This invention relates to an anti-warp heat spreader for semiconductor devices such as integrated circuits (“ICs”), semiconductor chips and the like and a semiconductor device containing such heat spreader.
Anti-warp heat spreaders have been described in prior art patents. For example U.S. Pat. No. 6,848,172 B2 (Fitzgerald et al.), U.S. Pat. No. 5,998,241 (Niwa), Japanese Patent No. 07302866 A (Okikawa, et al.), Japanese Patent No. 10056110 A (Muramatsu, et al.), and Japanese Patent No. 09008186 A (Imura, et al.) all describe related devices. Each of these prior art references is incorporated herein by reference.
A semiconductor device usually consists of a semiconductor chip (the so-called die) and a circuit board. The die is mounted on the top surface of the circuit board by means of a synthetic resin and is electrically connected to the bottom surface of the circuit board by means of bonding wires that extend from the bottom side of the die to the bottom surface of the circuit board through an opening in the circuit board, where the bonding wires are connected to conductor tracks that are located on that bottom surface.
At least the top surface of the circuit board, including the die, (the so-called package) is usually covered by a synthetic resin to form a reinforcing frame atop the package that protects the die from potentially damaging impacts. Especially for high performance semiconductor chips, a heat spreader, sometimes combined with a heat sink, is frequently added to the package in order to spread the heat generated by the die when in operation, thus improving its dissipation. Usually the heat spreader is bonded on top of the die by means of a synthetic resin. In the majority of cases where a heat sink is to be used, the heat spreader remains exposed, i.e., it is not covered by the reinforcing frame.
Efforts have been made to utilize such heat spreaders as a reinforcing member in order to strengthen the package and prevent heat induced warpage that can lead to package failure. However, experience shows that the solutions that have been proposed so far are not very effective so that there is a need for a heat spreader that improves the mechanical strength of semiconductor devices in order to minimize warpage of the device caused by heat.
In one aspect, the present invention provides a heat spreader for semiconductor devices that effectively spreads heat and aids in the dissipation of heat and, at the same time, reinforces the device to minimize heat-induced warpage. In a further aspect, the invention provides a semiconductor device with such heat spreader, which is well protected against thermal failure due to overheating as well as against mechanical failure because of thermal deformation at the same time.
For example, an anti-warp heat spreader can be provided for semiconductor devices, wherein the heat spreader is made of a metal sheet of substantially constant thickness. The metal sheet is perforated by at least one opening to allow for the passage of a mold compound.
The heat spreader is designed to strengthen the package by providing a strong bond between its components, i.e. the circuit board, die, heat spreader and reinforcing frame. At the same time the heat generated by the die during operation is efficiently dissipated. The heat spreader can easily be attached to the die by positioning it in the mold used to produce the reinforcing frame and then fill the mold with a mold compound. The mold compound will easily flow through the opening or openings, thereby filling the gap between the heat spreader and the die. The mold compound replaces the air that escapes from the gap through the opening or openings. Thus, a strong and intense connection between the die and the heat spreader is constituted. The bonding layer underneath the heat spreader and the reinforcing frame above the heat spreader are firmly interconnected through the opening or openings.
According to another aspect of the invention, the metal sheet is substantially flat and has at least one groove wherein at least one opening is placed. The groove is made so as to locally reduce the thickness of the metal sheet. It can, for example, be made by etching the top surface of the metal sheet. The mold compound fills the groove during molding and establishes a reinforcing frame after curing. It is especially advantageous to provide furrows alongside each groove to collect excess mold compound which, after filling the groove, bleeds out during molding. That way, the top surface of the heat spreader remains free of mold compound.
According to another aspect of the invention, the metal sheet has a primary group of grooves running parallel to each other and a secondary group of grooves running parallel to each other and intersecting the primary group of grooves. Thus, a grid of grooves surrounding the die can be formed. This makes it easier to separate a package from a group of packages that have been molded at the same time by simply cutting or sawing them apart. It is beneficial to arrange a multitude of openings in columns and rows along the grooves. Thus, the reinforcing frame is connected to the circuit board along the edges of each package.
In another embodiment of the present invention the heat spreader further has a stiffening corrugation. It is known that a corrugated plate is stiffer than a flat plate of the same thickness. Therefore, a corrugated metal sheet, when used as a heat spreader, gives the package a greater strength. The stiffening corrugation can, for example, have the shape of one or more ripples or cups. Within the scope of the invention is any combination of ripples and cups formed in the metal plate. Regardless of the actual shape used for the corrugation, it is advantageous to arrange the opening or openings in the groove formed by a ripple or in the bottom of a cup, respectively.
As with the flat metal sheet used in the embodiment described above, the stiffening corrugation can advantageously comprise a primary group of ripples running parallel to each other. This primary group of ripples may be complemented by a secondary group of ripples also running parallel to each other and intersecting the primary group of ripples, thereby being disrupted at intersections. The arrangement of two groups of parallel ripples running in two different directions gives the package extraordinary stiffness regardless of the effective direction of an exterior impact and for every thermal load case.
For an even higher stiffness, it may be useful to have the primary group of ripples project to one side of the metal sheet and the secondary group of ripples project to the other side of the metal sheet.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
In the ground of the grooves 5, a number of openings 8 are arranged that allow a mold compound 9 to freely flow from the top surface of the heat spreader 4 into the clearances 6 between the dies 2 and to fill the grooves 5, thus forming a reinforcing frame. Alongside the grooves 5, furrows 10 are provided to collect excess mold compound 9 so that the top surface of the heat spreader 4 remains free of mold compound 9 for a better heat dissipation.
After the mold compound has cured, solder balls are attached to give electrical connection between chip and board, then the packages can be separated in a cutting or sawing process in which the assembly is cut or sawn apart along the middle of the grooves 5 to obtain semiconductor devices with reinforcing frames.
The heat spreaders 4 in
The ripples 11 of the primary group project to one side of the metal sheet, namely the bottom side (towards the dies 2) and the ripples 12 of the secondary group project to the other side of the metal sheet, namely the top side (away from the dies 2).
In the ground of the ripples 11 and in the uncorrugated areas of the heat spreader 4, a number of openings 8 are arranged that allow a mold compound 9 to freely flow from the top surface of the heat spreader 4 into the clearances 6 between the dies 2 and between the heat spreader 4 and the dies 2 and to fill the ripples 11 and 12 and to cover the top surface of the heat spreader 4, thus forming a reinforcing frame.
After the mold compound has cured, solder balls are attached to give electrical connection between chip and board. Then the packages can be separated in a cutting or sawing process in which the assembly is cut or sawn apart along the middle of the grooves 5 to obtain semiconductor devices with reinforcing frames.
The heat spreader 4 of the second embodiment is again shown in
Possible configurations with respect to the assembly of relatively big dies 2 or relatively small dies 2, respectively, are shown in
In
The heat spreader 4 in
In the bottom of the cups 13 and in the uncorrugated areas of the heat spreader 4, a number of openings 8 are arranged that allow a mold compound 9 to freely flow from the top surface of the heat spreader 4 into the clearances 6 between the dies 2 and between the heat spreader 4 and the dies 2 and to fill the cups 13 and to cover the top surface of the heat spreader 4, thus forming a reinforcing frame.
After the mold compound has cured, solder balls are attached to give electrical connection between chip and board, then the packages can be separated in a cutting or sawing process in which the assembly is cut or sawn apart along the clearances 6 between the dies 2 to obtain semiconductor devices with reinforcing frames.
The heat spreader 4 of the third embodiment is again shown in
A possible configuration with respect to the assembly of dies 2 is shown in
In
This application claims the benefit of U.S. Provisional Application No. 60/695,640, filed on Jun. 30, 2005, entitled Anti-Warp Heat Spreader for Semiconductor Devices, which application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60695640 | Jun 2005 | US |