A number of different techniques exist for providing electrical connection between a semiconductor chip or package and a circuit board or other substrate. The current trend in many of these techniques is the use of solder bumps to form electrical connections instead of wire bonding. For example, bumps are used in such techniques as tape carrier package (TCP), chip on film (COF), and chip on glass (COG). Often techniques such as TCP and COF are more broadly referred to as tape automated bonding (TAB).
While bumps provide an advantage over wire bonding by allowing for a reduction in the spacing between the solder bumps as compared to the spacing between wire bonds, even bump techniques face potential limitations on the spacing between the bumps. For example, in the COG technique, a semiconductor chip (e.g., a liquid crystal display (LCD) driver integrated circuit (IC) package) may be bonded directly to the LCD substrate. In this technique, ACF (anisotropic conductive film) tape is disposed between pads of the LCD substrate and the associated bumps on the driver IC package to form the electrical connection. ACF tape contains electrically conductive particles that are embedded in an insulating material. The conductive particles provide electrical connection between the solder bumps and the pads on the LCD substrate. As the gap between bumps, however, becomes smaller, the particles in the ACF tape may provide electrical connection between bumps; thus, causing a short circuit.
The present invention provides a bump structure that removes barriers on the spacing between solder bumps of semiconductor chips or packages. As such, the present invention allows for smaller and thinner semiconductor devices.
In one exemplary embodiment, a plurality of bump structures are arrayed along a substrate in a first direction. Each bump structure has a width in the first direction greater than a pitch gap between successively arrayed bump structures. The pitch gap may be thought of as a gap measured at the substrate along the first direction between planes of facing sidewalls of the successively arrayed bump structures. At least one bump structure has a sidewall facing in the first direction that is non-conductive. Because the sidewall is non-conductive, conductive particles disposed between this bump and the bump adjacent to the non-conductive sidewall should not form a short circuit between the two bumps.
In one exemplary embodiment, each bump structure has at least one non-conductive sidewall facing in the first direction.
In another exemplary embodiment, each bump structure has two oppositely facing non-conductive sidewalls facing in the first direction.
In a further exemplary embodiment, each bump structure has one non-conductive sidewall facing in the first direction and one conductive sidewall facing in the first direction such that the conductive sidewall does not face the conductive sidewall of another bump structure.
In a still further exemplary embodiment, the array of bump structures alternate from a first type to a second type. The bump structure of the first type has two oppositely facing non-conductive sidewalls that face in the first direction, and the bump structure of the second type has two oppositely facing conductive sidewalls that face in the first direction.
In association with any of the above described embodiments, the successively arrayed bump structures may be disposed offset from one another in a second direction along the substrate.
An exemplary embodiment of the present invention also includes a plurality of bumps arrayed along a substrate in a first direction and a plurality of conductive lines formed in a second direction. Each conductive line is associated with one of the bumps, and each conductive line is disposed over a top surface of the associated bump and over two oppositely facing sidewalls of the bump; the two oppositely facing sidewalls facing in the second direction. Each conductive line extends over the substrate from each of the two oppositely facing sidewalls. Because of this, the conductive line assists in maintaining the associated bump adhered to the substrate.
Other exemplary embodiments of the present invention provide for methods of forming the above described embodiments.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus are not limiting of the present invention and wherein:
The present invention provides a bump structure that removes barriers on the spacing between solder bumps of semiconductor chips or packages. As such, the present invention allows for smaller and thinner semiconductor devices. First, several structural embodiments according to the present invention will be described followed by a description of a method for forming a bump structure according to the present invention.
In one example embodiment, each bump 102 has a height H of 2 to 30 um, a width Wb of 10 to 50 um and a length of 20 to 200 um.
Each bump structure 100 also includes a conductive layer 108 disposed over a top surface of an associated bump 102 and each sidewall 106 facing in the second direction. The conductive layer 108 on the bump 102 forms part of a conductive line 110 that extends a shorter distance over the substrate 200 from one sidewall 104, and extends a longer distance over the substrate 200 from the other sidewall 104. As shown, the conductive line 110 extends in the second direction. The longer extension of the conductive line 110 leads to an associated chip pad 204 where the conductive layer 110 is electrically connected to the associated pad 204. As will be appreciated the pad 204 provides electrical connection between the conductive line 110 and circuitry (not shown) formed on the substrate 200.
Because the pitch gap PG is less than the width WBb of the bump structure 100, a short circuit when using, for example, an ACF tape might be expected. However, because the sidewalls 104 of the bump structures 100 facing in the first direction are non-conductive, such short circuits are prevented. Consequently, the present invention provides a bump structure that removes barriers on the spacing between solder bumps of semiconductor chips or packages. As such, the present invention allows for smaller and thinner semiconductor devices.
Because one of the sidewalls 104 of the bump structures 100 facing in the first direction are non-conductive, short circuits are prevented. Consequently, the present invention provides a bump structure that removes barriers on the spacing between solder bumps of semiconductor chips or packages. As such, the present invention allows for smaller and thinner semiconductor devices.
As will be appreciated, offsetting the bump structures 100 as shown in
While the embodiment of
Furthermore, while two groups of aligned bump structures have been illustrated, it will be appreciated that more than two groups of bump structures, each offset from the other, may be formed.
Next, a method of fabricating a semiconductor device having a bump structure according to the present invention will be described. For the purposes of example only, the method will be described with respect to the fabrication of the bump structure 100 illustrated in
As shown in
Next, a dielectric layer such as polyimide, BCB (Benzo Cyclo Butane), PBO (polybenzo oxazole), photosensitive resin, etc. is formed over the substrates; for example, by spin coating. The dielectric layer may be formed to a thickness of 2-30 um. Then, the dielectric layer is patterned using a mask to form non-conductive bumps 102 as shown in
As shown in
Next, as shown in
The second metal layer 160 may be formed to a thickness of 1-10 um. In one example embodiment, the combined thickness of the first and second metal layers 140 and 160 is less than 10 um. The second metal layer 160 may be formed of Au, Ni, Cu, Pd, Ag, etc., or multiple layers of these metals by electro plating, for example.
Afterwards, the photoresist pattern 150 is removed as shown in
The bump structures and method of fabrication described above may be applied to any technique in which bumps are used such as tape carrier package (TCP), chip on film (COF), and chip on glass (COG). Also, the bump structures and method of fabrication described above may be applied to the manufacture of any semiconductor chip or package (e.g., a liquid crystal display (LCD) driver integrated circuit (IC) package).
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2004-0025853 | Apr 2004 | KR | national |
This application is a divisional of application Ser. No. 11/091,869, filed Mar. 29, 2005, now abandoned which claims priority on Korean Patent Application No. 2004-0025853, filed on Apr. 14, 2004 in the Korean Intellectual Property Office, which are both incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5047644 | Meissner et al. | Sep 1991 | A |
5264326 | Meissner et al. | Nov 1993 | A |
5508228 | Nolan et al. | Apr 1996 | A |
5604977 | Robinson et al. | Feb 1997 | A |
5783465 | Canning et al. | Jul 1998 | A |
6284563 | Fjelstad | Sep 2001 | B1 |
6486000 | Kang | Nov 2002 | B2 |
6537854 | Chang et al. | Mar 2003 | B1 |
6664176 | Helder et al. | Dec 2003 | B2 |
7154176 | Huang et al. | Dec 2006 | B2 |
20020048924 | Lay et al. | Apr 2002 | A1 |
20020115236 | Fjelstad et al. | Aug 2002 | A1 |
20020130412 | Nagai et al. | Sep 2002 | A1 |
20040175657 | Danovitch et al. | Sep 2004 | A1 |
20040238941 | Satoh et al. | Dec 2004 | A1 |
20050191836 | Tzeng et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
1111402 | Nov 1995 | CN |
1344017 | Apr 2002 | CN |
1601737 | Mar 2005 | CN |
62-205648 | Sep 1987 | JP |
2-272737 | Nov 1990 | JP |
2002-118138 | Apr 2002 | JP |
2003-338518 | Nov 2003 | JP |
2003-0089288 | Nov 2003 | KR |
Number | Date | Country | |
---|---|---|---|
20090305494 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11091869 | Mar 2005 | US |
Child | 12461459 | US |