Embodiments described herein generally relate to the field of optical metrology and, more particularly, automatic determination of Fourier harmonic order for computation of spectral information of diffraction structures.
A rigorous coupled wave analysis (RCWA) and similar algorithms have been widely used for the study and design of diffraction structures. In the RCWA approach, the profiles of periodic structures of a certain target structure are approximated by a given number of sufficiently thin planar grating slabs.
Specifically, RCWA involves three main operations, namely, the Fourier expansion of the field inside the grating, calculation of the eigenvalues and eigenvectors of a constant coefficient matrix that characterizes the diffracted signal, and solution of a linear system deduced from the boundary matching conditions. RCWA divides the problem into three distinct spatial regions: (1) the ambient region supporting the incident plane wave field and a summation over all reflected diffracted orders, (2) the grating structure and underlying non-patterned layers in which the wave field is treated as a superposition of modes associated with each diffracted order, and (3) the substrate containing the transmitted wave field.
In the establishment of RCWA and similar processes, a Fourier harmonic order is required for computation of spectral information for periodic structures of a larger target structure. However, the determination of an appropriate Fourier harmonic order for such computation can be difficult and require large computational costs.
Embodiments are direct to automatic determination of Fourier harmonic order for computation of spectral information for diffraction structures.
In a first embodiment, a method includes automatically determining a Fourier harmonic order for computation of spectral information for periodic structures, wherein the determination of the Fourier harmonic order is based at least in part on the pitches in each of multiple directions of the periodic structures, material properties of the periodic structures, and characteristics of the periodic structures in which the materials are contained; and computing the spectral information for the periodic structures based at least in part on the determined Fourier harmonic order.
In a second embodiment, a machine-accessible storage medium has instructions stored thereon which cause a data processing system to perform a method automatic determination of Fourier harmonic order for computation of spectral information of diffraction structures, the method including automatically determining a Fourier harmonic order for computation of spectral information for periodic diffraction structures, wherein the determination of the Fourier harmonic order is based at least in part on the pitches in each of multiple directions of the periodic structures, material properties of the periodic structures, and characteristics of the periodic structures in which the materials are contained; and computing the spectral information for the periodic structures based at least in part on the determined Fourier harmonic order.
In a third embodiment, a system includes a processor, wherein the processor is to provide processing for automatically determining a Fourier harmonic order for computation of spectral information for diffraction structures, wherein the determination of the Fourier harmonic order for periodic structures of a target structure is based at least in part on the pitches in each of multiple directions of the periodic structures, material properties of the periodic structures, and characteristics of the periodic structures in which the materials are contained; and a memory for storage of data, the data including the determined Fourier harmonic order. The system is to generate spectral information for the periodic structures based at least in part on the determined Fourier harmonic order.
Embodiments described here are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.
Embodiments described herein are generally directed to automatic determination of Fourier harmonic order for computation of spectral information for diffraction structures.
In the following description, numerous specific details are set forth, such as specific approaches to determination of Fourier harmonic order for computation of spectral information for periodic structures of a larger target structure, in order to provide a thorough understanding of embodiments of the present invention. It will be apparent to one skilled in the art that embodiments may be practiced without these specific details. In other instances, well-known processing operations, such as fabricating stacks of patterned material layers, are not described in detail in order to not unnecessarily obscure embodiments of the present invention. Furthermore, it is to be understood that the various embodiments shown in the figures are illustrative representations and are not necessarily drawn to scale.
In some embodiments, a method of evaluating periodic structures includes setting a Fourier harmonic order for computation of spectral information for the periodic structures independents of wavelength, or with wavelength changing according to a low-order polynomial function, a low-order polynomial function being a function with, for example, an order of no more than four.
As used herein, the term “periodic structures” (which may also be referred to as repeating structures) includes pseudo-periodic structures that are periodic over a finite area of a larger target structure, and that may be modeled as periodic structures. Further, periodic structures include repeating groups of multiple unit cells as well as a single repeating unit cell.
Certain conventional approaches exist for setting a Fourier harmonic order. For example: A first non-simulation approach may set the Fourier harmonic order based on the pitch of a structure, but without allowing different orders for X and Y directions. A second simulation approach may run RCWA with different Fourier harmonic orders and test the convergence of each. A modified simulation approach may attempt to predict the convergence of RCWA from the size and material properties of all discretized regions.
However, the conventional approaches suffer from significant deficiencies in operation. With regard to the first method, basing a Fourier harmonic order on pitch can be too limiting, being unsuitable for geometries with a high pitch ratio between X and Y directions, and does not take into account other aspects of the diffraction structure, such as material properties or geometric complexity of a structure.
With regard to the second approach, providing multiple simulations can be impractically slow, particularly if attempting to make the Fourier harmonic order wavelength independent. Further, simulation convergence can be a poor predictor of what order is needed for simulation reliability, and may vary considerably across the parameter space. Simulation based results also tend to be erratic, producing undesirably extreme order settings. The modified method, while operating faster than the second method, suffers from similar limitations.
In some embodiments, a process for determination of harmonic order may be run locally on a workstation, rather than requiring extensive computational resources. In some embodiments, a process for determination of harmonic order does not require electromagnetic simulation, and thus runs very quickly in comparison with conventional processes utilizing simulation. In some embodiments, an operation to determine a Fourier harmonic order is efficient and produces consistently reasonable results. Subsequent computationally intensive electromagnetic solver calculation, such as RCWA calculations, may then be conducted efficiently and accurately utilizing a reasonably selected harmonic order.
In some embodiments, an apparatus, system, or method provides an efficient process for setting the Fourier harmonic order for computation of spectral information for periodic structures in optical metrology. In some embodiments, the apparatus, system, or method is applicable for optical CD (critical dimension) measurement using any one or combination of spectroscopic, single wavelength, or angle resolved ellipsometry or reflectometry techniques.
In some embodiments, an apparatus, system, or method considers multiple factors to efficiently reach an appropriate order setting. In some embodiments, the apparatus, system, or method considers in combination: (a) the pitches in each direction of periodic structures (relative dimensions of a unit cell of the periodic structures), (b) material properties of the periodic structures, and (c) characteristics of the periodic structures in which the materials are contained. In some embodiments, the consideration includes interrelationships between any of the pitches, material properties, and characteristics of the periodic structures. In some embodiments, characteristics include one or both of qualitative and quantitative characteristics. In some embodiments, the characteristics may include, for example, whether a layer in which a particular material is contained is a film, or varies in one or two dimensions.
In some embodiments, wavelength dependence of a resulting harmonic order is further constrained to a low order polynomial function. In some embodiments, adjustable settings allow refinement of the way the inputs are used and how the output is constrained. In some embodiments, other measurement system definitions, measurement setup specifics, and adjustments for alternative simulators may also be included.
In Some Embodiments, the Inputs to the Software Defined Map 100 May Include:
Material properties, including permittivity, of the materials making up the periodic structures 105; and geometric definition of the periodic structures 110. In some embodiments, such elements includes the pitches in each direction of a structure, the repeating nature of one more structures, and the characteristics of the periodic structure within which the materials are contained.
In Some Embodiments, the Inputs to the Software Defined Map 100 Further Include:
A simulation definition 115;
Tunable constraints 120, where such constraints may be predefined by a user;
Measurement setup 125, including a specific setup of optical metrology elements, including the manner in which a structure is coupled with the optical metrology system; and
Optical Metrology System Definitions 130.
In some embodiments, in the modeling of structures for optical metrology 200, a process for determination of a Fourier harmonic order for computation of spectral information for periodic structures includes automatically:
(a) Identifying the materials in a period structure 202, such as by traversing each layer of the structures;
(b) Generating a list of the materials of a periodic structure, where the list may include materials as found in both X- and Y-directions in the periodic structure 204.
(c) Determining properties of the materials 206. In some embodiments, the properties may include determining ϵ (epsilon, referring to the permittivity of a material, permittivity being the ability of a material to resist the formation of an electric field) values for each simulation wavelength for each such material, and modifying such ϵ values including user configurable values.
(d) Applying values based on geometry of the periodic structure 208, which may include applying a ratio between the X and Y pitches of a periodic structure.
(e) Applying user adjustable values 210, which may include application of user adjustable fidelity levels. In some embodiments, a fidelity level may be transformed, such as with a logarithmic value, and may be scaled to constrain values.
(f) Adjustment of harmonic order based on ratio between determined values 212, such as multiplying minimum TO levels by ratio between values reduced by modified fidelity level and value multiplied by modified ϵ value.
(g) Restriction of harmonic order to be a minimum threshold 214.
(h) In an exception, if the periodic structure is entirely two-dimensional (2D), maximum and minimum values may be set to zero for the corresponding X or Y direction 216.
(i) Generating a wavelength dependent harmonic order based on the calculated results, such as, in one example, by generating a line between minimum and maximum values 218. However, embodiments are not limited to this implementation.
(j) Repeating processes for each subsystem of the periodic structures 220. In some embodiments, the resulting Fourier harmonic order values are applied in in electromagnetic solver, such as RCWA 222 and a signal for the model is generated for the optical metrology process 224.
As illustrated in
(a) In some embodiments, a list of materials contain every, or substantially every, material that will be present in a model of a structure, and the process includes accessing such list of materials 302. In some embodiments, for every material in the list, each flag of a pair of flags is initialized to zero.
In some embodiments, the layers of the model are traversed and flags are set for materials that are present 304. For example, if a layer contains multiple materials in the X direction, a first flag of a pair of flags is set for each material in that layer. If the layer contains multiple materials in the Y-direction, a second flag of a pair of flags is set for each of such materials.
(b) In some embodiments, a list of materials with non-zero flags is constructed 306, the list being a combined list for both X and Y directions. Stated in another way, the result is a list of materials that exist in non-film layers.
(c) In some embodiments, for each simulation wavelength, the ϵ (epsilon, referring to the permittivity of a material, permittivity being the ability of a material to resist the formation of an electric field) for the highest ϵ material is obtained 308.
In some embodiments, the maximum and minimum of the set of wavelength dependent maximum ϵ's are then identified 310, and the maximum and minimum ϵ's are then scaled by a first scale factor and a second scale factor respectively 312. In an example, the maximum is then scaled by a first scale factor of five, and the minimum is scaled by a second scale factor of two. In some embodiments, the scaled values are also restricted to be no greater than one 314.
In some embodiments, a user configurable minimum Fourier harmonic order (TO, for Truncation Order) is then multiplied by the scaled and restricted minimum epsilon 316, and a user configurable maximum TO is scaled by the scaled and restricted maximum ϵ 318.
Continuing the Process as Illustrated in
(d) In some embodiments, a ratio value is set to the ratio between the X and Y pitch, with the value being limited to certain maximum and minimum values (and being referred to herein as a limited ratio value) 320. In an example, the value is limited to be no larger than two (2.0) or less than one-half (0.5).
In some embodiments, a run-time configurable maximum X TO (X-direction Truncation Order) is then multiplied by the square root of the limited ratio value 322. In some embodiments, a run-time configurable maximum Y TO (Y-direction Truncation Order) is scaled by the reciprocal square root of the limited ratio value 324.
(e) In some embodiments, a user adjustable X fidelity level is limited to be between a minimum value and a maximum value, where such values may be 1 and 15 respectively. In some embodiments, the X fidelity level is then transformed with a natural logarithm 326. In some embodiments, the transformed X fidelity level is then scaled to be between a lower value and an upper values, the lower and upper values being, for example, zero (0) and the difference between the maximum and minimum X TO levels 328. In some embodiments, the maximum X TO level is then decreased by that transformed and scaled fidelity level 330. In this process, the scaling prevents the maximum from decreasing to below the existing minimum. In some embodiments, a user adjustable Y fidelity level is similarly limited to be between a minimum value and a maximum value 332 and transformed with a natural logarithm 334, with the maximum Y TO level is similarly decreased by the transformed and scaled user adjustable Y fidelity level 336.
Continuing the Process as Illustrated in
(f) In some embodiments, the minimum X TO level is multiplied by the ratio between the maximum X TO reduced by the transformed and scaled X fidelity level (from 330) and the maximum X TO multiplied by the scaled and restricted ϵ value (from 318) 338. In some embodiments, the minimum Y TO level is multiplied by the ratio between the maximum X TO reduced by the transformed and scaled X fidelity level (from 330) and the maximum X TO multiplied by the scaled and restricted ϵ value (from 318) 340. In some embodiments, these operations adjust the minimum X and Y TO levels by pitch and desired fidelity level.
(g) In some embodiments, the minimum X TO level and Y TO level are restricted to be no less than a particular value 342. For example, the minimum X TO level and minimum Y TO level are restricted to be no less than two (≥2).
(h) In an exception, in some embodiments, if the periodic structure is entirely two-dimensional (2D), based on an accumulation for the flags (as set in 304), the corresponding X or Y TO maximums and minimums are set to zero 344.
(i) In some embodiments, a wavelength dependent harmonic order for X and Y is generated based on the calculated results, such as, in one example, generating a line between the maximum and minimum X TO values, with the maximum at the shortest wavelength 346.
(j) In some embodiments, the process of (c) through (h) (308 through 344) is repeated for each subsystem 348. In some embodiments, the resulting Fourier harmonic order values are applied in RCWA 350, and a model of a structure is generated for the optical metrology process 352.
In some embodiments, results of the determination process are independent of the choice of nominal geometric values, and don't vary erratically by wavelength. Further, the harmonic order determination is extremely fast, and the RCWA process may be conducted more efficiently and reliably than if the Fourier harmonic order is set manually by the user.
In some embodiments, functions can be used to constrain the wavelength dependence, including generating a harmonic order that is independent of wavelength, or that varies linearly with length. Other sufficiently qualitative geometric heuristics can be added. More specifically:
(a) It may be unnecessary to flag a material in the X or Y direction based on any part of that layer containing multiple materials in that direction. In some embodiments, if the material itself uniformly spans a section of that layer without boundaries in the direction under consideration, then the corresponding X or Y flag does not need to be set. Other refinements based on geometric dimensions are also possible, provided that they apply acceptably well across the whole parameter space.
(b) In some embodiments, separate lists of materials may be maintained for which X and Y flags are set. In other words, there will be a first list of materials in 3D or X 2D layers, and a second list for materials that are in 3D or Y 2D layers. In some embodiments, the process may be performed independently on the two different lists, to determine material-based TO constraints that are independent for X and Y.
(c) In some embodiments, it may be desirable to keep track of which wavelengths the maximum ϵ's occur at, for a better or more conservative fit. It may be desirable to keep track of additional wavelength dependent maximum epsilons if a higher order wavelength dependent TO constraint is to be used. For instance, if the wavelength dependent TO were to be constrained to a quadratic function, the maximums at the longest and shortest wavelengths could be used, along with the largest maximum for the intervening wavelengths and what wavelength it occurs at.
(d) In some embodiments, other comparable processes may be utilized to ensure that TO settings are not impractically high or low. Azimuth angle is an example of a measurement system definition or setting that could be useful to take into account in determining harmonic order. In some embodiments, adjustments may also be made according to the speed and requirements of the RCWA solver used, if alternative formulations are used in suitable situations.
(e) In some embodiments, other processes may be utilized to provide the user with some control over the desired fidelity of the EM (electromagnetic) simulation. For instance, the choice of a logarithmic scheme is not required, and is implemented for conceptual and user interface compatibility with possible methods that would use EM simulation and noise considerations. In some embodiments, alternative schemes may be combined with (c) (elements 308-318 of
(f) The exact manner in which pitch is taken into account depends on the constraining methods selected for (d) (elements 320-324 of
(g) In some embodiments, forcing the TO to be at least 2 may or may not be necessary and desirable depending on what is done in (d), (e), and (f), and depending on how conservative of a TO setting is desired.
(h). The determination of whether the diffraction structure is 2D in the X or Y direction can be accomplished in a variety of equivalent ways. For example, if separate X and Y material lists are maintained in (b) (element 306 of
(i) The example of a constraint of the wavelength dependent TO to a line (such as the examples described for element 218 of
(j) In some embodiments, the process of applying heuristics and model based constraints may be reordered or adjusted to produce slightly different results, or to eliminate redundant steps depending on the software architecture.
In Some Embodiments:
An apparatus, system, or process provides for determination of Fourier harmonic order with automatic dependence on pitch.
An apparatus, system, or process provides for determination of Fourier harmonic order utilizes wavelength dependent material properties in conjunction with geometric characteristics that don't depend on nominal values.
An apparatus, system, or process provides for determination of Fourier harmonic order with a result that is constrained to a simple function of wavelength.
This application incorporates by reference in its entirety for all purposes, the U.S. patent application Ser. No. 13/712,734 filed Dec. 12, 2012, now U.S. Pat. No. 9,127,927, and titled “Techniques for Optimized Scatterometry.”
In general, orders of a diffraction signal may be simulated as being derived from a periodic structure. The zeroth order represents a diffracted signal at an angle equal to the angle of incidence of a hypothetical incident beam, with respect to the normal N of the periodic structure. Higher diffraction orders are designated as +1, +2, +3, −1, −2, −3, etc. Other orders known as evanescent orders may also be considered. In accordance with an embodiment, a simulated diffraction signal is generated for use in optical metrology. For example, profile parameters, such as structural shape and film thicknesses, may be modeled for use in optical metrology. Optical properties of materials, such as index of refraction and coefficient of extinction, (n & k), in structures may also be modeled for use in optical metrology.
Calculations based on simulated diffraction orders may be indicative of profile parameters for a patterned film, such as a patterned semiconductor film or structure based on a stack of films, and may be used for calibrating automated processes or equipment control.
Referring to operation 602 of flowchart 600, a library or trained machine learning systems (MLS) is developed to extract parameters from a set of measured diffraction signals. In operation 604, at least one parameter of a structure is determined using the library or the trained MLS. In operation 606, the at least one parameter is transmitted to a fabrication cluster configured to perform a processing operation, where the processing operation may be executed in the semiconductor manufacturing process flow either before or after measurement operation 604 is made. In operation 608, the at least one transmitted parameter is used to modify a process variable or equipment setting for the processing operation performed by the fabrication cluster.
For a more detailed description of machine learning systems and algorithms, see U.S. Pat. No. 7,831,528, entitled OPTICAL METROLOGY OF STRUCTURES FORMED ON SEMICONDUCTOR WAFERS USING MACHINE LEARNING SYSTEMS, filed on Jun. 27, 2003, which is incorporated herein by reference in its entirety. For a description of diffraction order optimization for two-dimensional repeating structures, see U.S. Pat. No. 7,428,060, entitled OPTIMIZATION OF DIFFRACTION ORDER SELECTION FOR TWO-DIMENSIONAL STRUCTURES, filed on Mar. 24, 2006, which is incorporated herein by reference in its entirety.
In one exemplary embodiment, optical metrology system 704 includes an optical metrology tool 708 and processor 710. Optical metrology tool 708 is configured to measure a diffraction signal obtained from the structure. If the measured diffraction signal and the simulated diffraction signal match, one or more values of the profile or film thickness parameters are determined to be the one or more values of the profile or film thickness parameters associated with the simulated diffraction signal.
In one exemplary embodiment, optical metrology system 704 can also include a library 712 with a plurality of simulated diffraction signals and a plurality of values of, e.g., one or more profile or film thickness parameters associated with the plurality of simulated diffraction signals. As described above, the library can be generated in advance. Processor 710 can be used to compare a measured diffraction signal obtained from a structure to the plurality of simulated diffraction signals in the library. When a matching simulated diffraction signal is found, the one or more values of the profile or film thickness parameters associated with the matching simulated diffraction signal in the library is assumed to be the one or more values of the profile or film thickness parameters used in the wafer application to fabricate the structure. In some embodiments, the processor 710 provides some or all of the processing for automatic determination of Fourier harmonic order for computation of spectral information for diffraction structures.
System 700 also includes a metrology processor 716. In one exemplary embodiment, processor 710 can transmit the one or more values of the, e.g., one or more profile or film thickness parameters to metrology processor 716. Metrology processor 716 can then adjust one or more process parameters or equipment settings of first fabrication cluster 702 based on the one or more values of the one or more profile or film thickness parameters determined using optical metrology system 704. Metrology processor 716 can also adjust one or more process parameters or equipment settings of the second fabrication cluster 706 based on the one or more values of the one or more profile or film thickness parameters determined using optical metrology system 704. As noted above, fabrication cluster 706 can process the wafer before or after fabrication cluster 702. In another exemplary embodiment, processor 710 is configured to train machine-learning system 714 using the set of measured diffraction signals as inputs to machine learning system 714 and profile or film thickness parameters as the expected outputs of machine learning system 714.
In an embodiment, optimizing a model of a structure includes using a three-dimensional grating structure. The term “three-dimensional grating structure” is used herein to refer to a structure having an x-y profile that varies in two horizontal dimensions in addition to a depth in the z-direction. For example,
In an embodiment, optimizing a model of a structure includes using a two-dimensional grating structure. The term “two-dimensional grating structure” is used herein to refer to a structure having an x-y profile that varies in only one horizontal dimension in addition to a depth in the z-direction. For example,
Embodiments may be suitable for a variety of film stacks. For example, in an embodiment, a method for optimizing a parameter of a critical dimension (CD) profile or structure is performed for a film stack including an insulating film, a semiconductor film and a metal film formed on a substrate. In an embodiment, the film stack includes a single layer or multiple layers. Also, in an embodiment, an analyzed or measured grating structure includes both a three-dimensional component and a two-dimensional component. For example, the efficiency of a computation based on simulated diffraction data may be optimized by taking advantage of the simpler contribution by the two-dimensional component to the overall structure and the diffraction data thereof.
In some embodiments, an apparatus, system, or method provides automatic determination of Fourier harmonic order for computation of spectral information for diffraction structures. In some embodiments, the measurement may include diffraction signals from a two- or three-dimensional grating structure generated by an ellipsometric optical metrology system, such as the optical metrology systems 1000 or 1150 described below in association with
In one exemplary embodiment, the library 1018 instance best matching the measured diffraction beam data 1014 is selected. It is to be understood that although a library of diffraction spectra or signals and associated hypothetical profiles or other parameters is frequently used to illustrate concepts and principles, embodiments may apply equally to a data space including simulated diffraction signals and associated sets of profile parameters, such as in regression, neural network, and similar methods used for profile extraction. The hypothetical profile and associated critical dimensions of the selected library 1018 instance is assumed to correspond to the actual cross-sectional profile and critical dimensions of the features of the target structure 1006. The optical metrology system 1000 may utilize a reflectometer, an ellipsometer, or other optical metrology device to measure the diffraction beam or signal.
In order to facilitate the description of embodiments, an ellipsometric optical metrology system is used to illustrate the above concepts and principles. It is to be understood that the same concepts and principles apply equally to the other optical metrology systems, such as reflectometric systems. In an embodiment, the optical scatterometry is a technique such as, but not limited to, optical spectroscopic ellipsometry (SE), beam-profile reflectometry (BPR), beam-profile ellipsometry (BPE), and ultra-violet reflectometry (UVR). In a similar manner, a semiconductor wafer may be utilized to illustrate an application of the concept. Again, the methods and processes apply equally to other work pieces that have repeating structures.
After reflection from the target the reflected beam 1160 passes back through the objective lens and is directed to one or more detectors. If optional quarter-wave plate 1156 is present, the beam will pass back through that quarter-wave plate before being transmitted through the beam splitter 1155. After the beam-splitter, the reflected beam 1160 may optionally pass through a quarter-wave plate at location 1159 as an alternative to location 1156. If the quarter-wave plate is present at location 1156, it will modify both the incident and reflected beams. If it is present at location 1159, it will modify only the reflected beam. In some embodiments, no wave plate may be present at either location, or the wave plate may be switched in and out depending on the measurement to be made. It is to be understood that in some embodiments it might be desirable that the wave plate have a retardance substantially different from a quarter wave, i.e. the retardance value might be substantially greater than, or substantially less than, 90°.
A polarizer or polarizing beam splitter 1162 directs one polarization state of the reflected beam 1160 to detector 1164, and, optionally, directs a different polarization state to an optional second detector 1166. The detectors 1164 and 1166 might be one-dimensional (line) or two-dimensional (array) detectors. Each element of a detector corresponds to a different combination of AOI and azimuthal angles for the corresponding ray reflected from the target. The diffraction beam data 1114 from the detector(s) is transmitted to the profile application server 1116 along with beam intensity data 1170. The profile application server 1116 may compare the measured diffraction beam data 1114 after normalization or correction by the beam intensity data 1170 against a library 1118 of simulated diffraction beam data representing varying combinations of critical dimensions of the target structure and resolution.
For more detailed descriptions of systems that could be used to measure the diffraction beam data or signals for use with embodiments, see U.S. Pat. No. 6,734,967, entitled FOCUSED BEAM SPECTROSCOPIC ELLIPSOMETRY METHOD AND SYSTEM, filed on Feb. 11, 1999, and U.S. Pat. No. 6,278,519 entitled APPARATUS FOR ANALYZING MULTI-LAYER THIN FILM STACKS ON SEMICONDUCTORS, filed Jan. 29, 1998, both of which are incorporated herein by reference in their entirety. These two patents describe metrology systems that may be configured with multiple measurement subsystems, including one or more of a spectroscopic ellipsometer, a single-wavelength ellipsometer, a broadband reflectometer, a DUV reflectometer, a beam-profile reflectometer, and a beam-profile ellipsometer. These measurement subsystems may be used individually, or in combination, to measure the reflected or diffracted beam from films and patterned structures. The signals collected in these measurements may be analyzed to determine parameters of structures on a semiconductor wafer in accordance with embodiments.
Embodiments may be provided as a computer program product, or software, that may include a machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according an embodiment. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.), a machine (e.g., computer) readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., infrared signals, digital signals, etc.)), etc.
The exemplary computer system 1200 includes a processor 1202, a main memory 1204 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 1206 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary memory 1218 (e.g., a data storage device), which communicate with each other via a bus 1230. In some embodiments, one or more of the memories are used for storage of data for automatic determination of Fourier harmonic order for computation of spectral information for diffraction structures.
Processor 1202 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor 1202 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 1202 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. Processor 1202 is configured to execute the processing logic 1226 for performing the operations discussed herein. In some embodiments, processor 1202 provides some or all of the processing for automatic determination of Fourier harmonic order for computation of spectral information for diffraction structures.
The computer system 1200 may further include a network interface device 1208. The computer system 1200 also may include a video display unit 1210 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 1212 (e.g., a keyboard), a cursor control device 1214 (e.g., a mouse), and a signal generation device 1216 (e.g., a speaker).
The secondary memory 1218 may include a machine-accessible storage medium (or more specifically a computer-readable storage medium) 1231 on which is stored one or more sets of instructions (e.g., software 1222) embodying any one or more of the methodologies or functions described herein. The software 1222 may also reside, completely or at least partially, within the main memory 1204 and/or within the processor 1202 during execution thereof by the computer system 1200, the main memory 1204 and the processor 1202 also constituting machine-readable storage media. The software 1222 may further be transmitted or received over a network 1220 via the network interface device 1208.
While the machine-accessible storage medium 1231 is shown in an exemplary embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
In some embodiments, a machine-accessible storage medium includes instructions stored thereon that cause a data processing system to perform automatic determination of Fourier harmonic order for computation of spectral information for diffraction structures.
It is to be understood that the above methodologies may be applied under a variety of circumstances within the spirit and scope of embodiments. For example, in an embodiment, measurements described above are performed with or without the presence of background light. In an embodiment, a method described above is performed in a semiconductor, solar, light-emitting diode (LED), or a related fabrication process. In an embodiment, a method described above is used in a stand-alone or an integrated metrology tool.
Analysis of measured spectra generally involves comparing the measured sample spectra to simulated spectra to deduce parameter values of a model that best describe the measured sample.
At operation 1302, a set of material files are defined by a user to specify characteristics (e.g., refractive index or n, k values) of the material(s) from which the measured sample feature is formed.
At operation 1304, a scatterometry user defines a nominal model of the expected sample structure by selecting one or more of the material files to assemble a stack of materials corresponding to those present in the periodic grating features to be measured. Such a user-defined model may be further parameterized through definition of nominal values of model parameters, such as thicknesses, critical dimension (CD), sidewall angle (SWA), height (HT), edge roughness, corner rounding radius, etc. which characterize the shape of the feature being measured. Depending on whether a two-dimensional model (i.e., a profile) or three-dimensional model is defined, it is not uncommon to have 30-50, or more, such model parameters.
From a parameterized model, simulated spectra for a given set of grating parameter values may be computed using rigorous diffraction modeling algorithms, such as Rigorous Coupled Wave Analysis (RCWA). Regression analysis is then performed at operation 1306 until the parameterized model converges on a set of parameter values characterizing a final profile model (for two-dimensional) that corresponds to a simulated spectrum which matches the measured diffraction spectra to a predefined matching criterion. The final profile model associated with the matching simulated diffraction signal is presumed to represent the actual profile of the structure from which the model was generated.
The matching simulated spectra and/or associated optimized profile model can then be utilized at operation 1308 to build a library of simulated diffraction spectra by perturbing the values of the parameterized final profile model. The resulting library of simulated diffraction spectra may then be employed by a scatterometry measurement system operating in a production environment to determine whether subsequently measured grating structures have been fabricated according to specifications. Library generation 1308 may include a machine learning system, such as a neural network, generating simulated spectral information for each of a number of profiles, each profile including a set of one or more modeled profile parameters. In order to generate the library, the machine learning system itself may have to undergo some training based on a training dataset of spectral information. Such training may be computationally intensive and/or may have to be repeated for different models and/or profile parameter domains. Considerable inefficiency in the computational load of generating a library may be introduced by a user's decisions regarding the size of a training dataset. For example, selection of an overly large training dataset may result in unnecessary computations for training while training with a training dataset of insufficient size may necessitate a retraining to generate a library.
For some applications it may be unnecessary to build a library. After the parametric model of the structure has been created and optimized, a regression analysis similar to that described above may be used in real time to determine the best fitting parameter values for each target as the diffraction beam data are collected. If the structure is relatively simple (for example a 2D structure), or if only a small number of parameters need to be measured, regression may be fast enough even though it may be slower than using a library. In other cases, the extra flexibility of using regression may justify some increase in measurement time over using a library. For a more detailed description of methods and systems that are capable of real-time regression of OCD data for use with an embodiment, see U.S. Pat. No. 7,031,848, entitled REAL TIME ANALYSIS OF PERIODIC STRUCTURES ON SEMICONDUCTORS, filed on Jul. 8, 2005, which is incorporated herein by reference in its entirety.
Various embodiments may include various processes. These processes may be performed by hardware components or may be embodied in computer program or machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor or logic circuits programmed with the instructions to perform the processes. Alternatively, the processes may be performed by a combination of hardware and software.
Portions of various embodiments may be provided as a computer program product, which may include a computer-readable medium having stored thereon computer program instructions, which may be used to program a computer (or other electronic devices) for execution by one or more processors to perform a process according to certain embodiments. The computer-readable medium may include, but is not limited to, magnetic disks, optical disks, compact disk read-only memory (CD-ROM), and magneto-optical disks, read-only memory (ROM), random access memory (RAM), erasable programmable read-only memory (EPROM), electrically-erasable programmable read-only memory (EEPROM), magnet or optical cards, flash memory, or other type of computer-readable medium suitable for storing electronic instructions. Moreover, embodiments may also be downloaded as a computer program product, wherein the program may be transferred from a remote computer to a requesting computer.
Many of the methods are described in their most basic form, but processes can be added to or deleted from any of the methods and information can be added or subtracted from any of the described messages without departing from the basic scope of the present embodiments. It will be apparent to those skilled in the art that many further modifications and adaptations can be made. The particular embodiments are not provided to limit the concept but to illustrate it. The scope of the embodiments is not to be determined by the specific examples provided above but only by the claims below.
If it is said that an element “A” is coupled to or with element “B,” element A may be directly coupled to element B or be indirectly coupled through, for example, element C. When the specification or claims state that a component, feature, structure, process, or characteristic A “causes” a component, feature, structure, process, or characteristic B, it means that “A” is at least a partial cause of “B” but that there may also be at least one other component, feature, structure, process, or characteristic that assists in causing “B.” If the specification indicates that a component, feature, structure, process, or characteristic “may”, “might”, or “could” be included, that particular component, feature, structure, process, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, this does not mean there is only one of the described elements.
An embodiment is an implementation or example. Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments. The various appearances of “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments. It should be appreciated that in the foregoing description of exemplary embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various novel aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed embodiments requires more features than are expressly recited in each claim. Rather, as the following claims reflect, novel aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims are hereby expressly incorporated into this description, with each claim standing on its own as a separate embodiment.
This application claims the benefit of U.S. Provisional Application No. 61/831,085, filed Jun. 4, 2013, the entire contents of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6278519 | Rosencwaig et al. | Aug 2001 | B1 |
6608690 | Niu | Aug 2003 | B2 |
6734967 | Piwonka-Corle et al. | May 2004 | B1 |
6839145 | Niu | Jan 2005 | B2 |
6943900 | Niu | Sep 2005 | B2 |
7031848 | Opsal et al. | Apr 2006 | B2 |
7277189 | Niu | Oct 2007 | B2 |
7428060 | Jin et al. | Sep 2008 | B2 |
7593119 | Niu | Sep 2009 | B2 |
7831528 | Doddi et al. | Nov 2010 | B2 |
8170838 | Rabello | May 2012 | B2 |
8645109 | Dirks | Feb 2014 | B2 |
20020035455 | Niu | Mar 2002 | A1 |
20030103218 | Niu | Jun 2003 | A1 |
20030200063 | Niu | Oct 2003 | A1 |
20030204325 | Niu | Oct 2003 | A1 |
20050256687 | Niu | Nov 2005 | A1 |
20060066855 | Boef et al. | Mar 2006 | A1 |
20060193532 | Roberts et al. | Aug 2006 | A1 |
20070233404 | Lally et al. | Oct 2007 | A1 |
20080049224 | Otsuki | Feb 2008 | A1 |
20080249754 | Niu | Oct 2008 | A1 |
20100157315 | Bischoff | Jun 2010 | A1 |
20100165340 | Xu et al. | Jul 2010 | A1 |
20100274521 | Rabello | Oct 2010 | A1 |
20110137625 | Dirks | Jun 2011 | A1 |
20130158948 | Iloreta et al. | Jun 2013 | A1 |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority dated Oct. 14, 2014, in International Patent Application No. PCT/US2014/040644, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20140358476 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61831085 | Jun 2013 | US |