second dielectric pattern 76 to partially encapsulate the extra redistribution interconnects. In this embodiment, each package contact 78 is electronically coupled to a corresponding redistribution interconnect 74 through the second dielectric pattern 76. Consequently, the redistribution interconnects 74 connect certain ones of the I/O ports (not shown) at the bottom surface of the BEOL layer 20 to certain ones of the package contacts 78 on a bottom surface of the multilayer redistribution structure 70.
The multilayer redistribution structure 70 may be free of glass fiber or glass-free. Herein, the glass fiber refers to individual glass strands twisted to become a larger grouping. These glass strands may then be woven into a fabric. The first dielectric pattern 72 and the second dielectric pattern 76 may be formed of benzocyclobutene (BCB) or polyimide. The redistribution interconnects 74 may be formed of copper or other suitable metals. The package contacts 78 may be bump contacts formed of solder alloys, such as tin or tin alloys, or may be land grid arrays (LGA) contacts. A combination of the first dielectric pattern 72, the redistribution interconnects 74, and the second dielectric pattern 76 has a thickness between 2 μm and 300 μm.
In this embodiment, the second mold compound 64 resides over the upper surface of the multilayer redistribution structure 70 and encapsulates at least the sides of the thinned semiconductor die 12, the sides of the first mold compound 16, and the sides of the thermally enhanced mold compound 18. In some applications, a portion of the thermally enhanced mold compound 18 may reside over the upper surface of the second mold compound 64 (not shown). The second mold compound 64 may be formed from the same or different material as the thermally enhanced mold compound 18.
Initially, a semiconductor die 12D is provided as depicted in
In addition, the semiconductor die 12D further includes etchable structures 84 extending through the sacrificial epitaxy section 82 and the BOX layer 24 to the silicon handle layer 80. The etchable structures 84 are distributed across the sacrificial epitaxy section 80 and not over the second surface portion SP2 of the BEOL layer 20. The etchable structures 84 may be formed from polysilicon. In different applications, there may be fewer or more etchable structures extending through the sacrificial epitaxy section 82 and the BOX layer 24. Each etchable structure 84 may or may not have the same size or shape. The shape of each etchable structure 84 may be a cuboid, a cylinder, or a circular truncated cone that has a larger opening close to the BEOL layer 20 and has a smaller opening close to the silicon handle layer 80.
Next, the first mold compound 16 is then applied over the entirety of the thinned semiconductor die 12 and in contact with the BOX layer 24 as illustrated in
Notice that, since the first mold compound 16 will not get into the air-cavity 14 through the discrete holes 52 (because of the large granularity), the first device section 26 and the second device section 28 are laterally separated by the air-cavity 14. Consequently, the lateral parasitic coupling effect between the first device section 26 and the second device section 28 is low due to the low relative permittivity of the air (around 1). The first device section 26 and the second device section 28 have superior isolation. Further, because the first mold compound 16 is adjacent to the first device section 26 and the second device section 28, a vertical parasitic coupling effect between the first device section 26 and the second device section 28 is low. Most parasitic field lines between the first device section 26 and the second device section 28 close through the first mold compound 16.
A curing process (not shown) is followed to harden the first mold compound 16. The curing temperature is between 125° C. and 300° C. depending on which material is used as the first mold compound 16. The thermally enhanced mold compound 18 is then applied over the first mold compound 16 to complete the air-cavity module 10, as illustrated in
Initially, the semiconductor die 12D is provided as depicted in
The BOX layer 24 may be formed of silicon oxide or the like, which may serve as an etch stop in a process to remove the silicon handle layer 80 (more details in following discussion). The support structures 54 provide mechanical support to a portion of the BOX layer 24 that is over the surface portion SP1. In addition, the semiconductor die 12D further includes the etchable structures 84. At least one of the etchable structures 84 extends through a corresponding sacrificial epitaxy section 82′ and the BOX layer 24 to the silicon handle layer 80. The etchable structures 84 are over the first surface portion SP1 of the BEOL layer 20 and not over the second surface portion SP2 of the BEOL layer 20. The etchable structures 84 may be formed from polysilicon. In different applications, there may be a same or different number of the etchable structures 84 extending through each sacrificial epitaxy section 82′. Each etchable structure 84 may or may not have the same size or shape. The shape of each etchable structure 84 may be a cuboid, a cylinder, or a circular truncated cone that has a larger opening close to the BEOL layer 20 and has a smaller opening close to the silicon handle layer 80.
Next, the first mold compound 16 is then applied over the entirety of the thinned semiconductor die 12 and in contact with the BOX layer 24 as illustrated in
A curing process (not shown) is followed to harden the first mold compound 16. The curing temperature is between 125° C. and 300° C. depending on which material is used as the first mold compound 16. The thermally enhanced mold compound 18 is then applied over the first mold compound 16 to complete the air-cavity module 10, as illustrated in
The low permittivity mold compound 56 is then applied over the exposed portions of the BOX layer 24, as illustrated in
Next, the molding block 86 is removed to form an opening 88 within the low permittivity mold compound 56 as illustrated in
With reference to
A curing process (not shown) is followed to harden the first mold compound 16. The curing temperature is between 125° C. and 300° C. depending on which material is used as the first mold compound 16. The thermally enhanced mold compound 18 is then applied at the top of the opening 88 and over the first mold compound 16 to complete the air-cavity module 10, as illustrated in
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of provisional patent application Ser. No. 62/447,111, filed Jan. 17, 2017. This application claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 15/601,858, filed May 22, 2017, published as U.S. Patent Application Publication No. 2017/0334710 on Nov. 23, 2017, entitled WAFER-LEVEL PACKAGE WITH ENHANCED PERFORMANCE, which claims the benefit of U.S. provisional patent application Ser. No. 62/339,322, filed May 20, 2016. This application claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 15/652,826, filed Jul. 18, 2017, now patented as U.S. Pat. No. 10,478,329 on Nov. 5, 2019, entitled THERMALLY ENHANCED SEMICONDUCTOR PACKAGE HAVING FIELD EFFECT TRANSISTORS WITH BACK-GATE FEATURE, which claims the benefit of U.S. provisional patent application Ser. No. 62/363,499, filed Jul. 18, 2016. All of the applications listed above are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4093562 | Kishimoto | Jun 1978 | A |
4366202 | Borovsky | Dec 1982 | A |
5013681 | Godbey et al. | May 1991 | A |
5061663 | Bolt et al. | Oct 1991 | A |
5069626 | Patterson et al. | Dec 1991 | A |
5362972 | Yazawa et al. | Nov 1994 | A |
5391257 | Sullivan et al. | Feb 1995 | A |
5459368 | Onishi et al. | Oct 1995 | A |
5646432 | Iwaki et al. | Jul 1997 | A |
5648013 | Uchida et al. | Jul 1997 | A |
5699027 | Tsuji et al. | Dec 1997 | A |
5709960 | Mays et al. | Jan 1998 | A |
5729075 | Strain | Mar 1998 | A |
5831369 | Fürbacher et al. | Nov 1998 | A |
5920142 | Onishi et al. | Jul 1999 | A |
6072557 | Kishimoto | Jun 2000 | A |
6084284 | Adamic, Jr. | Jul 2000 | A |
6154366 | Ma et al. | Nov 2000 | A |
6154372 | Kalivas et al. | Nov 2000 | A |
6235554 | Akram et al. | May 2001 | B1 |
6236061 | Walpita | May 2001 | B1 |
6268654 | Glenn et al. | Jul 2001 | B1 |
6271469 | Ma et al. | Aug 2001 | B1 |
6377112 | Rozsypal | Apr 2002 | B1 |
6423570 | Ma et al. | Jul 2002 | B1 |
6426559 | Bryan et al. | Jul 2002 | B1 |
6441498 | Song | Aug 2002 | B1 |
6446316 | Fürbacher et al. | Sep 2002 | B1 |
6578458 | Akram et al. | Jun 2003 | B1 |
6649012 | Masayuki et al. | Nov 2003 | B2 |
6713859 | Ma | Mar 2004 | B1 |
6841413 | Liu et al. | Jan 2005 | B2 |
6864156 | Conn | Mar 2005 | B1 |
6902950 | Ma et al. | Jun 2005 | B2 |
6943429 | Glenn et al. | Sep 2005 | B1 |
6964889 | Ma et al. | Nov 2005 | B2 |
6992400 | Tikka et al. | Jan 2006 | B2 |
7042072 | Kim et al. | May 2006 | B1 |
7049692 | Nishimura et al. | May 2006 | B2 |
7109635 | McClure et al. | Sep 2006 | B1 |
7183172 | Lee et al. | Feb 2007 | B2 |
7238560 | Sheppard et al. | Jul 2007 | B2 |
7279750 | Jobetto | Oct 2007 | B2 |
7288435 | Aigner et al. | Oct 2007 | B2 |
7307003 | Reif et al. | Dec 2007 | B2 |
7393770 | Wood et al. | Jul 2008 | B2 |
7402901 | Hatano et al. | Jul 2008 | B2 |
7427824 | Iwamoto et al. | Sep 2008 | B2 |
7489032 | Jobetto | Feb 2009 | B2 |
7596849 | Carpenter et al. | Oct 2009 | B1 |
7619347 | Bhattacharjee | Nov 2009 | B1 |
7635636 | McClure et al. | Dec 2009 | B2 |
7714535 | Yamazaki et al. | May 2010 | B2 |
7749882 | Kweon et al. | Jul 2010 | B2 |
7790543 | Abadeer et al. | Sep 2010 | B2 |
7843072 | Park et al. | Nov 2010 | B1 |
7855101 | Furman et al. | Dec 2010 | B2 |
7868419 | Kerr et al. | Jan 2011 | B1 |
7910405 | Okada et al. | Mar 2011 | B2 |
7960218 | Ma et al. | Jun 2011 | B2 |
8004089 | Jobetto | Aug 2011 | B2 |
8183151 | Lake | May 2012 | B2 |
8420447 | Tay et al. | Apr 2013 | B2 |
8503186 | Lin et al. | Aug 2013 | B2 |
8643148 | Lin et al. | Feb 2014 | B2 |
8658475 | Kerr | Feb 2014 | B1 |
8664044 | Jin et al. | Mar 2014 | B2 |
8772853 | Hong et al. | Jul 2014 | B2 |
8791532 | Graf et al. | Jul 2014 | B2 |
8802495 | Kim et al. | Aug 2014 | B2 |
8803242 | Marino et al. | Aug 2014 | B2 |
8816407 | Kim et al. | Aug 2014 | B2 |
8835978 | Mauder et al. | Sep 2014 | B2 |
8906755 | Hekmatshoartabari et al. | Dec 2014 | B1 |
8921990 | Park et al. | Dec 2014 | B2 |
8927968 | Cohen et al. | Jan 2015 | B2 |
8941248 | Lin et al. | Jan 2015 | B2 |
8963321 | Lenniger et al. | Feb 2015 | B2 |
8983399 | Kawamura et al. | Mar 2015 | B2 |
9165793 | Wang et al. | Oct 2015 | B1 |
9214337 | Carroll et al. | Dec 2015 | B2 |
9349700 | Hsieh et al. | May 2016 | B2 |
9368429 | Ma et al. | Jun 2016 | B2 |
9461001 | Tsai et al. | Oct 2016 | B1 |
9520428 | Fujimori | Dec 2016 | B2 |
9530709 | Leipold et al. | Dec 2016 | B2 |
9613831 | Morris et al. | Apr 2017 | B2 |
9646856 | Meyer et al. | May 2017 | B2 |
9653428 | Hiner et al. | May 2017 | B1 |
9786586 | Shih | Oct 2017 | B1 |
9812350 | Costa | Nov 2017 | B2 |
9824951 | Leipold et al. | Nov 2017 | B2 |
9824974 | Gao et al. | Nov 2017 | B2 |
9859254 | Yu et al. | Jan 2018 | B1 |
9875971 | Bhushan et al. | Jan 2018 | B2 |
9941245 | Skeete et al. | Apr 2018 | B2 |
10134837 | Fanelli et al. | Nov 2018 | B1 |
20010004131 | Masayuki et al. | Jun 2001 | A1 |
20020070443 | Mu et al. | Jun 2002 | A1 |
20020074641 | Towle et al. | Jun 2002 | A1 |
20020127769 | Ma et al. | Sep 2002 | A1 |
20020127780 | Ma et al. | Sep 2002 | A1 |
20020137263 | Towle et al. | Sep 2002 | A1 |
20020185675 | Furukawa | Dec 2002 | A1 |
20030207515 | Tan et al. | Nov 2003 | A1 |
20040021152 | Nguyen et al. | Feb 2004 | A1 |
20040164367 | Park | Aug 2004 | A1 |
20040166642 | Chen et al. | Aug 2004 | A1 |
20040219765 | Reif et al. | Nov 2004 | A1 |
20050037595 | Nakahata | Feb 2005 | A1 |
20050077511 | Fitzergald | Apr 2005 | A1 |
20050079686 | Aigner et al. | Apr 2005 | A1 |
20050212419 | Vazan et al. | Sep 2005 | A1 |
20060057782 | Gardes et al. | Mar 2006 | A1 |
20060099781 | Beaumont et al. | May 2006 | A1 |
20060105496 | Chen et al. | May 2006 | A1 |
20060108585 | Gan et al. | May 2006 | A1 |
20060228074 | Lipson et al. | Oct 2006 | A1 |
20060261446 | Wood et al. | Nov 2006 | A1 |
20070020807 | Geefay et al. | Jan 2007 | A1 |
20070045738 | Jones et al. | Mar 2007 | A1 |
20070069393 | Asahi et al. | Mar 2007 | A1 |
20070075317 | Kato et al. | Apr 2007 | A1 |
20070121326 | Nall et al. | May 2007 | A1 |
20070158746 | Ohguro | Jul 2007 | A1 |
20070181992 | Lake | Aug 2007 | A1 |
20070190747 | Humpston et al. | Aug 2007 | A1 |
20070194342 | Kinzer | Aug 2007 | A1 |
20070252481 | Iwamoto et al. | Nov 2007 | A1 |
20070276092 | Kanae et al. | Nov 2007 | A1 |
20080050852 | Hwang et al. | Feb 2008 | A1 |
20080050901 | Kweon et al. | Feb 2008 | A1 |
20080164528 | Cohen et al. | Jul 2008 | A1 |
20080265978 | Englekirk | Oct 2008 | A1 |
20080272497 | Lake | Nov 2008 | A1 |
20080315372 | Kuan et al. | Dec 2008 | A1 |
20090008714 | Chae | Jan 2009 | A1 |
20090010056 | Kuo et al. | Jan 2009 | A1 |
20090014856 | Knickerbocker | Jan 2009 | A1 |
20090090979 | Zhu et al. | Apr 2009 | A1 |
20090179266 | Abadeer et al. | Jul 2009 | A1 |
20090261460 | Kuan et al. | Oct 2009 | A1 |
20090302484 | Lee et al. | Dec 2009 | A1 |
20100003803 | Oka et al. | Jan 2010 | A1 |
20100012354 | Hedin et al. | Jan 2010 | A1 |
20100029045 | Ramanathan et al. | Feb 2010 | A1 |
20100045145 | Tsuda | Feb 2010 | A1 |
20100081232 | Furman et al. | Apr 2010 | A1 |
20100081237 | Wong et al. | Apr 2010 | A1 |
20100109122 | Ding et al. | May 2010 | A1 |
20100120204 | Kunimoto | May 2010 | A1 |
20100127340 | Sugizaki | May 2010 | A1 |
20100173436 | Ouellet et al. | Jul 2010 | A1 |
20100200919 | Kikuchi | Aug 2010 | A1 |
20100314637 | Kim et al. | Dec 2010 | A1 |
20110003433 | Harayama et al. | Jan 2011 | A1 |
20110026232 | Lin et al. | Feb 2011 | A1 |
20110036400 | Murphy et al. | Feb 2011 | A1 |
20110062549 | Lin | Mar 2011 | A1 |
20110068433 | Kim et al. | Mar 2011 | A1 |
20110102002 | Riehl et al. | May 2011 | A1 |
20110171792 | Chang et al. | Jul 2011 | A1 |
20110272800 | Chino | Nov 2011 | A1 |
20110272824 | Pagaila | Nov 2011 | A1 |
20110294244 | Hattori et al. | Dec 2011 | A1 |
20120003813 | Chuang et al. | Jan 2012 | A1 |
20120045871 | Lee et al. | Feb 2012 | A1 |
20120068276 | Lin et al. | Mar 2012 | A1 |
20120094418 | Grama et al. | Apr 2012 | A1 |
20120098074 | Lin et al. | Apr 2012 | A1 |
20120104495 | Zhu et al. | May 2012 | A1 |
20120119346 | Im et al. | May 2012 | A1 |
20120153393 | Liang et al. | Jun 2012 | A1 |
20120168863 | Zhu et al. | Jul 2012 | A1 |
20120256260 | Cheng et al. | Oct 2012 | A1 |
20120292700 | Khakifirooz et al. | Nov 2012 | A1 |
20120299105 | Cai et al. | Nov 2012 | A1 |
20130001665 | Zhu et al. | Jan 2013 | A1 |
20130015429 | Hong et al. | Jan 2013 | A1 |
20130049205 | Meyer et al. | Feb 2013 | A1 |
20130099315 | Zhu et al. | Apr 2013 | A1 |
20130105966 | Kelkar et al. | May 2013 | A1 |
20130147009 | Kim | Jun 2013 | A1 |
20130155681 | Nall et al. | Jun 2013 | A1 |
20130196483 | Dennard et al. | Aug 2013 | A1 |
20130200456 | Zhu et al. | Aug 2013 | A1 |
20130280826 | Scanlan et al. | Oct 2013 | A1 |
20130299871 | Mauder et al. | Nov 2013 | A1 |
20140015131 | Meyer et al. | Jan 2014 | A1 |
20140035129 | Stuber et al. | Feb 2014 | A1 |
20140134803 | Kelly et al. | May 2014 | A1 |
20140168014 | Chih et al. | Jun 2014 | A1 |
20140197530 | Meyer et al. | Jul 2014 | A1 |
20140210314 | Bhattacharjee et al. | Jul 2014 | A1 |
20140219604 | Hackler, Sr. et al. | Aug 2014 | A1 |
20140252566 | Kerr et al. | Sep 2014 | A1 |
20140252567 | Carroll et al. | Sep 2014 | A1 |
20140264813 | Lin et al. | Sep 2014 | A1 |
20140264818 | Lowe, Jr. et al. | Sep 2014 | A1 |
20140306324 | Costa et al. | Oct 2014 | A1 |
20140327003 | Fuergut et al. | Nov 2014 | A1 |
20140327150 | Jung et al. | Nov 2014 | A1 |
20140346573 | Adam et al. | Nov 2014 | A1 |
20140356602 | Oh et al. | Dec 2014 | A1 |
20150015321 | Dribinsky et al. | Jan 2015 | A1 |
20150108666 | Engelhardt et al. | Apr 2015 | A1 |
20150115416 | Costa et al. | Apr 2015 | A1 |
20150130045 | Tseng et al. | May 2015 | A1 |
20150136858 | Finn et al. | May 2015 | A1 |
20150197419 | Cheng | Jul 2015 | A1 |
20150235990 | Cheng et al. | Aug 2015 | A1 |
20150235993 | Cheng et al. | Aug 2015 | A1 |
20150243881 | Sankman et al. | Aug 2015 | A1 |
20150255368 | Costa | Sep 2015 | A1 |
20150262844 | Meyer et al. | Sep 2015 | A1 |
20150279789 | Mahajan et al. | Oct 2015 | A1 |
20150311132 | Kuo et al. | Oct 2015 | A1 |
20150364344 | Yu et al. | Dec 2015 | A1 |
20150380394 | Jang et al. | Dec 2015 | A1 |
20150380523 | Hekmatshoartabari et al. | Dec 2015 | A1 |
20160002510 | Champagne et al. | Jan 2016 | A1 |
20160079137 | Leipold et al. | Mar 2016 | A1 |
20160093580 | Scanlan et al. | Mar 2016 | A1 |
20160100489 | Costa et al. | Apr 2016 | A1 |
20160126111 | Leipold et al. | May 2016 | A1 |
20160126196 | Leipold et al. | May 2016 | A1 |
20160133591 | Hong et al. | May 2016 | A1 |
20160155706 | Yoneyama et al. | Jun 2016 | A1 |
20160284568 | Morris et al. | Sep 2016 | A1 |
20160284570 | Morris et al. | Sep 2016 | A1 |
20160343592 | Costa et al. | Nov 2016 | A1 |
20160343604 | Costa et al. | Nov 2016 | A1 |
20160347609 | Yu et al. | Dec 2016 | A1 |
20160362292 | Chang et al. | Dec 2016 | A1 |
20170024503 | Connelly | Jan 2017 | A1 |
20170032957 | Costa et al. | Feb 2017 | A1 |
20170033026 | Ho et al. | Feb 2017 | A1 |
20170053938 | Whitefield | Feb 2017 | A1 |
20170077028 | Maxim et al. | Mar 2017 | A1 |
20170098587 | Leipold et al. | Apr 2017 | A1 |
20170190572 | Pan et al. | Jul 2017 | A1 |
20170200648 | Lee et al. | Jul 2017 | A1 |
20170207350 | Leipold et al. | Jul 2017 | A1 |
20170263539 | Gowda et al. | Sep 2017 | A1 |
20170271200 | Costa | Sep 2017 | A1 |
20170323804 | Costa et al. | Nov 2017 | A1 |
20170323860 | Costa et al. | Nov 2017 | A1 |
20170334710 | Costa et al. | Nov 2017 | A1 |
20170358511 | Costa et al. | Dec 2017 | A1 |
20180019184 | Costa et al. | Jan 2018 | A1 |
20180019185 | Costa et al. | Jan 2018 | A1 |
20180044169 | Hatcher, Jr. et al. | Feb 2018 | A1 |
20180044177 | Vandemeer et al. | Feb 2018 | A1 |
20180047653 | Costa et al. | Feb 2018 | A1 |
20180076174 | Costa et al. | Mar 2018 | A1 |
20180145678 | Maxim et al. | May 2018 | A1 |
20180166358 | Costa et al. | Jun 2018 | A1 |
20180269188 | Yu et al. | Sep 2018 | A1 |
20190043812 | Leobandung | Feb 2019 | A1 |
20190172842 | Whitefield | Jun 2019 | A1 |
20190189599 | Baloglu et al. | Jun 2019 | A1 |
20190287953 | Moon et al. | Sep 2019 | A1 |
20190304910 | Fillion | Oct 2019 | A1 |
20200058541 | Konishi et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
103811474 | May 2014 | CN |
103872012 | Jun 2014 | CN |
2996143 | Mar 2016 | EP |
S505733 | Feb 1975 | JP |
H11-220077 | Aug 1999 | JP |
200293957 | Mar 2002 | JP |
2002252376 | Sep 2002 | JP |
2006005025 | Jan 2006 | JP |
2007227439 | Sep 2007 | JP |
2008235490 | Oct 2008 | JP |
2008279567 | Nov 2008 | JP |
2009026880 | Feb 2009 | JP |
2009530823 | Aug 2009 | JP |
2011243596 | Dec 2011 | JP |
2007074651 | Jul 2007 | WO |
2018083961 | May 2018 | WO |
2018125242 | Jul 2018 | WO |
Entry |
---|
Notice of Allowance for U.S. Appl. No. 15/387,855, dated Aug. 10, 2018, 7 pages. |
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Sep. 28, 2018, 16 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 15/676,693, dated Aug. 29, 2018, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/914,538, dated Aug. 1, 2018, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/695,579, dated Jan. 28, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/695,579, dated Mar. 20, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/992,613, dated Feb. 27, 2019, 15 pages. |
International Preliminary Report on Patentability for PCT/US2017/046744, dated Feb. 21, 2019, 11 pages. |
International Preliminary Report on Patentability for PCT/US2017/046758, dated Feb. 21, 2019, 11 pages. |
International Preliminary Report on Patentability for PCT/US2017/046779, dated Feb. 21, 2019, 11 pages. |
Raskin, Jean-Pierre et al., “Substrate Crosstalk Reduction Using SOI Technology,” IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997, pp. 2252-2261. |
Rong, B., et al., “Surface-Passivated High-Resistivity Silicon Substrates for RFICs,” IEEE Electron Device Letters, vol. 25, No. 4, Apr. 2004, pp. 176-178. |
Sherman, Lilli M., “Plastics that Conduct Heat,” Plastics Technology Online, Jun. 2001, Retrieved May 17, 2016, http://www.ptonline.com/articles/plastics-that-conduct-heat, Gardner Business Media, Inc., 5 pages. |
Tombak, A., et al., “High-Efficiency Cellular Power Amplifiers Based on a Modified LDMOS Process on Bulk Silicon and Silicon-On-Insulator Substrates with Integrated Power Management Circuitry,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 1862-1869. |
Yamanaka, A., et al., “Thermal Conductivity of High-Strength Polyetheylene Fiber and Applications for Cryogenic Use,” International Scholarly Research Network, ISRN Materials Science, vol. 2011, Article ID 718761, May 25, 2011, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 18, 2013, 20 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Nov. 26, 2013, 21 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/852,648, dated Jan. 27, 2014, 4 pages. |
Advisory Action for U.S. Appl. No. 13/852,648, dated Mar. 7, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jun. 16, 2014, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Sep. 26, 2014, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jan. 22, 2015, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jun. 24, 2015, 20 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Oct. 22, 2015, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Feb. 19, 2016, 12 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 20, 2016, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 14/315,765, dated Jan. 2, 2015, 6 pages. |
Final Office Action for U.S. Appl. No. 14/315,765, dated May 11, 2015, 17 pages. |
Advisory Action for U.S. Appl. No. 14/315,765, dated Jul. 22, 2015, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 14/260,909, dated Mar. 20, 2015, 20 pages. |
Final Office Action for U.S. Appl. No. 14/260,909, dated Aug. 12, 2015, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 14/261,029, dated Dec. 5, 2014, 15 pages. |
Notice of Allowance for U.S. Appl. No. 14/261,029, dated Apr. 27, 2015, 10 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 14/261,029, dated Nov. 17, 2015, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 14/529,870, dated Feb. 12, 2016, 14 pages. |
Notice of Allowance for U.S. Appl. No. 14/529,870, dated Jul. 15, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/293,947, dated Apr. 7, 2017, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/293,947, dated Aug. 14, 2017, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/715,830, dated Apr. 13, 2016, 16 pages. |
Final Office Action for U.S. Appl. No. 14/715,830, dated Sep. 6, 2016, 13 pages. |
Advisory Action for U.S. Appl. No. 14/715,830, dated Oct. 31, 2016, 6 pages. |
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Feb. 10, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Mar. 2, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/851,652, dated Oct. 7, 2016, 10 pages. |
Notice of Allowance for U.S. Appl. No. 14/851,652, dated Apr. 11, 2017, 9 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Jul. 24, 2017, 6 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Sep. 6, 2017, 5 pages. |
Notice of Allowance for U.S. Appl. No. 14/959,129, dated Oct. 11, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/173,037, dated Jan. 10, 2017, 8 pages. |
Final Office Action for U.S. Appl. No. 15/173,037, dated May 2, 2017, 13 pages. |
Advisory Action for U.S. Appl. No. 15/173,037, dated Jul. 20, 2017, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/173,037, dated Aug. 9, 2017, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Feb. 15, 2017, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Jun. 6, 2017, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/229,780, dated Jun. 30, 2017, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Aug. 7, 2017, 10 pages. |
Notice of Allowance for U.S. Appl. No. 15/408,560, dated Sep. 25, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/287,202, dated Aug. 25, 2017, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/353,346, dated May 23, 2017, 15 pages. |
Notice of Allowance for U.S. Appl. No. 15/353,346, dated Sep. 25, 2017, 9 pages. |
First Office Action for Chinese Patent Application No. 201510746323.X, dated Nov. 2, 2018, 12 pages. |
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Jan. 9, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/945,418, dated Nov. 1, 2018, 13 pages. |
Final Office Action for U.S. Appl. No. 15/601,858, dated Nov. 26, 2018, 16 pages. |
Advisory Action for U.S. Appl. No. 15/601,858, dated Jan. 22, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Jan. 11, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/676,693, dated May 3, 2018, 14 pages. |
Notice of Allowance for U.S. Appl. No. 15/789,107, dated May 18, 2018, 8 pages. |
Final Office Action for U.S. Appl. No. 15/616,109, dated Apr. 19, 2018, 18 pages. |
Notice of Allowance for U.S. Appl. No. 15/676,693, dated Jul. 20, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/695,629, dated Jul. 11, 2018, 12 pages. |
Ali, K. Ben et al., “RF SOI CMOS Technology on Commercial Trap-Rich High Resistivity SOI Wafer,” 2012 IEEE International SOI Conference (SOI), Oct. 1-4, 2012, Napa, California, IEEE, 2 pages. |
Anderson, D.R., “Thermal Conductivity of Polymers,” Sandia Corporation, Mar. 8, 1966, pp. 677-690. |
Author Unknown, “96% Alumina, thick-film, as fired,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/DataSheet.aspx?MatGUID=3996a734395a4870a9739076918c4297&ckck=1. |
Author Unknown, “CoolPoly D5108 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 2 pages. |
Author Unknown, “CoolPoly D5506 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Dec. 12, 2013, 2 pages. |
Author Unknown, “CoolPoly D-Series—Thermally Conductive Dielectric Plastics,” Cool Polymers, Retrieved Jun. 24, 2013, http://coolpolymers.com/dseries.asp, 1 page. |
Author Unknown, “CoolPoly E2 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Aug. 8, 2007, http://www.coolpolymers.com/Files/DS/Datasheet_e2.pdf, 1 page. |
Author Unknown, “CoolPoly E3605 Thermally Conductive Polyamide 4,6 (PA 4,6),” Cool Polymers, Inc., Aug. 4, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e3605.pdf. |
Author Unknown, “CoolPoly E5101 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 27, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e5101.pdf. |
Author Unknown, “CoolPoly E5107 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 1 page, http://coolpolymers.com/Files/DS/Datasheet_e5107.pdf. |
Author Unknown, “CoolPoly Selection Tool,” Cool Polymers, Inc., 2006, 1 page, http://www.coolpolymers.com/select.asp?Application=Substrates+%26+Electcronic_Packaging. |
Author Unknown, “CoolPoly Thermally Conductive Plastics for Dielectric Heat Plates,” Cool Polymers, Inc., 2006, 2 pages, http://www.coolpolymers.com/heatplate.asp. |
Author Unknown, “CoolPoly Thermally Conductive Plastics for Substrates and Electronic Packaging,” Cool Polymers, Inc., 2005, 1 page. |
Author Unknown, “Electrical Properties of Plastic Materials,” Professional Plastics, Oct. 28, 2011, http://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf, accessed Dec. 18, 2014, 4 pages. |
Author Unknown, “Fully Sintered Ferrite Powders,” Powder Processing and Technology, LLC, Date Unknown, 1 page. |
Author Unknown, “Heat Transfer,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/heattrans.html, 2 pages. |
Author Unknown, “Hysol UF3808,” Henkel Corporation, Technical Data Sheet, May 2013, 2 pages. |
Author Unknown, “PolyOne Therma-Tech™ LC-5000C TC LCP,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/datasheettext.aspx?matguid=89754e8bb26148d083c5ebb05a0cbff1. |
Author Unknown, “Sapphire Substrate,” from CRC Handbook of Chemistry and Physics, Date Unknown, 1 page. |
Author Unknown, “Thermal Properties of Plastic Materials,” Professional Plastics, Aug. 21, 2010, http://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf, accessed Dec. 18, 2014, 4 pages. |
Author Unknown, “Thermal Properties of Solids,” PowerPoint Presentation, No Date, 28 slides, http://www.phys.huji.ac.il/Phys_Hug/Lectures/77602/PHONONS_2_thermal.pdf. |
Author Unknown, “Thermal Resistance & Thermal Conductance,” C-Therm Technologies Ltd., accessed Sep. 19, 2013, 4 pages, http://www.ctherm.com/products/tci_thermal_conductivity/helpful_links_tools/thermal_resistance_thermal_conductance/. |
Author Unknown, “The Technology: AKHAN's Approach and Solution: The Miraj Diamond™ Platform,” 2015, accessed Oct. 9, 2016, http://www.akhansemi.com/technology.html#the-miraj-diamond-platform, 5 pages. |
Beck, D., et al., “CMOS on FZ-High Resistivity Substrate for Monolithic Integration of SiGe-RF-Circuitry and Readout Electronics,” IEEE Transactions on Electron Devices, vol. 44, No. 7, Jul. 1997, pp. 1091-1101. |
Botula, A., et al., “A Thin-Film SOI 180nm CMOS RF Switch Technology,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF '09), Jan. 2009, pp. 1-4. |
Carroll, M., et al., “High-Resistivity SOI CMOS Cellular Antenna Switches,” Annual IEEE Compound Semiconductor Integrated Circuit Symposium, (CISC 2009), Oct. 2009, pp. 1-4. |
Colinge, J.P., et al., “A Low-Voltage, Low-Power Microwave SOI MOSFET,” Proceedings of 1996 IEEE International SOI Conference, Oct. 1996, pp. 128-129. |
Costa, J. et al., “Integrated MEMS Switch Technology on SOI-CMOS,” Proceedings of Hilton Head Workshop: A Solid-State Sensors, Actuators and Microsystems Workshop, Jun. 1-5, 2008, Hilton Head Island, SC, IEEE, pp. 900-903. |
Costa, J. et al., “Silicon RFCMOS SOI Technology with Above-IC MEMS Integration for Front End Wireless Applications,” Bipolar/BiCMOS Circuits and Technology Meeting, 2008, BCTM 2008, IEEE, pp. 204-207. |
Costa, J., “RFCMOS SOI Technology for 4G Reconfigurable RF Solutions,” Session WEC1-2, Proceedings of the 2013 IEEE International Microwave Symposium, 4 pages. |
Esfeh, Babak Kazemi et al., “Re Non-Linearities from Si-Based Substrates,” 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Apr. 2-4, 2014, IEEE, 3 pages. |
Finne, R. M. et al., “A Water-Amine-Complexing Agent System for Etching Silicon,” Journal of the Electrochemical Society, vol. 114, No. 9, Sep. 1967, pp. 965-970. |
Gamble, H. S. et al., “Low-Loss CPW Lines on Surface Stabilized High-Resistivity Silicon,” IEEE Microwave and Guided Wave Letters, vol. 9, No. 10, Oct. 1999, pp. 395-397. |
Huang, Xingyi, et al., “A Review of Dielectric Polymer Composites with High Thermal Conductivity,” IEEE Electrical Insulation Magazine, vol. 27, No. 4, Jul./Aug. 2011, pp. 8-16. |
Joshi, V. et al., “MEMS Solutions in RF Applications,” 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Oct. 2013, IEEE, 2 pages. |
Jung, Boo Yang, et al., “Study of FCMBGA with Low CTE Core Substrate,” 2009 Electronic Components and Technology Conference, May 2009, pp. 301-304. |
Kerr, D.C., et al., “Identification of RF Harmonic Distortion on Si Substrates and Its Reduction Using a Trap-Rich Layer,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF 2008), Jan. 2008, pp. 151-154. |
Lederer, D., et al., “New Substrate Passivation Method Dedicated to HR SOI Wafer Fabrication with Increased Substrate Resistivity,” IEEE Electron Device Letters, vol. 26, No. 11, Nov. 2005, pp. 805-807. |
Lederer, Dimitri et al., “Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers,” Solid-State Electronics, vol. 47, No. 11, Nov. 2003, pp. 1927-1936. |
Lee, Kwang Hong et al., “Integration of III-V materials and Si-CMOS through double layer transfer process,” Japanese Journal of Applied Physics, vol. 54, Jan. 2015, pp. 030209-1 to 030209-5. |
Lee, Tzung-Yin, et al., “Modeling of SOI FET for RF Switch Applications,” IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, Anaheim, CA, IEEE, pp. 479-482. |
Lu, J.Q., et al., “Evaluation Procedures for Wafer Bonding and Thinning of Interconnect Test Structures for 3D ICs,” Proceedings of the IEEE 2003 International Interconnect Technology Conference, Jun. 2-4, 2003, pp. 74-76. |
Mamunya, YE.P., et al., “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, vol. 38, 2002, pp. 1887-1897. |
Mansour, Raafat R., “RF MEMS-CMOS Device Integration,” IEEE Microwave Magazine, vol. 14, No. 1, Jan. 2013, pp. 39-56. |
Mazuré, C. et al., “Advanced SOI Substrate Manufacturing,” 2004 IEEE International Conference on Integrated Circuit Design and Technology, 2004, IEEE, pp. 105-111. |
Micak, R. et al., “Photo-Assisted Electrochemical Machining of Micromechanical Structures,” Proceedings of Micro Electro Mechanical Systems, Feb. 7-10, 1993, Fort Lauderdale, FL, IEEE, pp. 225-229. |
Morris, Art, “Monolithic Integration of RF-MEMS within CMOS,” 2015 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Apr. 27-29, 2015, IEEE, 2 pages. |
Niklaus, F., et al., “Adhesive Wafer Bonding,” Journal of Applied Physics, vol. 99, No. 3, 031101 (2006), 28 pages. |
Parthasarathy, S., et al., “RF SOI Switch FET Design and Modeling Tradeoffs for GSM Applications,” 2010 23rd International Conference on VLSI Design, (VLSID '10), Jan. 2010, pp. 194-199. |
Raskin, J.P., et al., “Coupling Effects in High-Resistivity SIMOX Substrates for VHF and Microwave Applications,” Proceedings of 1995 IEEE International SOI Conference, Oct. 1995, pp. 62-63. |
Notice of Allowance for U.S. Appl. No. 15/287,273, dated Jun. 30, 2017, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jul. 21, 2017, 5 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Sep. 7, 2017, 5 pages. |
Extended European Search Report for European Patent Application No. 15184861.1, dated Jan. 25, 2016, 6 pages. |
Office Action of the Intellectual Property Office for Taiwanese Patent Application No. 104130224, dated Jun. 15, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/885,202, dated Apr. 14, 2016, 5 pages. |
Final Office Action for U.S. Appl. No. 14/885,202, dated Sep. 27, 2016, 7 pages. |
Advisory Action for U.S. Appl. No. 14/885,202, dated Nov. 29, 2016, 3 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jan. 27, 2017, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jul. 24, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,243, dated Aug. 31, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated May 27, 2011, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated Nov. 4, 2011, 20 pages. |
Search Report for Japanese Patent Application No. 2011-229152, created on Feb. 22, 2013, 58 pages. |
Office Action for Japanese Patent Application No. 2011-229152, drafted May 10, 2013, 7 pages. |
Final Rejection for Japanese Patent Application No. 2011-229152, drafted Oct. 25, 2013, 2 pages. |
International Search Report and Written Opinion for PCT/US2016/045809, dated Oct. 7, 2016, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/652,867, dated Oct. 10, 2017, 5 pages. |
Bernheim et al., “Chapter 9: Lamination,” Tools and Manufacturing Engineers Handbook (book), Apr. 1, 1996, Society of Manufacturing Engineers, p. 9-1. |
Fillion R. et al., “Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics,” Electronic Components and Technology Conference, vol. 1, May 1994, IEEE, 5 pages. |
Henawy, Mahmoud Al et al., “New Thermoplastic Polymer Substrate for Microstrip Antennas at 60 GHz,” German Microwave Conference, Mar. 15-17, 2010, Berlin, Germany, IEEE, pp. 5-8. |
International Search Report and Written Opinion for PCT/US2017/046744, dated Nov. 27, 2017, 17 pages. |
International Search Report and Written Opinion for PCT/US2017/046758, dated Nov. 16, 2017, 19 pages. |
International Search Report and Written Opinion for PCT/US2017/046779, dated Nov. 29, 2017, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 15/616,109, dated Oct. 23, 2017, 16 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 14/851,652, dated Oct. 20, 2017, 5 pages. |
Final Office Action for U.S. Appl. No. 15/262,457, dated Dec. 19, 2017, 12 pages. |
Supplemental Notice of Allowability and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/287,273, dated Oct. 18, 2017, 6 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Nov. 2, 2017, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/491,064, dated Jan. 2, 2018, 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/872,910, dated Nov. 17, 2017, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/648,082, dated Nov. 29, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/652,826, dated Nov. 3, 2017, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/229,780, dated Oct. 3, 2017, 7 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jan. 17, 2018, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/498,040, dated Feb. 20, 2018, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/387,855, dated Jan. 16, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/795,915, dated Feb. 23, 2018, 6 pages. |
International Preliminary Report on Patentability for PCT/US2016/045809, dated Feb. 22, 2018, 8 pages. |
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Feb. 28, 2018, 5 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Feb. 23, 2018, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/676,415, dated Mar. 27, 2018, 14 page. |
Non-Final Office Action for U.S. Appl. No. 15/676,621, dated Mar. 26, 2018, 16 pages. |
Notice of Allowance for U.S. Appl. No. 15/795,915, dated Jun. 15, 2018, 7 pages. |
Final Office Action for U.S. Appl. No. 15/387,855, dated May 24, 2018, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Apr. 19, 2018, 10 pages. |
Notice of Allowance for U.S. Appl. No. 15/491,064, dated Apr. 30, 2018, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Jun. 26, 2018, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/616,109, dated Jul. 2, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/676,621, dated Jun. 5, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated May 13, 2019, 8 pages. |
Final Office Action for U.S. Appl. No. 15/992,613, dated May 24, 2019, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/992,639, dated May 9, 2019, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/168,327, dated Jun. 28, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Apr. 17, 2019, 9 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Aug. 28, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/601,858, dated Aug. 16, 2019, 8 pages. |
Lin, Yueh, Chin, et al., “Enhancement-Mode GaN MIS-HEMTs With LaHfOx Gate Insulator for Power Application,” IEEE Electronic Device Letters, vol. 38, Issue 8, 2017, 4 pages. |
Shukla, Shishir, et al., “GaN-on-Si Switched Mode RF Power Amplifiers for Non-Constant Envelope Signals,” IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, 2017, pp. 88-91. |
Tsai, Szu-Ping., et al., “Performance Enhancement of Flip-Chip Packaged AlGAaN/GaN HEMTs by Strain Engineering Design,” IEEE Transcations on Electron Devices, vol. 63, Issue 10, Oct. 2016, pp. 3876-3881. |
Tsai, Chun-Lin, et al., “Smart GaN platform; Performance & Challenges,” IEEE International Electron Devices Meeting, 2017, 4 pages. |
Notice of Reasons for Refusal for Japanese Patent Application No. 2015-180657, dated Jul. 9, 2019, 4 pages. |
Advisory Action for U.S. Appl. No. 15/992,613, dated Jul. 29, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/975,230, dated Jul. 22, 2019, 7 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034645, dated Sep. 19, 2019, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034699, dated Oct. 29, 2019, 13 pages. |
Notice of Allowance for U.S. Appl. No. 15/992,613, dated Sep. 23, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated Oct. 9, 2019, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 15/816,637, dated Oct. 31, 2019, 10 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US19/25591, dated Jun. 21, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/527,702, dated Jan. 10, 2020, 10 pages. |
Office Action for Japanese Patent Application No. 2018-526613, dated Nov. 5, 2019, 8 pages. |
Dhar, S. et al., “Electron Mobility Model for Strained-Si Devices,” IEEE Transactions on Electron Devices, vol. 52, No. 4, Apr. 2005, IEEE, pp. 527-533. |
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Apr. 15, 2020, 9 pages. |
Notice of Allowance for U.S. Appl. No. 15/816,637, dated Apr. 2, 2020, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Feb. 5, 2020, 5 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Apr. 1, 2020, 4 pages. |
Notice of Allowance for U.S. Appl. No. 16/527,702, dated Apr. 9, 2020, 8 pages. |
Final Office Action for U.S. Appl. No. 16/204,214, dated Mar. 6, 2020, 14 pages. |
Advisory Action for U.S. Appl. No. 16/204,214, dated Apr. 15, 2020, 3 pages. |
Decision of Rejection for Japanese Patent Application No. 2015-180657, dated Mar. 17, 2020, 4 pages. |
Intention to Grant for European Patent Application No. 17757646.9, dated Feb. 27, 2020, 55 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/063460, dated Feb. 25, 2020, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055317, dated Feb. 6, 2020, 17 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055321, dated Jan. 27, 2020, 23 pages. |
Quayle Action for U.S. Appl. No. 16/703,251, dated Jun. 26, 2020, 5 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated May 20, 2020, 4 pages. |
Notice of Allowability for U.S. Appl. No. 15/695,579, dated Jun. 25, 2020, 4 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Apr. 30, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/368,210, dated Jun. 17, 2020, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 16/374,125, dated Jun. 26, 2020, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 16/390,496, dated Jul. 10, 2020, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated May 19, 2020, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 16/454,687, dated May 15, 2020, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 16/454,809, dated May 15, 2020, 12 pages. |
Nelser, J. et al., “Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE Electron Device Letters, vol. 15, No. 3, Mar. 1994, IEEE, pp. 100-102. |
Examination Report for European Patent Application No. 16751791.1, dated Apr. 30, 2020, 15 pages. |
Notification of Reasons for Refusal for Japanese Patent Application No. 2018-526613, dated May 11, 2020, 6 pages. |
Examination Report for Singapore Patent Application No. 11201901193U, dated May 26, 2020, 6 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014662, dated May 7, 2020, 18 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014665, dated May 13, 2020, 17 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014666, dated Jun. 4, 2020, 18 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014667, dated May 18, 2020, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014669, dated Jun. 4, 2020, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20180138082 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62447111 | Jan 2017 | US | |
62339322 | May 2016 | US | |
62363499 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15652826 | Jul 2017 | US |
Child | 15873152 | US | |
Parent | 15601858 | May 2017 | US |
Child | 15652826 | US |