Chalcogenide layer etching method

Information

  • Patent Grant
  • 8062833
  • Patent Number
    8,062,833
  • Date Filed
    Thursday, February 23, 2006
    18 years ago
  • Date Issued
    Tuesday, November 22, 2011
    12 years ago
Abstract
A protective layer is deposited on a chalcogenide layer and a patterned photoresist layer is formed on the protective layer. The patterned photoresist layer and the protective layer are etched to form openings therethrough to the chalcogenide layer to create etched photoresist and etched protective layers. The etched photoresist layer is removed leaving at least a portion of the etched protective layer. The chalcogenide layer is etched through the openings in the etched protective layer.
Description
PARTIES TO A JOINT RESEARCH AGREEMENT

International Business Machines Corporation, a New York corporation; Macronix International Corporation, Ltd., a Taiwan corporation, and Infineon Technologies A.G., a German corporation, are parties to a Joint Research Agreement.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to high density memory devices based on phase change based memory materials, including chalcogenide based materials, and to methods for manufacturing such devices.


2. Description of Related Art


Phase change based memory materials are widely used in read-write optical disks. These materials have at least two solid phases, including for example a generally amorphous solid phase and a generally crystalline solid phase. Laser pulses are used in read-write optical disks to switch between phases and to read the optical properties of the material after the phase change.


Phase change based memory materials, like chalcogenide based materials and similar materials, also can be caused to change phase by application of electrical current at levels suitable for implementation in integrated circuits. The generally amorphous state is characterized by higher resistivity than the generally crystalline state, which can be readily sensed to indicate data. These properties have generated interest in using programmable resistive material to form nonvolatile memory circuits, which can be read and written with random access.


The change from the amorphous to the crystalline state is generally a lower current operation. The change from crystalline to amorphous, and referred to as reset herein, is generally a higher current operation, which includes a short high current density pulse to melt or breakdown the crystalline structure, after which the phase change material cools quickly, quenching the phase change process, allowing at least a portion of the phase change structure to stabilize in the amorphous state. It is desirable to minimize the magnitude of the reset current used to cause transition of phase change material from crystalline state to amorphous state. The magnitude of the reset current needed for reset can be reduced by reducing the size of the phase change material element in the cell and of the contact area between electrodes and the phase change material, so that higher current densities are achieved with small absolute current values through the phase change material element.


One direction of development has been toward forming small pores in an integrated circuit structure, and using small quantities of programmable resistive material to fill the small pores. Patents illustrating development toward small pores include: Ovshinsky, “Multibit Single Cell Memory Element Having Tapered Contact,” U.S. Pat. No. 5,687,112, issued Nov. 11, 1997; Zahorik et al., “Method of Making Chalogenide [sic] Memory Device,” U.S. Pat. No. 5,789,277, issued Aug. 4, 1998; Doan et al., “Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same,” U.S. Pat. No. 6,150,253, issued Nov. 21, 2000.


SUMMARY OF THE INVENTION

The present invention is directed to a method for etching a chalcogenide layer of a semiconductor device. A protective layer is deposited on a chalcogenide layer during the manufacture of a semiconductor device. A patterned photoresist layer is formed on the protective layer. The patterned photoresist layer and the protective layer are etched to form openings therethrough to the chalcogenide layer to create etched photoresist and etched protective layers. The etched photoresist layer is removed leaving at least a portion of the etched protective layer. The chalcogenide layer is etched through the openings in the etched protective layer. In some embodiments the patterned photoresist layer and protective layer etching step is carried out using a gas mixture comprising C4F8, CO and O2. The chalcogenide layer etching step may be carried out using Cl2. The forming step may comprise depositing a photoresist layer on the protective layer and lithographically patterning the photoresist layer to create the patterned photoresist layer.


Various features and advantages of the invention will appear from the following description in which the preferred embodiments have been set forth in detail in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-5 illustrate the steps involved in the etching of a chalcogenide layer using conventional manufacturing techniques during the manufacture of a semiconductor device, such as a phase change memory device.



FIG. 1 illustrates a chalcogenide layer on a substrate.



FIG. 2 illustrates a photoresist layer deposited on the chalcogenide layer and lithographically patterning the photoresist layer.



FIG. 3 illustrates etching the patterned photoresist layer.



FIG. 4 illustrates the results of etching the photoresist layer with a fluorine based gas creating hardened, difficult to remove photoresist elements following the etching step.



FIG. 5 illustrates the results of etching the photoresist layer with a chlorine based gas creating undercut photoresist elements having downwardly and outwardly sloping walls instead of walls extending straight down to the chalcogenide layer.



FIGS. 6-11 illustrate a method for etching a chalcogenide layer of a semiconductor device according to the present invention.



FIG. 6 shows the structure of FIG. 1 with a protective layer deposited on the chalcogenide layer.



FIG. 7 illustrates a photoresist layer deposited on the protective layer and lithographically patterning the photoresist layer.



FIG. 8 illustrates etching the patterned photoresist layer and the underlying protective layer of FIG. 7.



FIG. 9 shows the results of removing the photoresist layer of FIG. 8.



FIG. 10 illustrates the result of a second etching step in which the chalcogenide layer is etched through the openings formed in the protective layer while obtaining a good profile with straight inside walls for the chalcogenide elements.





DETAILED DESCRIPTION

The following description of the invention will typically be with reference to specific structural embodiments and methods. It is to be understood that there is no intention to limit the invention to the specifically disclosed embodiments and methods but that the invention may be practiced using other features, elements, methods and embodiments. Like elements in various embodiments are commonly referred to with like reference numerals.



FIGS. 1-5 illustrate the steps involved in the etching of a chalcogenide layer using conventional manufacturing techniques during the manufacture of a semiconductor device, such as a phase change memory device. FIG. 1 illustrates a chalcogenide layer 10 on a substrate 12. As shown in FIG. 2, a photoresist layer 14 deposited on chalcogenide layer 10. Photoresist layer 14 is lithographically patterned as indicated at 16 to create a patterned photoresist layer 18. Patterned photoresist layer 18 is then etched as indicated at 20 in FIG. 3 to create an etched photoresist layer 22 having openings 24 formed therein.


Photomicrographs of conventional patterned photoresist layers 18 of FIG. 3 illustrate some of the problems associated with conventional techniques. FIG. 4 is a simplified view illustrating the results of etching patterned photoresist layer 18 with a fluorine based gas, such as CF4, creating hardened, difficult to remove photoresist elements 26 following etching 20. That is, after etching chalcogenide layer 10, hardened photoresist elements 26 often prove difficult to remove. This is because some physical properties of the hardened photoresist elements 26 change by chemical reaction during etching 20, so that the hardened photoresist elements may react with chalcogenide layer 10 during removal of the hardened photoresist elements thus making it difficult to remove the hardened photoresist elements by dry stripping or wet stripping methods.



FIG. 5 illustrates the results of etching chalcogenide layer 10 with a chlorine based gas, such as Cl2. During so creates undercut chalcogenide elements 28 having downwardly and inwardly sloping walls 30 instead of walls extending straight down to substrate 12. Downwardly and inwardly sloping walls 30 are not desirable because it is not easy to control the size of chalcogenide elements 28, and the size of the chalcogenide elements will dramatically affect the electrical properties of the resulting phase change memory device. Etched photoresist layer 22 has been removed in FIG. 5.


The present invention is described below with reference to FIGS. 6-10. The invention is directed to a method for etching a chalcogenide layer of a semiconductor device which eliminates some of the problems of conventional methods, in particular the creation of hardened photoresist elements 26 as shown in FIG. 4 and undercut chalcogenide elements 28 as shown in FIG. 5.


The method according to the present invention typically begins with the substrate layer 12 and chalcogenide layer 10 of FIG. 1. Substrate 12 is typically TiN or some other material such as W, Al, Cu or other conductive material, suitable for use as an electrode. Chalcogenide layer 10 is typically about 10 to 100 nm thick. However, instead of applying the photoresist layer directly on chalcogenide layer 10, a protective layer 32, see FIG. 6, is deposited on chalcogenide layer 10. Protective layer 32 is typically an oxide layer or a nitride layer deposited using, for example, PVD or CVD deposition procedures, and is typically about 20 to 300 nm thick. Thereafter, as shown in FIG. 7, a photoresist layer 34 is deposited on protective layer or nitride layer 32 followed by lithographically patterning 36 photoresist layer 34 to create a patterned photoresist layer 38. Photoresist layer 34 is typically made of organic or inorganic materials and is typically about 1000 to 4000 nm thick. FIG. 8 illustrates the results of etching 40 patterned photoresist layer 38 and the underlying protective layer 32 of FIG. 7, typically using C4F8+CO+O2. The etching gas is chosen so that it will etch the photoresist and protective layers but stop at the chalcogenide layer. This etching step creates an etched photoresist layer 42 overlying an etched protective layer 44 having openings 46 formed in layers 42, 44. Thereafter, as shown in FIG. 9, etched photoresist layer 42 is removed leaving etched protective layer 44 with openings 46 formed in layer 44. thereafter the protective layer 44 becomes a kind of a hard mask. The present invention avoids the potential the chemical reaction which could be created among the chalcogenide layer 10, a conventional photoresist layer and conventional etch gases as can occur with conventional techniques as discussed above with reference to FIGS. 1-5.



FIG. 10 illustrates the result of a second etching step 48 which reduces the height of etched protective layer 44 to create a reduced height etched protective layer 50 and also etches chalcogenide layer 10 through openings 46 in etched protective layer 50 to create etched chalcogenide elements 52. Second etching step 48 may be accomplished using, for example, CF4. Using this procedure, including the use of protective layer 32 between chalcogenide layer 10 and photoresist layer 34, creates chalcogenide elements 52 having a good profile with generally straight inside walls 54. Thereafter, reduced height protective layer 50 may be removed without the problems associated with removing conventional hardened photoresist elements 26.


Chalcogens include any of the four elements oxygen (O), sulfur (S), selenium (Se), and tellurium (Te), forming part of group VI of the periodic table. Chalcogenides comprise compounds of a chalcogen with a more electropositive element or radical. Chalcogenide alloys comprise combinations of chalcogenides with other materials such as transition metals. A chalcogenide alloy usually contains one or more elements from column six of the periodic table of elements, such as germanium (Ge) and tin (Sn). Often, chalcogenide alloys include combinations including one or more of antimony (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change based memory materials have been described in technical literature, including alloys of: Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te and Te/Ge/Sb/S. In the family of Ge/Sb/Te alloys, a wide range of alloy compositions may be workable. The compositions can be characterized as TeaGebSb100−(a+b).


One researcher has described the most useful alloys as having an average concentration of Te in the deposited materials well below 70%, typically below about 60% and ranged in general from as low as about 23% up to about 58% Te and most preferably about 48% to 58% Te. Concentrations of Ge were above about 5% and ranged from a low of about 8% to about 30% average in the material, remaining generally below 50%. Most preferably, concentrations of Ge ranged from about 8% to about 40%. The remainder of the principal constituent elements in this composition was Sb. These percentages are atomic percentages that total 100% of the atoms of the constituent elements. (Ovshinsky '112 patent, cols 10-11.) Particular alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7. (Noboru Yamada, “Potential of Ge—Sb—Te Phase-Change Optical Disks for High-Data-Rate Recording”, SPIE v.3109, pp. 28-37 (1997).) More generally, a transition metal such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt) and mixtures or alloys thereof may be combined with Ge/Sb/Te to form a phase change alloy that has programmable resistive properties. Specific examples of memory materials that may be useful are given in Ovshinsky '112 at columns 11-13, which examples are hereby incorporated by reference.


Phase change alloys are capable of being switched between a first structural state in which the material is in a generally amorphous solid phase, and a second structural state in which the material is in a generally crystalline solid phase in its local order in the active channel region of the cell. These alloys are at least bistable. The term amorphous is used to refer to a relatively less ordered structure, more disordered than a single crystal, which has the detectable characteristics such as higher electrical resistivity than the crystalline phase. The term crystalline is used to refer to a relatively more ordered structure, more ordered than in an amorphous structure, which has detectable characteristics such as lower electrical resistivity than the amorphous phase. Typically, phase change materials may be electrically switched between different detectable states of local order across the spectrum between completely amorphous and completely crystalline states. Other material characteristics affected by the change between amorphous and crystalline phases include atomic order, free electron density and activation energy. The material may be switched either into different solid phases or into mixtures of two or more solid phases, providing a gray scale between completely amorphous and completely crystalline states. The electrical properties in the material may vary accordingly.


Phase change alloys can be changed from one phase state to another by application of electrical pulses. It has been observed that a shorter, higher amplitude pulse tends to change the phase change material to a generally amorphous state. A longer, lower amplitude pulse tends to change the phase change material to a generally crystalline state. The energy in a shorter, higher amplitude pulse is high enough to allow for bonds of the crystalline structure to be broken and short enough to prevent the atoms from realigning into a crystalline state. Appropriate profiles for pulses can be determined, without undue experimentation, specifically adapted to a particular phase change alloy. A chalcogenide material useful for implementation of the method described herein is Ge2Sb2Te5 commonly referred to as GST.


The invention has been described with reference to phase change materials. However, other memory materials, also sometimes referred to as programmable materials, can also be used. As used in this application, memory materials are those materials having electrical properties, such as resistance, that can be changed by the application of energy; the change can be a stepwise change or a continuous change or a combination thereof. Other programmable resistive memory materials may be used in other embodiments of the invention, including N2 doped GST, GexSby, or other material that uses different crystal phase changes to determine resistance; PrxCayMnO3, PrSrMnO, ZrOx, or other material that uses an electrical pulse to change the resistance state; 7,7,8,8-tetracyanoquinodimethane (TCNQ), methanofullerene 6,6-phenyl C61-butyric acid methyl ester (PCBM), TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, C60-TCNQ, TCNQ doped with other metal, or any other polymer material that has bistable or multi-stable resistance state controlled by an electrical pulse. Further examples of programmable resistive memory materials include GeSbTe, GeSb, NiO, Nb—SrTiO3, Ag—GeTe, PrCaMnO, ZnO, Nb2O5, Cr—SrTiO3.


For additional information on the manufacture, component materials, use and operation of phase change random access memory devices, see U.S. patent application Ser. No. 11/155,067, filed 17 Jun. 2005, entitled Thin Film Fuse Phase Change Ram And Manufacturing Method.


The above descriptions may have used terms such as above, below, top, bottom, over, under, et cetera. These terms are used to aid understanding of the invention are not used in a limiting sense.


While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.


Any and all patents, patent applications and printed publications referred to above are incorporated by reference.

Claims
  • 1. A method for etching a chalcogenide layer of a semiconductor device comprising: depositing a protective layer on a chalcogenide layer during the manufacture of a semiconductor device;forming a photoresist layer on the protective layer;etching completely through both the photoresist layer and the protective layer during the same etching procedure to form openings therethrough to the chalcogenide layer to create etched photoresist and etched protective layers;removing the etched photoresist layer leaving at least a portion of the etched protective layer; andfollowing the etched photoresist layer removing step, using the etched protective layer as a mask to etch the chalcogenide layer through the openings in the etched protective layer.
  • 2. The method according to claim 1 wherein the photoresist layer and protective layer etching step is carried out using a gas mixture comprising C4F8, CO and O2.
  • 3. The method according to claim 1 wherein the chalcogenide layer etching step is carried out using CF4.
  • 4. The method according to claim 1 wherein the forming step comprises: depositing a photoresist layer on the protective layer.
  • 5. The method according to claim 1 wherein the depositing step is carried out by depositing an oxide layer as the protective layer.
  • 6. The method according to claim 1 wherein the depositing step is carried out by depositing a nitride layer as the protective layer.
  • 7. The method according to claim 1 further comprising removing the etched protective layer following the chalcogenide etching step.
  • 8. The method according to claim 1 further comprising choosing an etching gas for use during the etching step so that the etching gas will etch the photoresist and protective layers but stop at the chalcogenide layer.
  • 9. The method according to claim 1 further comprising depositing the chalcogenide layer on a conductive electrode material layer.
  • 10. The method according to claim 9 further comprising carrying out the chalcogenide layer etching step using an etching gas that will stop at the conductive electrode material layer.
  • 11. The method according to claim 1 wherein the etching step is carried out using the same gas mixture throughout the entire etching procedure.
  • 12. A method for etching a chalcogenide layer of a semiconductor device comprising: depositing an protective layer of a nonconductive material on a chalcogenide layer during the manufacture of a semiconductor device;forming a photoresist layer on the protective layer, the forming step comprising: depositing a photoresist layer on the protective layer;etching, using a gas mixture comprising C4F8, CO and O2, completely through both the photoresist layer and the protective layer during the same etching procedure to form openings therethrough to the chalcogenide layer to create etched photoresist and etched protective layers;removing the etched photoresist layer leaving at least a portion of the etched protective layer;following the etched photoresist layer removing step, using the etched protective layer as a mask to etch the chalcogenide layer through the openings in the etched protective layer; andremoving the etched protective layer.
  • 13. The method according to claim 12 wherein the etching step is carried out using the C4F8, CO and O2 gas mixture throughout the entire etching procedure.
  • 14. The method according to claim 12 further comprising depositing the chalcogenide layer on a conductive electrode material layer.
  • 15. The method according to claim 12 wherein the protective layer depositing step comprises depositing an oxide layer or a nitride layer on the chalcogenide layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application No. 60/755,531 entitled Chalcogenide Layer Etching Method, filed on 30 Dec. 2005.

US Referenced Citations (345)
Number Name Date Kind
3271591 Ovshinsky Sep 1966 A
3530441 Ovshinsky Sep 1970 A
4452592 Tsai Jun 1984 A
4599705 Holmberg et al. Jul 1986 A
4719594 Young et al. Jan 1988 A
4769339 Ishii et al. Sep 1988 A
4876220 Mohsen et al. Oct 1989 A
4959812 Momodomi et al. Sep 1990 A
5106775 Kaga et al. Apr 1992 A
5166096 Cote et al. Nov 1992 A
5166758 Ovshinsky et al. Nov 1992 A
5177567 Klersy et al. Jan 1993 A
5332923 Takeuchi et al. Jul 1994 A
5391901 Tanabe et al. Feb 1995 A
5515488 Hoppe et al. May 1996 A
5534712 Ovshinsky et al. Jul 1996 A
5550396 Tsutsumi et al. Aug 1996 A
5687112 Ovshinsky Nov 1997 A
5688713 Linliu et al. Nov 1997 A
5716883 Tseng et al. Feb 1998 A
5754472 Sim et al. May 1998 A
5789277 Zahorik et al. Aug 1998 A
5789758 Reinberg Aug 1998 A
5814527 Wolstenholme et al. Sep 1998 A
5831276 Gonzalez et al. Nov 1998 A
5837564 Sandhu et al. Nov 1998 A
5869843 Harshfield Feb 1999 A
5879955 Gonzalez et al. Mar 1999 A
5902704 Schoenborn et al. May 1999 A
5920788 Reinberg Jul 1999 A
5933365 Klersy et al. Aug 1999 A
5952671 Reinberg et al. Sep 1999 A
5958358 Tenne et al. Sep 1999 A
5970336 Wolstenholme et al. Oct 1999 A
5985698 Gonzalez et al. Nov 1999 A
5998244 Wolstenholme et al. Dec 1999 A
6011725 Eitan et al. Jan 2000 A
6025220 Sandhu Feb 2000 A
6031287 Harshfield Feb 2000 A
6034882 Johnson et al. Mar 2000 A
6046951 El Hajji et al. Apr 2000 A
6066870 Siek May 2000 A
6077674 Schleifer et al. Jun 2000 A
6077729 Harshfield Jun 2000 A
6087269 Williams Jul 2000 A
6087674 Ovshinsky et al. Jul 2000 A
6104038 Gonzalez et al. Aug 2000 A
6111264 Wolstenholme et al. Aug 2000 A
6114713 Zahorik Sep 2000 A
6117720 Harshfield Sep 2000 A
6147395 Gilgen Nov 2000 A
6150253 Doan et al. Nov 2000 A
6153890 Wolstenholme et al. Nov 2000 A
6177317 Huang et al. Jan 2001 B1
6185122 Johnson et al. Feb 2001 B1
6189582 Reinberg et al. Feb 2001 B1
6236059 Wolstenholme et al. May 2001 B1
RE37259 Ovshinsky Jul 2001 E
6271090 Huang et al. Aug 2001 B1
6280684 Yamada et al. Aug 2001 B1
6287887 Gilgen Sep 2001 B1
6291137 Lyons et al. Sep 2001 B1
6314014 Lowrey et al. Nov 2001 B1
6316348 Fu et al. Nov 2001 B1
6320786 Chang et al. Nov 2001 B1
6326307 Lindley et al. Dec 2001 B1
6339544 Chiang et al. Jan 2002 B1
6351406 Johnson et al. Feb 2002 B1
6372651 Yang et al. Apr 2002 B1
6380068 Jeng et al. Apr 2002 B2
6420215 Knall et al. Jul 2002 B1
6420216 Clevenger et al. Jul 2002 B1
6420725 Harshfield Jul 2002 B1
6423621 Doan et al. Jul 2002 B2
6429064 Wicker Aug 2002 B1
6440837 Harshfield Aug 2002 B1
6462353 Gilgen Oct 2002 B1
6483736 Johnson et al. Nov 2002 B2
6487114 Jong et al. Nov 2002 B2
6501111 Lowrey Dec 2002 B1
6511867 Lowrey et al. Jan 2003 B2
6512241 Lai Jan 2003 B1
6514788 Quinn Feb 2003 B2
6514820 Ahn et al. Feb 2003 B2
6534781 Dennison Mar 2003 B2
6545903 Wu Apr 2003 B1
6551866 Maeda et al. Apr 2003 B1
6555860 Lowrey et al. Apr 2003 B2
6563156 Harshfield May 2003 B2
6566700 Xu May 2003 B2
6567293 Lowrey et al. May 2003 B1
6576546 Gilbert et al. Jun 2003 B2
6579760 Lung Jun 2003 B1
6586761 Lowrey Jul 2003 B2
6589714 Maimon et al. Jul 2003 B2
6593176 Dennison Jul 2003 B2
6596589 Tseng et al. Jul 2003 B2
6597009 Wicker Jul 2003 B2
6605527 Dennison et al. Aug 2003 B2
6605821 Lee et al. Aug 2003 B1
6607974 Harshfield Aug 2003 B2
6613604 Maimon et al. Sep 2003 B2
6617192 Lowrey et al. Sep 2003 B1
6620715 Blosse et al. Sep 2003 B1
6621095 Chiang et al. Sep 2003 B2
6627530 Li et al. Sep 2003 B2
6639849 Takahashi et al. Oct 2003 B2
6673700 Dennison et al. Jan 2004 B2
6674115 Hudgens et al. Jan 2004 B2
6677678 Biolsi et al. Jan 2004 B2
6744088 Dennison Jun 2004 B1
6746892 Lee et al. Jun 2004 B2
6750079 Lowrey et al. Jun 2004 B2
6750101 Lung et al. Jun 2004 B2
6791102 Johnson et al. Sep 2004 B2
6797979 Chiang et al. Sep 2004 B2
6800504 Li et al. Oct 2004 B2
6800563 Xu Oct 2004 B2
6808991 Tung et al. Oct 2004 B1
6815704 Chen Nov 2004 B1
6830952 Lung et al. Dec 2004 B2
6838692 Lung et al. Jan 2005 B1
6850432 Lu et al. Feb 2005 B2
6859389 Idehara et al. Feb 2005 B2
6861267 Xu et al. Mar 2005 B2
6864500 Gilton Mar 2005 B2
6864503 Lung Mar 2005 B2
6867638 Saiki et al. Mar 2005 B2
6881603 Lai Apr 2005 B2
6888750 Walker et al. May 2005 B2
6894304 Moore May 2005 B2
6894305 Yi et al. May 2005 B2
6900517 Tanaka et al. May 2005 B2
6903362 Wyeth et al. Jun 2005 B2
6909107 Rodgers et al. Jun 2005 B2
6910907 Layadi et al. Jun 2005 B2
6927410 Chen Aug 2005 B2
6928022 Cho et al. Aug 2005 B2
6933516 Xu Aug 2005 B2
6936544 Huang et al. Aug 2005 B2
6936840 Sun et al. Aug 2005 B2
6937507 Chen Aug 2005 B2
6943365 Lowrey et al. Sep 2005 B2
6969866 Lowrey et al. Nov 2005 B1
6972428 Maimon Dec 2005 B2
6972430 Casagrande et al. Dec 2005 B2
6977181 Raberg et al. Dec 2005 B1
6992932 Cohen et al. Jan 2006 B2
7023009 Kostylev et al. Apr 2006 B2
7033856 Lung et al. Apr 2006 B2
7038230 Chen et al. May 2006 B2
7038938 Kang et al. May 2006 B2
7042001 Kim et al. May 2006 B2
7054183 Rinerson et al. May 2006 B2
7067837 Hwang et al. Jun 2006 B2
7067864 Nishida et al. Jun 2006 B2
7067865 Lung et al. Jun 2006 B2
7078273 Matsuoka et al. Jul 2006 B2
7099180 Dodge et al. Aug 2006 B1
7115927 Hideki et al. Oct 2006 B2
7122281 Pierrat Oct 2006 B2
7122824 Khouri et al. Oct 2006 B2
7126149 Iwasaki et al. Oct 2006 B2
7132675 Gilton Nov 2006 B2
7154774 Bedeschi et al. Dec 2006 B2
7164147 Lee et al. Jan 2007 B2
7166533 Happ Jan 2007 B2
7169635 Kozicki Jan 2007 B2
7202493 Lung et al. Apr 2007 B2
7208751 Ooishi et al. Apr 2007 B2
7214958 Happ May 2007 B2
7220983 Lung May 2007 B2
7229883 Wang et al. Jun 2007 B2
7238959 Chen Jul 2007 B2
7238994 Chen et al. Jul 2007 B2
7248494 Oh et al. Jul 2007 B2
7251157 Osada et al. Jul 2007 B2
7253429 Klersy et al. Aug 2007 B2
7254059 Li et al. Aug 2007 B2
7269052 Segal et al. Sep 2007 B2
7277317 Le Phan et al. Oct 2007 B2
7291556 Choi et al. Nov 2007 B2
7309630 Fan et al. Dec 2007 B2
7321130 Lung et al. Jan 2008 B2
7323708 Lee et al. Jan 2008 B2
7332370 Chang et al. Feb 2008 B2
7336526 Osada et al. Feb 2008 B2
7351648 Furukawa et al. Apr 2008 B2
7359231 Venkataraman et al. Apr 2008 B2
7364935 Lung et al. Apr 2008 B2
7365385 Abbott Apr 2008 B2
7379328 Osada et al. May 2008 B2
7385235 Lung et al. Jun 2008 B2
7394088 Lung Jul 2008 B2
7397060 Lung Jul 2008 B2
7423300 Lung et al. Sep 2008 B2
7426134 Happ et al. Sep 2008 B2
7440308 Jeong et al. Oct 2008 B2
7449710 Lung Nov 2008 B2
20010055838 Walker et al. Dec 2001 A1
20020070457 Sun et al. Jun 2002 A1
20020072223 Gilbert et al. Jun 2002 A1
20020081833 Li et al. Jun 2002 A1
20020113273 Hwang et al. Aug 2002 A1
20020123169 Moore et al. Sep 2002 A1
20020173153 Lee et al. Nov 2002 A1
20020182835 Quinn Dec 2002 A1
20030072195 Mikolajick Apr 2003 A1
20030089990 Usami May 2003 A1
20030095426 Hush et al. May 2003 A1
20030186481 Lung Oct 2003 A1
20040026686 Lung Feb 2004 A1
20040051094 Ooishi Mar 2004 A1
20040051161 Tanaka et al. Mar 2004 A1
20040113137 Lowrey Jun 2004 A1
20040113232 Johnson et al. Jun 2004 A1
20040165422 Hideki et al. Aug 2004 A1
20040178172 Huang et al. Sep 2004 A1
20040208038 Idehara Oct 2004 A1
20040248339 Lung Dec 2004 A1
20040256610 Lung Dec 2004 A1
20050018526 Lee Jan 2005 A1
20050019975 Lee et al. Jan 2005 A1
20050029502 Hudgens Feb 2005 A1
20050062087 Chen et al. Mar 2005 A1
20050093022 Lung May 2005 A1
20050106919 Layadi et al. May 2005 A1
20050127349 Horak et al. Jun 2005 A1
20050130414 Choi et al. Jun 2005 A1
20050145984 Chen et al. Jul 2005 A1
20050167656 Sun et al. Aug 2005 A1
20050191804 Lai et al. Sep 2005 A1
20050201182 Osada et al. Sep 2005 A1
20050212024 Happ Sep 2005 A1
20050212026 Chung et al. Sep 2005 A1
20050215009 Cho Sep 2005 A1
20050263829 Song et al. Dec 2005 A1
20050285096 Kozicki Dec 2005 A1
20060006472 Jiang Jan 2006 A1
20060038221 Lee et al. Feb 2006 A1
20060043617 Abbott Mar 2006 A1
20060066156 Dong et al. Mar 2006 A1
20060073642 Yeh et al. Apr 2006 A1
20060091476 Pinnow et al. May 2006 A1
20060094154 Lung May 2006 A1
20060094230 Fuller et al. May 2006 A1
20060108667 Lung May 2006 A1
20060110878 Lung et al. May 2006 A1
20060110888 Cho et al. May 2006 A1
20060113520 Yamamoto et al. Jun 2006 A1
20060113521 Lung Jun 2006 A1
20060118913 Yi et al. Jun 2006 A1
20060124916 Lung Jun 2006 A1
20060126395 Chen et al. Jun 2006 A1
20060131555 Liu et al. Jun 2006 A1
20060138467 Lung Jun 2006 A1
20060154185 Ho et al. Jul 2006 A1
20060157681 Chen et al. Jul 2006 A1
20060163554 Lankhorst et al. Jul 2006 A1
20060175599 Happ Aug 2006 A1
20060198183 Kawahara et al. Sep 2006 A1
20060205108 Maimon et al. Sep 2006 A1
20060211165 Hwang et al. Sep 2006 A1
20060226409 Burr et al. Oct 2006 A1
20060234138 Fehlhaber et al. Oct 2006 A1
20060237756 Park et al. Oct 2006 A1
20060266993 Suh et al. Nov 2006 A1
20060281216 Chang et al. Dec 2006 A1
20060284157 Chen et al. Dec 2006 A1
20060284158 Lung et al. Dec 2006 A1
20060284214 Chen Dec 2006 A1
20060284279 Lung et al. Dec 2006 A1
20060286709 Lung et al. Dec 2006 A1
20060286743 Lung et al. Dec 2006 A1
20060289848 Dennison Dec 2006 A1
20070008786 Scheuerlein Jan 2007 A1
20070010054 Fan et al. Jan 2007 A1
20070030721 Segal et al. Feb 2007 A1
20070037101 Morioka Feb 2007 A1
20070045606 Magistretti et al. Mar 2007 A1
20070096162 Happ et al. May 2007 A1
20070096248 Philipp et al. May 2007 A1
20070108077 Lung et al. May 2007 A1
20070108429 Lung May 2007 A1
20070108430 Lung May 2007 A1
20070108431 Chen et al. May 2007 A1
20070109836 Lung May 2007 A1
20070109843 Lung et al. May 2007 A1
20070111429 Lung May 2007 A1
20070115794 Lung May 2007 A1
20070117315 Lai et al. May 2007 A1
20070121363 Lung May 2007 A1
20070121374 Lung et al. May 2007 A1
20070126040 Lung Jun 2007 A1
20070131922 Lung Jun 2007 A1
20070131980 Lung Jun 2007 A1
20070138458 Lung Jun 2007 A1
20070147105 Lung et al. Jun 2007 A1
20070153563 Nirschl Jul 2007 A1
20070154847 Chen et al. Jul 2007 A1
20070155172 Lai et al. Jul 2007 A1
20070158632 Ho Jul 2007 A1
20070158633 Lai et al. Jul 2007 A1
20070158645 Lung Jul 2007 A1
20070158690 Ho et al. Jul 2007 A1
20070158862 Lung Jul 2007 A1
20070161186 Ho Jul 2007 A1
20070170881 Noh et al. Jul 2007 A1
20070173019 Ho et al. Jul 2007 A1
20070173063 Lung Jul 2007 A1
20070176261 Lung Aug 2007 A1
20070187664 Happ Aug 2007 A1
20070201267 Happ et al. Aug 2007 A1
20070215852 Lung Sep 2007 A1
20070224726 Chen et al. Sep 2007 A1
20070235811 Furukawa et al. Oct 2007 A1
20070236989 Lung Oct 2007 A1
20070246699 Lung Oct 2007 A1
20070249090 Philipp et al. Oct 2007 A1
20070257300 Ho et al. Nov 2007 A1
20070262388 Ho et al. Nov 2007 A1
20070274121 Lung et al. Nov 2007 A1
20070285960 Lung et al. Dec 2007 A1
20070298535 Lung Dec 2007 A1
20080006811 Philipp et al. Jan 2008 A1
20080012000 Harshfield Jan 2008 A1
20080014676 Lung et al. Jan 2008 A1
20080025089 Scheuerlein et al. Jan 2008 A1
20080043520 Chen Feb 2008 A1
20080094871 Parkinson Apr 2008 A1
20080101110 Happ et al. May 2008 A1
20080137400 Chen et al. Jun 2008 A1
20080164453 Breitwisch et al. Jul 2008 A1
20080165569 Chen et al. Jul 2008 A1
20080165570 Happ et al. Jul 2008 A1
20080165572 Lung Jul 2008 A1
20080166875 Lung Jul 2008 A1
20080179582 Burr et al. Jul 2008 A1
20080180990 Lung Jul 2008 A1
20080186755 Lung et al. Aug 2008 A1
20080191187 Lung et al. Aug 2008 A1
20080192534 Lung Aug 2008 A1
20080197334 Lung Aug 2008 A1
20080224119 Burr et al. Sep 2008 A1
20080225489 Cai et al. Sep 2008 A1
Foreign Referenced Citations (5)
Number Date Country
1462478 Dec 2003 CN
WO 0045108 Aug 2000 WO
WO 0079539 Dec 2000 WO
WO 0145108 Jun 2001 WO
0225733 Mar 2002 WO
Related Publications (1)
Number Date Country
20070154847 A1 Jul 2007 US
Provisional Applications (1)
Number Date Country
60755531 Dec 2005 US