COMPOUNDS AND METHODS FOR REDUCING APOE EXPRESSION

Abstract
Provided are compounds, methods, and pharmaceutical compositions for reducing the amount or activity of APOE RNA in a cell or animal, and in certain instances reducing the amount of APOE protein in a cell or animal Such compounds, methods, and pharmaceutical compositions are useful to ameliorate at least one symptom or hallmark of a neurodegenerative disease. Such symptoms and hallmarks include cognitive impairment, progressive memory loss, behavioral abnormality, dementia, difficulty performing daily activities, amyloid plaques, neurofibrillary tangles, and neuroinflammation.
Description
SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled BIOL0394WOSEQ_ST25.txt, created on Sep. 23, 2021, which is 597 KB in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.


FIELD

Provided are compounds, methods, and pharmaceutical compositions for reducing the amount or activity of APOE RNA in a cell or animal, and in certain instances reducing the amount of APOE protein in a cell or animal. Certain such compounds, methods, and pharmaceutical compositions are useful to ameliorate at least one symptom or hallmark of a neurodegenerative disease. Such symptoms and hallmarks include cognitive impairment, progressive memory loss, behavioral abnormality, dementia, difficulty performing daily activities, amyloid plaques, neurofibrillary tangles, and neuroinflammation. Such neurodegenerative diseases include Alzheimer's Disease.


BACKGROUND

Alzheimer's Disease (AD) is the most common cause of age-associated dementia, affecting an estimated 5.7 million Americans a year (Alzheimer's Association. 2018 Alzheimer's Disease Facts and Figures. Alzheimer's Dement. 2018; 14(3):367-429). Symptoms of AD include cognitive impairment, a decline in memory and language skills, behavioral and psychological symptoms such as apathy and lack of motivation, gait disturbances and seizures, and dementia. Hallmarks of AD include the presence of amyloid plaques and neurofibrillary tangles in the brains of patients. Amyloid plaques are toxic aggregates composed mainly of peptides that are encoded by the amyloid precursor protein gene, APP. Neurofibrillary tangles are hyperphosphorylated, insoluble aggregates of tau proteins.


Apolipoprotein E (APOE) is a fat-binding protein that is associated with lipoprotein particles. APOE is produced mainly by the liver. APOE is also produced in the brain by astrocytes, where it plays a role in transporting cholesterol to neurons via APOE receptors. There are three main APOE alleles that encode three different APOE protein isoforms: APOE-ε2, APOE-ε3, and APOE-ε4. These alleles encode for APOE protein variants having different combinations of amino acids at positions 112 and 158 of the APOE protein: APOE-ε2 (Cys112, Cys158), APOE-ε3 (Cys112, Arg158), and APOE-ε4 (Arg112, Arg158). These amino acid differences result in variable APOE structure and function.


APOE has been linked to pathological hallmarks of AD (e.g., amyloid plaques and neurofibrillary tangles), and to pathways including synaptic plasticity, lipid transport, glucose metabolism, mitochondrial function, and vascular integrity. Polymorphisms in the APOE promoter result in increased APOE promoter activity and APOE protein levels, and an increased risk for developing AD. The APOE4 allele, encoding isoform ε4, is the strongest genetic risk factor for late-onset Alzheimer's disease. Patients homozygous for the APOE4 allele account for about 16% of AD population.


Currently there is a lack of acceptable options for treating neurodegenerative diseases such as AD. It is therefore an object herein to provide compounds, methods, and pharmaceutical compositions for the treatment of such diseases.


SUMMARY OF THE INVENTION

Provided herein are compounds, methods and pharmaceutical compositions for reducing the amount or activity of APOE RNA, and in certain embodiments reducing the amount of APOE protein in a cell or animal. In certain embodiments, the animal has a neurodegenerative disease. In certain embodiments, the animal has Alzheimer's Disease (AD). In certain embodiments, compounds useful for reducing expression of APOE RNA are oligomeric compounds. In certain embodiments, compounds useful for reducing expression of APOE RNA are modified oligonucleotides.


Also provided are methods useful for ameliorating at least one symptom or hallmark of a neurodegenerative disease. In certain embodiments, the neurodegenerative disease is Alzheimer's Disease. In certain embodiments, the symptom or hallmark includes cognitive impairment, progressive memory loss, behavioral abnormality, dementia, difficulty performing daily activities, amyloid plaques, neurofibrillary tangles, and neuroinflammation.







DETAILED DESCRIPTION OF THE INVENTION

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive. Herein, the use of the singular includes the plural unless specifically stated otherwise. As used herein, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including” as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit, unless specifically stated otherwise.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application, including, but not limited to, patents, patent applications, articles, books, and treatises, are hereby expressly incorporated-by-reference for the portions of the document discussed herein, as well as in their entirety.


Definitions

Unless specific definitions are provided, the nomenclature used in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well-known and commonly used in the art. Where permitted, all patents, applications, published applications and other publications and other data referred to throughout in the disclosure are incorporated by reference herein in their entirety.


Unless otherwise indicated, the following terms have the following meanings:


Definitions

As used herein, “2′-deoxynucleoside” means a nucleoside comprising a 2′-H(H) deoxyribosyl sugar moiety. In certain embodiments, a 2′-deoxynucleoside is a 2′-β-D-deoxynucleoside and comprises a 2′-β-D-deoxyribosyl sugar moiety, which has the β-D configuration as found in naturally occurring deoxyribonucleic acids (DNA). In certain embodiments, a 2′-deoxynucleoside or a nucleoside comprising an unmodified 2′-deoxyribosyl sugar moiety may comprise a modified nucleobase or may comprise an RNA nucleobase (uracil).


As used herein, “2′-substituted nucleoside” means a nucleoside comprising a 2′-substituted sugar moiety. As used herein, “2′-substituted” in reference to a sugar moiety means a sugar moiety comprising at least one 2′-substituent group other than H or OH.


As used herein, “3′ target site” refers to the 3′-most nucleotide of a target nucleic acid which is complementary to an antisense oligonucleotide, when the antisense oligonucleotide is hybridized to the target nucleic acid.


As used herein, “5′ target site” refers to the 5′-most nucleotide of a target nucleic acid which is complementary to an antisense oligonucleotide, when the antisense oligonucleotide is hybridized to the target nucleic acid.


As used herein, “5-methyl cytosine” means a cytosine modified with a methyl group attached to the 5 position. A 5-methyl cytosine is a modified nucleobase.


As used herein, “abasic sugar moiety” means a sugar moiety of a nucleoside that is not attached to a nucleobase. Such abasic sugar moieties are sometimes referred to in the art as “abasic nucleosides.”


As used herein, “administration” or “administering” means providing a pharmaceutical agent or composition to an animal.


As used herein, “amyloid plaque” means an aggregate of peptides that are encoded by a human amyloid precursor protein gene, APP.


As used herein, “animal” and “subject” are used interchangeably and the terms mean a human or non-human animal.


As used herein, “antisense activity” means any detectable and/or measurable change attributable to the hybridization of an antisense compound to its target nucleic acid. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid compared to target nucleic acid levels or target protein levels in the absence of the antisense compound.


As used herein, “antisense agent” means an antisense compound and optionally one or more additional features, such as a sense compound.


As used herein, “antisense compound” means an antisense oligonucleotide and optionally one or more additional features, such as a conjugate group.


As used herein, “sense compound” means a sense oligonucleotide and optionally one or more additional features, such as a conjugate group.


As used herein, “antisense oligonucleotide” means an oligonucleotide, including the oligonucleotide portion of an antisense compound, that is capable of hybridizing to a target nucleic acid and is capable of at least one antisense activity. Antisense oligonucleotides include but are not limited to antisense RNAi oligonucleotides and antisense RNase H oligonucleotides.


As used herein, “sense oligonucleotide” means an oligonucleotide, including the oligonucleotide portion of a sense compound, that is capable of hybridizing to an antisense oligonucleotide.


As used herein, “ameliorate” in reference to a treatment means improvement in at least one symptom relative to the same symptom in the absence of the treatment. In certain embodiments, amelioration is the reduction in the severity or frequency of a symptom or the delayed onset or slowing of progression in the severity or frequency of a symptom. In certain embodiments, the symptom or hallmark is cognitive impairment, progressive memory loss, behavioral abnormality, dementia, difficulty performing daily activities, amyloid plaques, neurofibrillary tangles, and neuroinflammation.


As used herein, “behavioral abnormality” means a behavior exhibited by a subject that is atypical or out of the ordinary for the subject. In certain embodiments, the behavior abnormality is selected from depression, anxiety, panic, phobia, paranoia, and a combination thereof. In certain embodiments, the behavior abnormality is a dysfunctional or deviant behavior (e.g., causes distress for others).


As used herein, “bicyclic nucleoside” or “BNA” means a nucleoside comprising a bicyclic sugar moiety.


As used herein, “bicyclic sugar” or “bicyclic sugar moiety” means a modified sugar moiety comprising two rings, wherein the second ring is formed via a bridge connecting two of the atoms in the first ring thereby forming a bicyclic structure. In certain embodiments, the first ring of the bicyclic sugar moiety is a furanosyl moiety. In certain embodiments, the bicyclic sugar moiety does not comprise a furanosyl moiety.


As used herein, “blunt” or “blunt ended” in reference to a duplex formed by two oligonucleotides mean that there are no terminal unpaired nucleotides (i.e. no overhanging nucleotides). One or both ends of a double-stranded RNAi agent can be blunt.


As used herein, “cell-targeting moiety” means a conjugate group or portion of a conjugate group that is capable of binding to a particular cell type or particular cell types.


As used herein, “cerebrospinal fluid” or “CSF” means the fluid filling the space around the brain and spinal cord. “Artificial cerebrospinal fluid” or “aCSF” means a prepared or manufactured fluid that has certain properties of cerebrospinal fluid.


As used herein, “cleavable moiety” means a bond or group of atoms that is cleaved under physiological conditions, for example, inside a cell, an animal, or a human. As used herein, “cognitive impairment” means confusion, poor motor coordination, loss of short-term memory, loss of long-term memory, identity confusion, impaired judgment, or any combination thereof.


As used herein, “complementary” in reference to an oligonucleotide means that at least 70% of the nucleobases of the oligonucleotide or one or more regions thereof and the nucleobases of another nucleic acid or one or more regions thereof are capable of hydrogen bonding with one another when the nucleobase sequence of the oligonucleotide and the other nucleic acid are aligned in opposing directions. Complementary nucleobases means nucleobases that are capable of forming hydrogen bonds with one another. Complementary nucleobase pairs include adenine (A) and thymine (T), adenine (A) and uracil (U), cytosine (C) and guanine (G), 5-methyl cytosine (mC) and guanine (G). Certain modified nucleobases that pair with natural nucleobases or with other modified nucleobases are known in the art. For example, inosine can pair with adenosine, cytosine, or uracil. Complementary oligonucleotides and/or nucleic acids need not have nucleobase complementarity at each nucleoside. Rather, some mismatches are tolerated. As used herein, “fully complementary” or “100% complementary” in reference to oligonucleotides means that oligonucleotides are complementary to another oligonucleotide or nucleic acid at each nucleoside of the oligonucleotide.


As used herein, “conjugate group” means a group of atoms that is directly attached to an oligonucleotide. Conjugate groups include a conjugate moiety and a conjugate linker that attaches the conjugate moiety to the oligonucleotide.


As used herein, “conjugate linker” means a single bond or a group of atoms comprising at least one bond that connects a conjugate moiety to an oligonucleotide.


As used herein, “conjugate moiety” means a group of atoms that modifies one or more properties of a molecule compared to the identical molecule lacking the conjugate moiety, including but not limited to pharmacodynamics, pharmacokinetics, stability, binding, absorption, tissue distribution, cellular distribution, cellular uptake, charge and clearance.


As used herein, “contiguous” in the context of an oligonucleotide refers to nucleosides, nucleobases, sugar moieties, or internucleoside linkages that are immediately adjacent to each other. For example, “contiguous nucleobases” means nucleobases that are immediately adjacent to each other in a sequence.


As used herein, “constrained ethyl” or “cEt” or “cEt modified sugar moiety” means a β-D ribosyl bicyclic sugar moiety wherein the second ring of the bicyclic sugar is formed via a bridge connecting the 4′-carbon and the 2′-carbon of the β-D ribosyl sugar moiety, wherein the bridge has the formula 4′-CH(CH3)—O-2′, and wherein the methyl group of the bridge is in the S configuration.


As used herein, “cEt nucleoside” means a nucleoside comprising a cEt modified sugar moiety.


As used herein, “chirally enriched population” means a plurality of molecules of identical molecular formula, wherein the number or percentage of molecules within the population that contain a particular stereochemical configuration at a particular chiral center is greater than the number or percentage of molecules expected to contain the same particular stereochemical configuration at the same particular chiral center within the population if the particular chiral center were stereorandom. Chirally enriched populations of molecules having multiple chiral centers within each molecule may contain one or more stereorandom chiral centers. In certain embodiments, the molecules are modified oligonucleotides. In certain embodiments, the molecules are oligomeric compounds comprising modified oligonucleotides.


As used herein, “daily activities” mean one or more activities selected from dressing, eating, walking, bathing, cooking, shopping, cleaning and exercising.


As used herein, “dementia” means any combination of symptoms selected from memory loss, difficulty communicating, disorientation, difficulty reasoning, difficulty planning, discoordination, compromised motor function, confusion, disorientation, depression, anxiety, paranoia, agitation, and hallucination.


As used herein, “double-stranded” means a duplex formed by complementary strands of nucleic acids (including, but not limited to oligonucleotides) hybridized to one another. In certain embodiments, the two strands of a double-stranded region are separate molecules. In certain embodiments, the two strands are regions of the same molecule that has folded onto itself (e.g., a hairpin structure).


As used herein, “duplex” or “duplex region” means the structure formed by two oligonucleotides or portions thereof that are hybridized to one another.


As used herein, “gapmer” means a modified oligonucleotide comprising an internal region positioned between external regions having one or more nucleosides, wherein the nucleosides comprising the internal region are chemically distinct from the nucleoside or nucleosides comprising the external regions, and wherein the modified oligonucleotide supports RNase H cleavage. The internal region may be referred to as the “gap” and the external regions may be referred to as the “wings” or “wing segments.” In certain embodiments, the internal region is a deoxy region. The positions of the internal region or gap refer to the order of the nucleosides of the internal region and are counted starting from the 5′-end of the internal region. Unless otherwise indicated, “gapmer” refers to a sugar motif. In certain embodiments, each nucleoside of the gap is a 2′-β-D-deoxynucleoside. In certain embodiments, the gap comprises one 2′-substituted nucleoside at position 1, 2, 3, 4, or 5 of the gap, and the remainder of the nucleosides of the gap are 2′-β-D-deoxynucleosides. As used herein, the term “MOE gapmer” indicates a gapmer having a gap comprising 2′-β-D-deoxynucleosides and wings comprising 2′-MOE modified nucleosides. As used herein, the term “mixed wing gapmer” indicates a gapmer having wings comprising modified nucleosides comprising at least two different sugar modifications. Unless otherwise indicated, a gapmer may comprise one or more modified internucleoside linkages and/or modified nucleobases and such modifications do not necessarily follow the gapmer pattern of the sugar modifications.


As used herein, “hotspot region” is a range of nucleobases on a target nucleic acid that is amenable to oligomeric compound-mediated reduction of the amount or activity of the target nucleic acid.


As used herein, “hybridization” means the annealing of oligonucleotides and/or nucleic acids. While not limited to a particular mechanism, the most common mechanism of hybridization involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense compound and a nucleic acid target. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an oligonucleotide and a nucleic acid target.


As used herein, “internucleoside linkage” is the covalent linkage between adjacent nucleosides in an oligonucleotide. As used herein “modified internucleoside linkage” means any internucleoside linkage other than a phosphodiester internucleoside linkage. “Phosphorothioate internucleoside linkage” is a modified internucleoside linkage in which one of the non-bridging oxygen atoms of a phosphodiester internucleoside linkage is replaced with a sulfur atom.


As used herein, “inverted nucleoside” means a nucleotide having a 3′ to 3′ and/or 5′ to 5′ internucleoside linkage, as shown herein.


As used herein, “inverted sugar moiety” means the sugar moiety of an inverted nucleoside or an abasic sugar moiety having a 3′ to 3′ and/or 5′ to 5′ internucleoside linkage.


As used herein, “linker-nucleoside” means a nucleoside that links, either directly or indirectly, an oligonucleotide to a conjugate moiety. Linker-nucleosides are located within the conjugate linker of an oligomeric compound. Linker-nucleosides are not considered part of the oligonucleotide portion of an oligomeric compound even if they are contiguous with the oligonucleotide.


“Lipid nanoparticle” or “LNP” is a vesicle comprising a lipid layer encapsulating a pharmaceutically active molecule, such as a nucleic acid molecule, e.g., an RNAi or a plasmid from which an RNAi is transcribed. LNPs are described in, for example, U.S. Pat. Nos. 6,858,225, 6,815,432, 8,158,601, and 8,058,069, the entire contents of which are hereby incorporated herein by reference.


As used herein, “non-bicyclic modified sugar moiety” means a modified sugar moiety that comprises a modification, such as a substituent, that does not form a bridge between two atoms of the sugar to form a second ring.


As used herein, “neuroinflammation” means inflammation of the peripheral nervous system or the central nervous system. In certain embodiments, the amount of a cytokine in the cerebrospinal fluid of a subject with neuroinflammation is significantly greater than the amount of the cytokine in the cerebrospinal fluid of a subject that does not have neuroinflammation. In certain embodiments, a subject with neuroinflammation has Alzheimer's Disease. In certain embodiments, a subject that does not have neuroinflammation does not have Alzheimer's Disease.


As used herein, “mismatch” or “non-complementary” means a nucleobase of a first nucleic acid sequence that is not complementary with the corresponding nucleobase of a second nucleic acid sequence or target nucleic acid when the first and second nucleic acid sequences are aligned.


As used herein, “MOE” means O-methoxyethyl. “2′-MOE” or “2′-MOE modified sugar” or “2′-MOE modified sugar moiety” means a 2′-OCH2CH2OCH3 group (or a 2′-O(CH2)2—OCH3 group) in place of the 2′-OH group of a ribosyl sugar moiety. Unless otherwise indicated, a 2′-MOE modified sugar moiety is in the β-D-ribosyl configuration. As used herein, “2′-MOE modified nucleoside” means a nucleoside comprising a 2′-MOE modified sugar moiety (or a 2′-O(CH2)2—OCH3 ribosyl modified sugar moiety).


As used herein, “2′-OMe” means a 2′-OCH3 group in place of the 2′-OH group of a ribosyl sugar moiety. A “2′-O-methyl sugar moiety” or “2′-OMe sugar moiety” or “2′-OMe modified sugar moiety” or “2′-O methylribosyl sugar” means a sugar moiety with a 2′-OCH3 group in place of the 2′-OH group of a ribosyl sugar moiety. Unless otherwise indicated, a 2′-OMe sugar moiety is in the β-D-ribosyl configuration.


As used herein, “2′-OMe nucleoside” means a nucleoside comprising a 2′-OMe modified sugar moiety.


As used herein, “2′-F” means a 2′-fluoro group in place of the 2′-OH group of a ribosyl sugar moiety. A “2′-F sugar moiety” or “2′-F modified sugar moiety” or “2′-fluororibosyl sugar” means a sugar moiety with a 2′-F group in place of the 2′-OH group of a ribosyl sugar moiety. Unless otherwise indicated, a 2′-F sugar moiety is in the β-D-ribosyl configuration.


As used herein, “2′-F nucleoside” or “2′-F modified nucleoside” means a nucleoside comprising a 2′-F modified sugar moiety.


As used herein, “motif” means the pattern of unmodified and/or modified sugar moieties, nucleobases, and/or internucleoside linkages, in an oligonucleotide.


As used herein, “neurodegenerative disease” means a condition marked by progressive loss of function or structure, including loss of neuronal function and death of neurons. In certain embodiments, the neurodegenerative disease is Alzheimer's Disease. In certain embodiments, the neurodegenerative disease is Alzheimer's Disease in Down Syndrome patients. In certain embodiments, the neurodegenerative disease is Cerebral Amyloid Angiopathy.


As used herein, “nucleobase” means an unmodified nucleobase or a modified nucleobase. A nucleobase is a heterocyclic moiety. As used herein an “unmodified nucleobase” is adenine (A), thymine (T), cytosine (C), uracil (U), or guanine (G). As used herein, a “modified nucleobase” is a group of atoms other than unmodified A, T, C, U, or G capable of pairing with at least one other nucleobase. A “5-methyl cytosine” is a modified nucleobase. A universal base is a modified nucleobase that can pair with any one of the five unmodified nucleobases.


As used herein, “nucleobase sequence” means the order of contiguous nucleobases in a nucleic acid or oligonucleotide independent of any sugar or internucleoside linkage modification.


As used herein, “nucleoside” means a compound or fragment of a compound comprising a nucleobase and a sugar moiety. The nucleobase and sugar moiety are each, independently, unmodified or modified.


As used herein, “nucleoside overhang” refers to unpaired nucleotides at either or both ends of a duplex formed by hybridization of an antisense RNAi oligonucleotide and a sense RNAi oligonucleotide.


As used herein, “modified nucleoside” means a nucleoside comprising a modified nucleobase and/or a modified sugar moiety.


As used herein, “linked nucleosides” are nucleosides that are connected in a contiguous sequence (i.e., no additional nucleosides are presented between those that are linked).


As used herein, “modified oligonucleotide” means an oligonucleotide, wherein at least one nucleoside or internucleoside linkage is modified. As used herein, “unmodified oligonucleotide” means an oligonucleotide that does not comprise any nucleoside modifications or internucleoside modifications. Thus, each nucleoside of an unmodified oligonucleotide is a DNA or RNA nucleoside and each internucleoside linkage is a phosphodiester linkage.


As used herein, “neurofibrillary tangles” mean hyperphosphorylated insoluble aggregates of tau protein. Tau protein is encoded by a human MAPT gene.


As used herein, “oligomeric compound” means an oligonucleotide and optionally one or more additional features, such as a conjugate group or terminal group. An oligomeric compound may be paired with a second oligomeric compound that is complementary to the first oligomeric compound or may be unpaired. A “singled-stranded oligomeric compound” is an unpaired oligomeric compound. The term “oligomeric duplex” means a duplex formed by two oligomeric compounds having complementary nucleobase sequences. Each oligomeric compound of an oligomeric duplex may be referred to as a “duplexed oligomeric compound.”


As used herein, “oligonucleotide” means a polymer of linked nucleosides connected via internucleoside linkages, wherein each nucleoside and internucleoside linkage may be modified or unmodified. Unless otherwise indicated, oligonucleotides consist of 8-50 linked nucleosides. An oligonucleotide may be paired with a second oligonucleotide that is complementary to the oligonucleotide or it may be unpaired. A “single-stranded oligonucleotide” is an unpaired oligonucleotide. A “double-stranded oligonucleotide” is an oligonucleotide that is paired with a second oligonucleotide. An “oligonucleotide duplex” means a duplex formed by two paired oligonucleotides having complementary nucleobase sequences. Each oligo of an oligonucleotide duplex is a “duplexed oligonucleotide” or a “double-stranded oligonucleotide.”


As used herein, “pharmaceutically acceptable carrier or diluent” means any substance suitable for use in administering to an animal. Certain such carriers enable pharmaceutical compositions to be formulated as, for example, tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspension and lozenges for the oral ingestion by a subject. In certain embodiments, a pharmaceutically acceptable carrier or diluent is sterile water, sterile saline, sterile buffer solution or sterile artificial cerebrospinal fluid.


As used herein “pharmaceutically acceptable salts” means physiologically and pharmaceutically acceptable salts of compounds. Pharmaceutically acceptable salts retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.


As used herein “pharmaceutical composition” means a mixture of substances suitable for administering to a subject. For example, a pharmaceutical composition may comprise an oligomeric compound and a sterile aqueous solution. In certain embodiments, a pharmaceutical composition shows activity in free uptake assay in certain cell lines.


As used herein “prodrug” means a therapeutic agent in a first form outside the body that is converted to a second form within an animal or cells thereof. Typically, conversion of a prodrug within the animal is facilitated by the action of an enzymes (e.g., endogenous or viral enzyme) or chemicals present in cells or tissues and/or by physiologic conditions. In certain embodiments, the first form of the prodrug is less active than the second form.


As used herein, “progressive memory loss” means occurrences of forgetfulness (e.g., inability to remember events, names, and facts) that increase in frequency over time.


As used herein, “reducing or inhibiting the amount or activity” refers to a reduction or blockade of the transcriptional expression or activity relative to the transcriptional expression or activity in an untreated or control sample and does not necessarily indicate a total elimination of transcriptional expression or activity.


As used herein, “RNAi agent” means an antisense compound that acts, at least in part, through RISC or Ago2 to modulate a target nucleic acid and/or protein encoded by a target nucleic acid. RNAi agents include, but are not limited to double-stranded siRNA, single-stranded RNA (ssRNA), and microRNA, including microRNA mimics. RNAi agents may comprise conjugate groups and/or terminal groups. In certain embodiments, an RNAi agent modulates the amount and/or activity of a target nucleic acid. The term RNAi agent excludes antisense compounds that act through RNase H.


As used herein, “RNAi oligonucleotide” means an antisense RNAi oligonucleotide or a sense RNAi oligonucleotide.


As used herein, “antisense RNAi oligonucleotide” means an oligonucleotide comprising a region that is complementary to a target sequence, and which includes at least one chemical modification suitable for RNAi.


As used herein, “sense RNAi oligonucleotide” means an oligonucleotide comprising a region that is complementary to a region of an antisense RNAi oligonucleotide, and which is capable of forming a duplex with such antisense RNAi oligonucleotide. A duplex formed by an antisense RNAi oligonucleotide and a sense RNAi oligonucleotide is referred to as a double-stranded RNAi agent (dsRNAi) or a short interfering RNA (siRNA).


As used herein, “RNase H compound” means an antisense compound that acts, at least in part, through RNase H to modulate a target nucleic acid and/or protein encoded by a target nucleic acid. In certain embodiments, RNase H compounds are single-stranded. In certain embodiments, RNase H compounds are double-stranded. RNase H compounds may comprise conjugate groups and/or terminal groups. In certain embodiments, an RNase H compound modulates the amount or activity of a target nucleic acid. The term RNase H compound excludes antisense compounds that act principally through RISC/Ago2.


As used herein, “antisense RNase H oligonucleotide” means an oligonucleotide comprising a region that is complementary to a target sequence, and which includes at least one chemical modification suitable for RNase H-mediated nucleic acid reduction.


As used herein, “self-complementary” in reference to an oligonucleotide means an oligonucleotide that at least partially hybridizes to itself.


As used herein, “single-stranded” means a nucleic acid (including but not limited to an oligonucleotide) that is unpaired and is not part of a duplex. Single-stranded compounds are capable of hybridizing with complementary nucleic acids to form duplexes, at which point they are no longer single-stranded.


As used herein, “stabilized phosphate group” means a 5′-phosphate analog that is metabolically more stable than a 5′-phosphate as naturally occurs on DNA or RNA.


As used herein, “standard in vitro assay,” with respect to means the assay described in Example 1 or Example 10 and reasonable variations thereof.


As used herein, “stereorandom chiral center” in the context of a population of molecules of identical molecular formula means a chiral center having a random stereochemical configuration. For example, in a population of molecules comprising a stereorandom chiral center, the number of molecules having the (S) configuration of the stereorandom chiral center may be but is not necessarily the same as the number of molecules having the (R) configuration of the stereorandom chiral center. The stereochemical configuration of a chiral center is considered random when it is the result of a synthetic method that is not designed to control the stereochemical configuration. In certain embodiments, a stereorandom chiral center is a stereorandom phosphorothioate internucleoside linkage.


As used herein, “sugar moiety” means an unmodified sugar moiety or a modified sugar moiety. As used herein, “unmodified sugar moiety” means a 2′-OH(H) ribosyl moiety, as found in RNA (an “unmodified RNA sugar moiety”), or a 2′-H(H) deoxyribosyl sugar moiety, as found in DNA (an “unmodified DNA sugar moiety”). Unmodified sugar moieties have one hydrogen at each of the 1′, 3′, and 4′ positions, an oxygen at the 3′ position, and two hydrogens at the 5′ position. As used herein, “modified sugar moiety” or “modified sugar” means a modified furanosyl sugar moiety or a sugar surrogate.


As used herein, “sugar surrogate” means a modified sugar moiety having other than a furanosyl moiety that can link a nucleobase to another group, such as an internucleoside linkage, conjugate group, or terminal group in an oligonucleotide. Modified nucleosides comprising sugar surrogates can be incorporated into one or more positions within an oligonucleotide and such oligonucleotides are capable of hybridizing to complementary oligomeric compounds or target nucleic acids.


As used herein, “symptom or hallmark” means any physical feature or test result that indicates the existence or extent of a disease or disorder. In certain embodiments, a symptom is apparent to a subject or to a medical professional examining or testing said subject. In certain embodiments, a hallmark is apparent upon invasive diagnostic testing, including, but not limited to, post-mortem tests.


As used herein, “target nucleic acid” and “target RNA” mean a nucleic acid that an antisense compound is designed to affect. Target RNA means an RNA transcript and includes pre-mRNA and mRNA unless otherwise specified.


As used herein, “target region” means a portion of a target nucleic acid to which an oligomeric compound is designed to hybridize.


As used herein, “terminal group” means a chemical group or group of atoms that is covalently linked to a terminus of an oligonucleotide.


As used herein, “treating” means improving a subject's disease or condition by administering an oligomeric agent or oligomeric compound described herein. In certain embodiments, treating a subject improves a symptom relative to the same symptom in the absence of the treatment. In certain embodiments, treatment reduces in the severity or frequency of a symptom, or delays the onset of a symptom, slows the progression of a symptom, or slows the severity or frequency of a symptom.


As used herein, “therapeutically effective amount” means an amount of a pharmaceutical agent or composition that provides a therapeutic benefit to an animal. For example, a therapeutically effective amount improves a symptom of a disease.


Certain Embodiments

The present disclosure provides the following non-limiting numbered embodiments:


Embodiment 1. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is at least 80% complementary to an equal length portion of an APOE RNA, and wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.


Embodiment 2. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides, wherein the nucleobase sequence of the modified oligonucleotide comprises at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 nucleobases of any of SEQ ID NOS: 20-2551 or 2934; wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.


Embodiment 3. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides, wherein the nucleobase sequence of the modified oligonucleotide comprises at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, or at least 23 nucleobases of any of SEQ ID NOS: 2552-2742 or 2935-2944; wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.


Embodiment 4. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is complementary to at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21 contiguous nucleobases of:

    • an equal length portion of nucleobases 1155-1178 of SEQ ID NO: 2;
    • an equal length portion of nucleobases 1207-1230 of SEQ ID NO: 2; or
    • an equal length portion of nucleobases 1259-1295 of SEQ ID NO: 2;
    • wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.


Embodiment 5. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is complementary to at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21 contiguous nucleobases of:

    • an equal length portion of nucleobases 1135-1166 of SEQ ID NO: 2; or
    • an equal length portion of nucleobases 1255-1294 of SEQ ID NO: 2;
    • wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.


Embodiment 6. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is complementary to at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21 contiguous nucleobases of an equal length portion of nucleobases 1255-1295 of SEQ ID NO: 2, wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.


Embodiment 7. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22 or at least 23 contiguous nucleobases of any of the nucleobase sequences of:

    • SEQ ID NOS: 70, 71, 169, 170, 447, 448, 543, 552, 553, 919, 1061, 1132, 1938, 1991, 2066, 2154, 2226, 2259, 2324, 2417, or 2486;
    • SEQ ID NOS: 460, 461, 462, 563, 564, 565, 566, 990, 1469, 1572, 1653, 1746, 1914, 1955, 2026, 2110, 2211, 2247, 2344, 2393, or 2481; or
    • SEQ ID NOS: 77, 475, 476, 477, 478, 479, 480, 481, 482, 483, 578, 579, 580, 581, 582, 622, 623, 624, 625, 626, 627, 1063, 1193, 1231, 1232, 1300, 1305, 1378, 1409, 1493, 1526, 1564, 1576, 1678, 1679, 1695, 1827, 1870, 1921, 1928, 1950, 1982, 2012, 2046, 2051, 2074, 2088, 2118, 2158, 2169, 2208, 2223, 2232, 2255, 2321, 2343, 2380, 2436, 2449, or 2451.


Embodiment 8. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22 or at least 23 contiguous nucleobases of any of the nucleobase sequences of:

    • SEQ ID NOS: 2600, 2601, 2604, 2605, 2606, 2607, 2608, 2609, 2610, or 2613; or
    • SEQ ID NOS: 2720, 2721, 2722, 2726, 2727, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, or 2740.


Embodiment 9. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22 or at least 23 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 76, 77, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 576, 578, 579, 580, 581, 582, 622, 623, 624, 625, 626, 627, 1063, 1193, 1231, 1232, 1300, 1305, 1378, 1409, 1493, 1526, 1564, 1576, 1678, 1679, 1695, 1701, 1792, 1827, 1870, 1886, 1906, 1921, 1928, 1950, 1982, 2012, 2046, 2051, 2074, 2088, 2118, 2158, 2169, 2208, 2223, 2232, 2255, 2321, 2343, 2370, 2380, 2436, 2449, 2490, 2451, 2720, 2721, 2722, 2725, 2726, 2727, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2740, 2935 or 2936.


Embodiment 10. The oligomeric compound of any of embodiments 1-9, wherein the nucleobase sequence of the modified oligonucleotide is at least 80%, 85%, 90%, 95%, or 100% complementary to any of the nucleobase sequences of SEQ ID NOs: 1-6 when measured across the entire nucleobase sequence of the modified oligonucleotide.


Embodiment 11. The oligomeric compound of any of embodiments 1-10, wherein at least one nucleoside of the modified oligonucleotide is a modified nucleoside.


Embodiment 12. The oligomeric compound of embodiment 11, wherein at least one modified nucleoside of the modified oligonucleotide comprises a modified sugar moiety.


Embodiment 13. The oligomeric compound of embodiment 12, wherein the modified sugar moiety comprises a bicyclic sugar moiety.


Embodiment 14. The oligomeric compound of embodiment 13, wherein the bicyclic sugar moiety comprises a 2′-4′ bridge selected from —O—CH2— and —O—CH(CH3)—.


Embodiment 15. The oligomeric compound of any of embodiments 11-14, wherein at least one modified nucleoside of the modified oligonucleotide comprises a non-bicyclic modified sugar moiety.


Embodiment 16. The oligomeric compound of embodiment 15, wherein at least one modified nucleoside of the modified oligonucleotide comprises a bicyclic sugar moiety having a 2′-4′ bridge and at least one nucleoside comprising a non-bicyclic modified sugar moiety.


Embodiment 17. The oligomeric compound of embodiment 15 or 16, wherein the non-bicyclic modified sugar moiety is a 2′-O(CH2)2—OCH3 ribosyl modified sugar moiety, a 2′-OMe modified sugar moiety, or a 2′-F modified sugar moiety.


Embodiment 18. The oligomeric compound of any of embodiments 1-17, wherein the modified oligonucleotide comprises at least one modified nucleoside comprising a sugar surrogate.


Embodiment 19. The oligomeric compound of embodiment 18, wherein at least one modified nucleoside of the modified oligonucleotide comprises a sugar surrogate selected from morpholino and PNA.


Embodiment 20. The oligomeric compound of any of embodiments 1-19, wherein the modified oligonucleotide comprises at least one modified internucleoside linkage.


Embodiment 21. The oligomeric compound of embodiment 20, wherein each internucleoside linkage of the modified oligonucleotide is a modified internucleoside linkage.


Embodiment 22. The oligomeric compound of embodiment 20 or 21, wherein at least one internucleoside linkage is a phosphorothioate internucleoside linkage.


Embodiment 23. The oligomeric compound of embodiment 20 or 22, wherein the modified oligonucleotide comprises at least one phosphodiester internucleoside linkage.


Embodiment 24. The oligomeric compound of any of embodiments 20, 22, or 23, wherein each internucleoside linkage is independently selected from a phosphodiester internucleoside linkage or a phosphorothioate internucleoside linkage.


Embodiment 25. The oligomeric compound of any of embodiments 20 or 22-24, wherein at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 internucleoside linkages of the modified oligonucleotide are phosphorothioate internucleoside linkages.


Embodiment 26. The oligomeric compound of any of embodiments 20-25, wherein each internucleoside linkage is a phosphorothioate internucleoside linkage.


Embodiment 27. The oligomeric compound of any of embodiments 20 or 22-26, wherein the internucleoside linkage motif of the modified oligonucleotide is selected from: 5′-sssssssssssssssssss-3′, 5′-soossssssssssooss-3′, 5′-sooosssssssssssooss-3′, 5′-soossssssssssos-3′, 5′-ssoooooooooooooooooss-3′, 5′-ssooooooooooooooooss-3′, 5′-soooossssssssssooss-3′, 5′-sossssssssssssssoss-3′, 5′-soosssssssssooss-3′, and 5′-sooooossssssssssoss-3′; wherein each ‘o’ represents a phosphodiester internucleoside linkage and each ‘s’ represents a phosphorothioate internucleoside linkage.


Embodiment 28. The oligomeric compound of any of embodiments 1-27, wherein the modified oligonucleotide comprises a modified nucleobase.


Embodiment 29. The oligomeric compound of embodiment 28, wherein the modified nucleobase is a 5-methyl cytosine.


Embodiment 30. The oligomeric compound of any of embodiments 1-29, wherein the oligomeric compound comprises a modified oligonucleotide consisting of 12-22, 12-20, 14-18, 14-20, 15-17, 15-25, 16-20, 16-18, 18-22, 18-25, 18-20, 20-25, or 21-23 linked nucleosides, or a pharmaceutically acceptable salt thereof.


Embodiment 31. The oligomeric compound of embodiment 30, which is a pharmaceutically acceptable salt comprising one or more cations selected from sodium, potassium, calcium, and magnesium.


Embodiment 32. The oligomeric compound of any of embodiments 1-31, wherein the modified oligonucleotide consists of 16 or 18 linked nucleosides.


Embodiment 33. The oligomeric compound of any of embodiments 1-31, wherein the modified oligonucleotide consists of 20 linked nucleosides.


Embodiment 34. The oligomeric compound of any of embodiments 1-31, wherein the modified oligonucleotide consists of 21 linked nucleosides.


Embodiment 35. The oligomeric compound of any of embodiments 1-31, wherein the modified oligonucleotide consists of 23 linked nucleosides.


Embodiment 36. The oligomeric compound of any of embodiments 1-35, wherein the oligomeric compound is an RNase H compound.


Embodiment 37. The oligomeric compound of embodiment 36, wherein the modified oligonucleotide is a gapmer.


Embodiment 38. The oligomeric compound of any of embodiments 1-37, wherein the modified oligonucleotide has a sugar motif comprising:

    • a 5′-region consisting of 1-6 linked 5′-region nucleosides;
    • a central region consisting of 6-10 linked central region nucleosides; and
    • a 3′-region consisting of 1-6 linked 3′-region nucleosides;
    • wherein the 3′-most nucleoside of the 5′-region and the 5′-most nucleoside of the 3′-region comprise modified sugar moieties, and
    • each of the central region nucleosides is selected from a nucleoside comprising a 2′-β-D-deoxyribosyl sugar moiety and a nucleoside comprising a 2′-substituted sugar moiety, wherein the central region comprises at least six nucleosides comprising a 2′-β-D-deoxyribosyl sugar moiety and no more than two nucleosides comprising a 2′-substituted sugar moiety.


Embodiment 39. The oligomeric compound of any of embodiments 1-34 or 36-37, wherein the modified oligonucleotide has a sugar motif comprising:

    • a 5′-region consisting of 1-6 linked 5′-region nucleosides;
    • a central region consisting of 6-10 linked central region nucleosides; and
    • a 3′-region consisting of 1-6 linked 3′-region nucleosides; wherein
    • each of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a modified sugar moiety and each of the central region nucleosides comprises a 2′-β-D-deoxyribosyl sugar moiety.


Embodiment 40. The oligomeric compound of embodiment 39, wherein the modified oligonucleotide has a sugar motif comprising:

    • a 5′-region consisting of 5 linked 5′-region nucleosides;
    • a central region consisting of 10 linked central region nucleosides; and
    • a 3′-region consisting of 5 linked 3′-region nucleosides; wherein
    • each of the 5′-region nucleosides and each of the 3′-region nucleosides comprises either a cEt modified sugar moiety or a 2′-O(CH2)2—OCH3 ribosyl modified sugar moiety, and each of the central region nucleosides comprises a 2′-β-D-deoxyribosyl sugar moiety.


Embodiment 41. The oligomeric compound of embodiment 39 or embodiment 40, wherein the modified oligonucleotide has a sugar motif comprising:

    • a 5′-region consisting of 5 linked 5′-region nucleosides;
    • a central region consisting of 10 linked central region nucleosides; and
    • a 3′-region consisting of 5 linked 3′-region nucleosides; wherein
    • each of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a 2′-O(CH2)2—OCH3 ribosyl modified sugar moiety, and each of the central region nucleosides comprises a 2′-β-D-deoxyribosyl sugar moiety.


Embodiment 42. The oligomeric compound of any of embodiments 1-35, wherein the oligomeric compound is an RNAi agent.


Embodiment 43. The oligomeric compound of any of embodiments 1-42, wherein the oligomeric compound comprises an antisense RNAi oligonucleotide comprising a targeting region comprising at least 15 contiguous nucleobases, wherein the targeting region is at least 90% complementary to an equal-length portion of an APOE RNA.


Embodiment 44. The oligomeric compound of embodiment 43, wherein the targeting region of the antisense RNAi oligonucleotide is at least 95% complementary or is 100% complementary to the equal length portion of an APOE RNA.


Embodiment 45. The oligomeric compound of any of embodiments 43-44, wherein the targeting region of the antisense RNAi oligonucleotide comprises at least 19, 20, 21, or 25 contiguous nucleobases.


Embodiment 46. The oligomeric compound of any of embodiments 43-45, wherein the APOE RNA has the nucleobase sequence of any of SEQ ID NOs: 1-6.


Embodiment 47. The oligomeric compound of any of embodiments 43-46, wherein at least one nucleoside of the antisense RNAi oligonucleotide comprises a modified sugar moiety selected from: 2′-F, 2′-OMe, 2′-O(CH2)2—OCH3, 2′-NMA, LNA, and cEt; or a sugar surrogate selected from GNA, and UNA.


Embodiment 48. The oligomeric compound of any of embodiments 43-47, wherein each nucleoside of the antisense RNAi oligonucleotide comprises a modified sugar moiety or a sugar surrogate.


Embodiment 49. The oligomeric compound of any of embodiments 43-48, wherein at least 80%, at least 90%, or 100% of the nucleosides of the antisense RNAi oligonucleotide comprises a modified sugar moiety selected from 2′-F and 2′-OMe.


Embodiment 50. The oligomeric compound of any of embodiments 43-49, comprising a stabilized phosphate group attached to the 5′ position of the 5′-most nucleoside of the antisense RNAi oligonucleotide.


Embodiment 51. The oligomeric compound of embodiment 50, wherein the stabilized phosphate group comprises a cyclopropyl phosphonate or an (E)-vinyl phosphonate.


Embodiment 52. The oligomeric compound of any of embodiments 1-51, wherein the oligomeric compound is a single-stranded oligomeric compound.


Embodiment 53. The oligomeric compound of any of embodiments 1-52, consisting of the modified oligonucleotide or the RNAi antisense oligonucleotide.


Embodiment 54. The oligomeric compound of any of embodiments 1-53, comprising a conjugate group comprising a conjugate moiety and a conjugate linker.


Embodiment 55. The oligomeric compound of embodiment 54, wherein the conjugate linker consists of a single bond.


Embodiment 56. The oligomeric compound of embodiment 54, wherein the conjugate linker is cleavable.


Embodiment 57. The oligomeric compound of embodiment 54, wherein the conjugate linker comprises 1-3 linker-nucleosides.


Embodiment 58. The oligomeric compound of any of embodiments 54-57, wherein the conjugate group is attached to the 5′-end of the modified oligonucleotide or the antisense RNAi oligonucleotide.


Embodiment 59. The oligomeric compound of any of embodiments 54-57, wherein the conjugate group is attached to the 3′-end of the modified oligonucleotide or the antisense RNAi oligonucleotide.


Embodiment 60. The oligomeric compound of any of embodiments 1-59, comprising a terminal group.


Embodiment 61. The oligomeric compound of any of embodiments 1-56 or 58-60, wherein the oligomeric compound does not comprise linker-nucleosides.


Embodiment 62. An oligomeric duplex, comprising a first oligomeric compound comprising an antisense RNAi oligonucleotide of any of embodiments 43-61 and a second oligomeric compound comprising a sense RNAi oligonucleotide consisting of 17 to 30 linked nucleosides, wherein the nucleobase sequence of the sense RNAi oligonucleotide comprises an antisense-hybridizing region comprising least 15 contiguous nucleobases wherein the antisense-hybridizing region is at least 90% complementary to an equal length portion of the antisense RNAi oligonucleotide.


Embodiment 63. The oligomeric duplex of embodiment 62, wherein the sense RNAi oligonucleotide consists of 18-25, 20-25, or 21-23 linked nucleosides.


Embodiment 64. The oligomeric duplex of embodiment 62, wherein the sense RNAi oligonucleotide consists of 21 or 23 linked nucleosides.


Embodiment 65. The oligomeric duplex of any of embodiments 62-64, wherein 1-4 3′-most nucleosides of the antisense or the sense RNAi oligonucleotide are overhanging nucleosides.


Embodiment 66. The oligomeric duplex of any of embodiments 62-65, wherein 1-4 5′-most nucleosides of the antisense or sense RNAi oligonucleotide are overhanging nucleosides.


Embodiment 67. The oligomeric duplex of any of embodiments 62-64, wherein the duplex is blunt ended at the 3′-end of the antisense RNAi oligonucleotide.


Embodiment 68. The oligomeric duplex of any of embodiments 62-64, wherein the duplex is blunt ended at the 5′-end of the antisense RNAi oligonucleotide.


Embodiment 69. The oligomeric duplex of any of embodiments 62-68, wherein at least one nucleoside of the sense RNAi oligonucleotide comprises a modified sugar moiety selected from: 2′-F, 2′-OMe, LNA, cEt, or a sugar surrogate selected from GNA, and UNA.


Embodiment 70. The oligomeric duplex of embodiment 69, wherein each nucleoside of the sense RNAi oligonucleotide comprises a modified sugar moiety or a sugar surrogate.


Embodiment 71. The oligomeric duplex of embodiment 70, wherein at least 80%, at least 90%, or 100% of the nucleosides of the sense RNAi oligonucleotide comprises a modified sugar moiety selected from 2′-F and 2′-OMe.


Embodiment 72. The oligomeric duplex of any of embodiments 62-71, wherein at least one nucleoside of the sense RNAi oligonucleotide comprises a modified nucleobase.


Embodiment 73. The oligomeric duplex of any of embodiments 62-72, wherein at least one internucleoside linkage of the sense RNAi oligonucleotide is a modified internucleoside linkage.


Embodiment 74. The oligomeric duplex of embodiment 73, wherein at least one internucleoside linkage of the sense RNAi oligonucleotide is a phosphorothioate internucleoside linkage.


Embodiment 75. The oligomeric duplex of any of embodiments 62-74, wherein the oligomeric duplex comprises 1-5 abasic sugar moieties attached to one or both ends of the antisense or sense RNA oligonucleotide.


Embodiment 76. The oligomeric duplex of any of embodiments 62-75, consisting of the antisense RNAi oligonucleotide and the sense RNAi oligonucleotide.


Embodiment 77. The oligomeric duplex of any of embodiments 62-75, wherein the second oligomeric compound comprises a conjugate group comprising a conjugate moiety and a conjugate linker.


Embodiment 78. The oligomeric duplex of embodiment 77, wherein the conjugate linker consists of a single bond.


Embodiment 79. The oligomeric duplex of embodiment 78, wherein the conjugate linker is cleavable.


Embodiment 80. The oligomeric duplex of embodiment 78, wherein the conjugate linker comprises 1-3 linker-nucleosides.


Embodiment 81. The oligomeric duplex of any of embodiments 78-80, wherein the conjugate group is attached to the 5′-end of the sense RNAi oligonucleotide.


Embodiment 82. The oligomeric duplex of any of embodiments 78-80, wherein the conjugate group is attached to the 3′-end of the sense RNAi oligonucleotide.


Embodiment 83. The oligomeric duplex of any of embodiments 78-80, wherein the conjugate group is attached via the 2′ position of a ribosyl sugar moiety at an internal position of the sense RNAi oligonucleotide.


Embodiment 84. The oligomeric compound of any of embodiments 54-59 or the oligomeric duplex of any of embodiments 77-83, wherein at least one conjugate group comprises a C16 alkyl group.


Embodiment 85. The oligomeric duplex of embodiment 62, wherein the second oligomeric compound comprises a terminal group.


Embodiment 86. An antisense agent comprising an antisense compound, wherein the antisense compound is the oligomeric compound of any of embodiments 1-61.


Embodiment 87. The antisense agent of embodiment 86, wherein the antisense agent is the oligomeric duplex of any of embodiments 62-85.


Embodiment 88. The antisense agent of embodiment 86 or embodiment 87, wherein the antisense agent is:

    • i) an RNase H agent capable of reducing the amount of APOE nucleic acid through the activation of RNase H; or
    • ii) an RNAi agent capable of reducing the amount of APOE nucleic acid through the activation of RISC/Ago2.


Embodiment 89. The antisense agent of any of embodiments 86-88, wherein the antisense agent comprises a conjugate group, wherein the conjugate group comprises a cell-targeting moiety.


Embodiment 90. A chirally enriched population of oligomeric compounds of any of embodiments 1-61, wherein the population is enriched for modified oligonucleotides comprising at least one particular phosphorothioate internucleoside linkage having a particular stereochemical configuration.


Embodiment 91. The chirally enriched population of embodiment 90, wherein the population is enriched for modified oligonucleotides comprising at least one particular phosphorothioate internucleoside linkage having the (Sp) or (Rp) configuration.


Embodiment 92. The chirally enriched population of embodiment 90, wherein the population is enriched for modified oligonucleotides having a particular, independently selected stereochemical configuration at each phosphorothioate internucleoside linkage.


Embodiment 93. The chirally enriched population of embodiment 90, wherein the population is enriched for modified oligonucleotides having the (Rp) configuration at one particular phosphorothioate internucleoside linkage and the (Sp) configuration at each of the remaining phosphorothioate internucleoside linkages.


Embodiment 94. The chirally enriched population of embodiment 90, wherein the population is enriched for modified oligonucleotides having at least 3 contiguous phosphorothioate internucleoside linkages in the Sp, Sp, and Rp configurations, in the 5′ to 3′ direction.


Embodiment 95. A population of oligomeric compounds of any of embodiments 1-61, wherein all of the phosphorothioate internucleoside linkages of the modified oligonucleotide are stereorandom.


Embodiment 96. A pharmaceutical composition comprising an oligomeric compound of any of embodiments 1-61, an oligomeric duplex of any of embodiments 62-85, an antisense agent of any of embodiments 86-89, or a population of any of embodiments 90-95, and a pharmaceutically acceptable carrier or diluent.


Embodiment 97. The pharmaceutical composition of embodiment 96, wherein the pharmaceutically acceptable diluent is artificial cerebral spinal fluid (aCSF), sterile saline, or PBS.


Embodiment 98. The pharmaceutical composition of embodiment 97, wherein the pharmaceutical composition consists essentially of the modified oligonucleotide, the oligomeric duplex, the antisense agent, or the population and PBS or aCSF.


Embodiment 99. A method comprising administering to a subject an oligomeric compound of any of embodiments 1-61, an oligomeric duplex of any of embodiments 62-85, an antisense agent of any of embodiments 86-89, a population of any of embodiments 90-95, or a pharmaceutical composition of any of embodiments 96-98.


Embodiment 100. A method of treating a disease associated with APOE comprising administering to a subject having or at risk for developing a disease associated with APOE a therapeutically effective amount of an oligomeric compound of any of embodiments 1-61, an oligomeric duplex of any of embodiments 62-85, an antisense agent of any of embodiments 86-89, a population of any of embodiments 90-95, or a pharmaceutical composition according to any of embodiments 96-98; and thereby treating the disease associated with APOE.


Embodiment 101. The method of embodiment 100, wherein the APOE-associated disease is Alzheimer's Disease.


Embodiment 102. The method of any of embodiments 99-101, wherein at least one symptom or hallmark of the APOE-associated disease is ameliorated.


Embodiment 103. The method of embodiment 102, wherein the symptom or hallmark is cognitive impairment, progressive memory loss, behavioral abnormality, dementia, difficulty performing daily activities, amyloid plaques, neurofibrillary tangles, or neuroinflammation.


Embodiment 104. The method of any of embodiments 100-103, wherein administering an oligomeric compound of any of embodiments 1-61, an oligomeric duplex of any of embodiments 62-85, an antisense agent of any of embodiments 86-89, a population of any of embodiments 90-95, or a pharmaceutical composition according to any of embodiments 96-98 reduces cognitive impairment, behavioral abnormality, dementia, difficulty performing daily activities, amyloid plaques, neurofibrillary tangles, or neuroinflammation, or slows memory loss in the subject.


Embodiment 105. The method of any of embodiments 99-104, wherein the subject is human.


Embodiment 106. A method of reducing expression of APOE in a cell comprising contacting the cell with an oligomeric compound of any of embodiments 1-61, an oligomeric duplex of any of embodiments 62-85, an antisense agent of any of embodiments 86-89, a population of any of embodiments 90-95, or a pharmaceutical composition according to any of embodiments 96-98.


Embodiment 107. The method of embodiment 106, wherein the cell is a neuron or a glial cell, optionally wherein the cell is an astrocyte or microglial cell.


Embodiment 108. The method of embodiment 106 or embodiment 107, wherein the cell is a human cell.


Embodiment 109. Use of an oligomeric compound of any of embodiments 1-61, an oligomeric duplex of any of embodiments 62-85, an antisense agent of any of embodiments 86-89, a population of any of embodiments 90-95, or a pharmaceutical composition according to any of embodiments 96-98 for treating a disease associated with APOE.


Embodiment 110. Use of an oligomeric compound of any of embodiments 1-61, an oligomeric duplex of any of embodiments 62-85, an antisense agent of any of embodiments 86-89, a population of any of embodiments 90-95, or a pharmaceutical composition according to any of embodiments 96-98 in the manufacture of a medicament for treating a disease associated with APOE.


Embodiment 111. The use of embodiment 109 or embodiment 110, wherein the APOE-associated disease is Alzheimer's Disease.


I. Certain Oligonucleotides


In certain embodiments, provided herein are oligomeric compounds comprising oligonucleotides, which consist of linked nucleosides. Oligonucleotides may be unmodified oligonucleotides (RNA or DNA) or may be modified oligonucleotides. Modified oligonucleotides comprise at least one modification relative to unmodified RNA or DNA. That is, modified oligonucleotides comprise at least one modified nucleoside (comprising a modified sugar moiety and/or a modified nucleobase) and/or at least one modified internucleoside linkage. In certain embodiments, provided herein are RNAi agents comprising antisense RNAi oligonucleotides complementary to APOE and optionally sense RNAi oligonucleotides complementary to the antisense RNAi oligonucleotides. Antisense RNAi oligonucleotides and sense RNAi oligonucleotides typically comprise at least one modified nucleoside and/or at least one modified internucleoside linkage. Certain modified nucleosides and modified internucleoside linkages suitable for use in modified oligonucleotides are described below.


A. Certain Modified Nucleosides


Modified nucleosides comprise a modified sugar moiety or a modified nucleobase or both a modified sugar moiety and a modified nucleobase. In certain embodiments, modified nucleosides comprising the following modified sugar moieties and/or the following modifed nucleobases may be incorporated into antisense RNAi oligonucleotides and/or sense RNAi oligonucleotides.


1. Certain Sugar Moieties


In certain embodiments, modified sugar moieties are non-bicyclic modified sugar moieties. In certain embodiments, modified sugar moieties are bicyclic or tricyclic sugar moieties. In certain embodiments, modified sugar moieties are sugar surrogates. Such sugar surrogates may comprise one or more substitutions corresponding to those of other types of modified sugar moieties.


In certain embodiments, modified sugar moieties are non-bicyclic modified sugar moieties comprising a furanosyl ring with one or more substituent groups none of which bridges two atoms of the furanosyl ring to form a bicyclic structure. Such non bridging substituents may be at any position of the furanosyl, including but not limited to substituents at the 2′, 3′, 4′, and/or 5′ positions. In certain embodiments one or more non-bridging substituent of non-bicyclic modified sugar moieties is branched. Examples of 2′-substituent groups suitable for non-bicyclic modified sugar moieties include but are not limited to: 2′-F, 2′-OCH3 (“OMe” or “O-methyl”), and 2′-O(CH2)2OCH3 (“MOE”). In certain embodiments, 2′-substituent groups are selected from among: halo, allyl, amino, azido, SH, CN, OCN, CF3, OCF3, O—C1-C10 alkoxy, O—C1-C10 substituted alkoxy, O—C1-C10 alkyl, O—C1-C10 substituted alkyl, S-alkyl, N(Rm)-alkyl, O-alkenyl, S-alkenyl, N(Rm)-alkenyl, O-alkynyl, S-alkynyl, N(Rm)-alkynyl, O-alkylenyl-O-alkyl, alkynyl, alkaryl, aralkyl, O-alkaryl, O-aralkyl, O(CH2)2SCH3, O(CH2)2ON(Rm)(Rn) or OCH2C(═O)—N(Rm)(Rn), where each Rm and Rn is, independently, H, an amino protecting group, or substituted or unsubstituted C1-C10 alkyl, —O(CH2)2ON(CH3)2 (“DMAOE”), 2′-OCH2OCH2N(CH2)2 (“DMAEOE”), and the 2′-substituent groups described in Cook et al., U.S. Pat. No. 6,531,584; Cook et al., U.S. Pat. No. 5,859,221; and Cook et al., U.S. Pat. No. 6,005,087. Certain embodiments of these 2′-substituent groups can be further substituted with one or more substituent groups independently selected from among: hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro (NO2), thiol, thioalkoxy, thioalkyl, halogen, alkyl, aryl, alkenyl and alkynyl. In certain embodiments, non-bicyclic modified sugar moieties comprise a substituent group at the 3′-position. Examples of substituent groups suitable for the 3′-position of modified sugar moieties include but are not limited to alkoxy (e.g., methoxy), alkyl (e.g., methyl, ethyl). In certain embodiments, non-bicyclic modified sugar moieties comprise a substituent group at the 4′-position. Examples of 4′-substituent groups suitable for non-bicyclic modified sugar moieties include but are not limited to alkoxy (e.g., methoxy), alkyl, and those described in Manoharan et al., WO 2015/106128. Examples of 5′-substituent groups suitable for non-bicyclic modified sugar moieties include but are not limited to: 5′-methyl (R or S), 5′-vinyl, ethyl, and 5′-methoxy. In certain embodiments, non-bicyclic modified sugar moieties comprise more than one non-bridging sugar substituent, for example, 2′-F-5′-methyl sugar moieties and the modified sugar moieties and modified nucleosides described in Migawa et al., WO 2008/101157 and Rajeev et al., US2013/0203836).


In certain embodiments, a 2′-substituted non-bicyclic modified nucleoside comprises a sugar moiety comprising a non-bridging 2′-substituent group selected from: F, NH2, N3, OCF3, OCH3, O(CH2)3NH2, CH2CH═CH2, OCH2CH═CH2, OCH2CH2OCH3, O(CH2)2SCH3, O(CH2)2ON(Rm)(Rn), O(CH2)2O(CH2)2N(CH3)2, and N-substituted acetamide (OCH2C(═O)—N(Rm)(Rn)), where each Rm and Rn is, independently, H, an amino protecting group, or substituted or unsubstituted C1-C10 alkyl.


In certain embodiments, a 2′-substituted nucleoside non-bicyclic modified nucleoside comprises a sugar moiety comprising a non-bridging 2′-substituent group selected from: F, OCF3, OCH3, OCH2CH2OCH3, O(CH2)2SCH3, O(CH2)2N(CH3)2, O(CH2)2O(CH2)2N(CH3)2, O(CH2)2ON(CH3)2 (“DMAOE”), OCH2OCH2N(CH2)2 (“DMAEOE”) and OCH2C(═O)—N(H)CH3 (“NMA”).


In certain embodiments, a 2′-substituted non-bicyclic modified nucleoside comprises a sugar moiety comprising a non-bridging 2′-substituent group selected from: F, OCH3, and OCH2CH2OCH3.


In naturally occurring nucleic acids, sugars are linked to one another 3′ to 5′. In certain embodiments, oligonucleotides include one or more nucleoside or sugar moiety linked at an alternative position, for example at the 2′ or inverted 5′ to 3′. For example, where the linkage is at the 2′ position, the 2′-substituent groups may instead be at the 3′-position.


Certain modified sugar moieties comprise a substituent that bridges two atoms of the furanosyl ring to form a second ring, resulting in a bicyclic sugar moiety. Nucleosides comprising such bicyclic sugar moieties have been referred to as bicyclic nucleosides (BNAs), locked nucleosides, or conformationally restricted nucleotides (CRN). Certain such compounds are described in US Patent Publication No. 2013/0190383; and PCT publication WO 2013/036868. In certain such embodiments, the bicyclic sugar moiety comprises a bridge between the 4′ and the 2′ furanose ring atoms. In certain embodiments, the furanose ring is a ribose ring. Examples of such 4′ to 2′ bridging sugar substituents include but are not limited to: 4′-CH2-2′, 4′-(CH2)2-2′, 4′-(CH2)3-2′, 4′-CH2—O-2′ (“LNA”), 4′-CH2—S-2′, 4′-(CH2)2—O-2′ (“ENA”), 4′-CH(CH3)—O-2′ (referred to as “constrained ethyl” or “cEt” when in the S configuration), 4′-CH2—O—CH2-2′, 4′-CH2—N(R)-2′, 4′-CH(CH2OCH3)—O-2′ (“constrained MOE” or “cMOE”) and analogs thereof (see, e.g., Seth et al., U.S. Pat. No. 7,399,845, Bhat et al., U.S. Pat. No. 7,569,686, Swayze et al., U.S. Pat. No. 7,741,457, and Swayze et al., U.S. Pat. No. 8,022,193), 4′-C(CH3)(CH3)—O-2′ and analogs thereof (see, e.g., Seth et al., U.S. Pat. No. 8,278,283), 4′-CH2—N(OCH3)-2′ and analogs thereof (see, e.g., Prakash et al., U.S. Pat. No. 8,278,425), 4′-CH2—O—N(CH3)-2′ (see, e.g., Allerson et al., U.S. Pat. No. 7,696,345 and Allerson et al., U.S. Pat. No. 8,124,745), 4′-CH2—C(H)(CH3)-2′ (see, e.g., Zhou, et al., J. Org. Chem., 2009, 74, 118-134), 4′-CH2—C(═CH2)-2′ and analogs thereof (see e.g., Seth et al., U.S. Pat. No. 8,278,426), 4′-C(RaRb)—N(R)—O-2′, 4′-C(RaRb)—O—N(R)-2′, 4′-CH2—O—N(R)-2′, and 4′-CH2—N(R)—O-2′, wherein each R, Ra, and Rb, is, independently, H, a protecting group, or C1-C12 alkyl (see, e.g. Imanishi et al., U.S. Pat. No. 7,427,672).


In certain embodiments, such 4′ to 2′ bridges independently comprise from 1 to 4 linked groups independently selected from: —[C(Ra)(Rb)]n-, —[C(Ra)(Rb)]n-O—, C(Ra)═C(Rb)—, C(Ra)═N—, C(═NRa)—, —C(═O)—, —C(═S)—, —O—, —Si(Ra)2-, —S(═O)x-, and N(Ra)—;

    • wherein:
    • x is 0, 1, or 2;
    • n is 1, 2, 3, or 4;
    • each Ra and Rb is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-J1), or sulfoxyl (S(═O)-J1); and each J1 and J2 is, independently, H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C1-C12 aminoalkyl, substituted C1-C12 aminoalkyl, or a protecting group.


Additional bicyclic sugar moieties are known in the art, see, for example: Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443, Albaek et al., J. Org. Chem., 2006, 71, 7731-7740, Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U.S.A, 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007, 129, 8362-8379; Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Wengel et al., U.S. Pat. No. 7,053,207, Imanishi et al., U.S. Pat. No. 6,268,490, Imanishi et al. U.S. Pat. No. 6,770,748, Imanishi et al., U.S. RE44,779; Wengel et al., U.S. Pat. No. 6,794,499, Wengel et al., U.S. Pat. No. 6,670,461; Wengel et al., U.S. Pat. No. 7,034,133, Wengel et al., U.S. Pat. No. 8,080,644; Wengel et al., U.S. Pat. No. 8,034,909; Wengel et al., U.S. Pat. No. 8,153,365; Wengel et al., U.S. 7,572,582; and Ramasamy et al., U.S. Pat. No. 6,525,191, Torsten et al., WO 2004/106356, Wengel et al., WO 1999/014226; Seth et al., WO 2007/134181; Seth et al., U.S. Pat. No. 7,547,684; Seth et al., U.S. Pat. No. 7,666,854; Seth et al., U.S. Pat. No. 8,088,746; Seth et al., U.S. Pat. No. 7,750,131; Seth et al., U.S. Pat. No. 8,030,467; Seth et al., U.S. Pat. No. 8,268,980; Seth et al., U.S. Pat. No. 8,546,556; Seth et al., U.S. Pat. No. 8,530,640; Migawa et al., U.S. Pat. No. 9,012,421; Seth et al., U.S. Pat. No. 8,501,805; Allerson et al., US2008/0039618; and Migawa et al., US2015/0191727.


In certain embodiments, bicyclic sugar moieties and nucleosides incorporating such bicyclic sugar moieties are further defined by isomeric configuration. For example, an LNA nucleoside (described herein) may be in the α-L configuration or in the β-D configuration.




embedded image


α-L-methyleneoxy (4′-CH2—O-2′) or α-L-LNA bicyclic nucleosides have been incorporated into oligonucleotides that showed antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372). The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, O R. et al., (2007) Mal Cane Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193). Herein, general descriptions of bicyclic nucleosides include both isomeric configurations. When the positions of specific bicyclic nucleosides (e.g., LNA or cEt) are identified in exemplified embodiments herein, they are in the β-D configuration, unless otherwise specified.


In certain embodiments, modified sugar moieties comprise one or more non-bridging sugar substituent and one or more bridging sugar substituent (e.g., 5′-substituted and 4′-2′ bridged sugars).


In certain embodiments, modified sugar moieties are sugar surrogates. In certain such embodiments, the oxygen atom of the sugar moiety is replaced, e.g., with a sulfur, carbon or nitrogen atom. In certain such embodiments, such modified sugar moieties also comprise bridging and/or non-bridging substituents as described herein. For example, certain sugar surrogates comprise a 4′-sulfur atom and a substitution at the 2′-position (see, e.g., Bhat et al., U.S. Pat. No. 7,875,733 and Bhat et al., U.S. Pat. No. 7,939,677) and/or the 5′ position.


In certain embodiments, sugar surrogates comprise rings having other than 5 atoms. For example, in certain embodiments, a sugar surrogate comprises a six-membered tetrahydropyran (“THP”). Such tetrahydropyrans may be further modified or substituted. Nucleosides comprising such modified tetrahydropyrans include but are not limited to hexitol nucleic acid (“HNA”), anitol nucleic acid (“ANA”), manitol nucleic acid (“MNA”) (see, e.g., Leumann, CJ. Bioorg. & Med. Chem. 2002, 10, 841-854), fluoro HNA:




embedded image


(“F-HNA”, see e.g. Swayze et al., U.S. Pat. No. 8,088,904; Swayze et al., U.S. Pat. No. 8,440,803; Swayze et al., U.S. Pat. No. 8,796,437; and Swayze et al., U.S. Pat. No. 9,005,906; F-HNA can also be referred to as a F-THP or 3′-fluoro tetrahydropyran), and nucleosides comprising additional modified THP compounds having the formula:




embedded image


wherein, independently, for each of said modified THP nucleoside:

    • Bx is a nucleobase moiety;
    • T3 and T4 are each, independently, an internucleoside linking group linking the modified THP nucleoside to the remainder of an oligonucleotide or one of T3 and T4 is an internucleoside linking group linking the modified THP nucleoside to the remainder of an oligonucleotide and the other of T3 and T4 is H, a hydroxyl protecting group, a linked conjugate group, or a 5′ or 3′-terminal group; q1, q2, q3, q4, q5, q6 and q7 are each, independently, H, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl, or substituted C2-C6 alkynyl; and
    • each of R1 and R2 is independently selected from among: hydrogen, halogen, substituted or unsubstituted alkoxy, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2, and CN, wherein X is O, S or NJ1, and each J1, J2, and J3 is, independently, H or C1-C6 alkyl.


In certain embodiments, modified THP nucleosides are provided wherein q1, q2, q3, q4, q5, q6 and q7 are each H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is other than H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is methyl. In certain embodiments, modified THP nucleosides are provided wherein one of R1 and R2 is F. In certain embodiments, R1 is F and R2 is H, in certain embodiments, R1 is methoxy and R2 is H, and in certain embodiments, R1 is methoxyethoxy and R2 is H.


In certain embodiments, sugar surrogates comprise rings having more than 5 atoms and more than one heteroatom. For example, nucleosides comprising morpholino sugar moieties and their use in oligonucleotides have been reported (see, e.g., Braasch et al., Biochemistry, 2002, 41, 4503-4510 and Summerton et al., U.S. Pat. No. 5,698,685; Summerton et al., U.S. Pat. No. 5,166,315; Summerton et al., U.S. Pat. No. 5,185,444; and Summerton et al., U.S. Pat. No. 5,034,506). As used here, the term “morpholino” means a sugar surrogate having the following structure:




embedded image


In certain embodiments, morpholinos may be modified, for example by adding or altering various substituent groups from the above morpholino structure. Such sugar surrogates are referred to herein as “modified morpholinos.”


In certain embodiments, sugar surrogates comprise acyclic moieites. Examples of nucleosides and oligonucleotides comprising such acyclic sugar surrogates include but are not limited to: peptide nucleic acid (“PNA”), acyclic butyl nucleic acid (see, e.g., Kumar et al., Org. Biomol. Chem., 2013, 11, 5853-5865), and nucleosides and oligonucleotides described in Manoharan et al., WO2011/133876. In certain embodiments, sugar surrogates comprise acyclic moieties. Examples of nucleosides and oligonucleotides comprising such acyclic sugar surrogates include, but are not limited to: peptide nucleic acid (“PNA”), acyclic butyl nucleic acid (see, e.g., Kumar et al., Org. Biomol. Chem., 2013, 11, 5853-5865), and nucleosides and oligonucleotides described in Manoharan et al., US2013/130378. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262. Additional PNA compounds suitable for use in the RNAi oligonucleotides of the invention are described in, for example, in Nielsen et al., Science, 1991, 254, 1497-1500.


In certain embodiments, sugar surrogates are the “unlocked” sugar structure of UNA (unlocked nucleic acid) nucleosides. UNA is an unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked sugar surrogate. Representative U.S. publications that teach the preparation of UNA include, but are not limited to, U.S. Pat. No. 8,314,227; and US Patent Publication Nos. 2013/0096289; 2013/0011922; and 2011/0313020, the entire contents of each of which are hereby incorporated herein by reference.


In certain embodiments, sugar surrogates are the glycerol as found in GNA (glycol nucleic acid) nucleosides as depicted below:




embedded image




    • where Bx represents any nucleobase.





Many other bicyclic and tricyclic sugar and sugar surrogatsare known in the art that can be used in modified nucleosides.


2. Certain Modified Nucleobases


In certain embodiments, modified oligonucleotides comprise one or more nucleoside comprising an unmodified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more nucleoside comprising a modified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more nucleoside that does not comprise a nucleobase, referred to as an abasic nucleoside. In certain embodiments, modified oligonucleotides comprise one or more inosine nucleosides (i.e., nucleosides comprising a hypoxanthine nucleobase).


In certain embodiments, modified nucleobases are selected from: 5-substituted pyrimidines, 6-azapyrimidines, alkyl or alkynyl substituted pyrimidines, alkyl substituted purines, and N—2, N—6 and 0-6 substituted purines. In certain embodiments, modified nucleobases are selected from: 5-methylcytosine, 2-aminopropyladenine, 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-N-methylguanine, 6-N-methyladenine, 2-propyladenine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-propynyl (—C≡C—CH3) uracil, 5-propynylcytosine, 6-azouracil, 6-azocytosine, 6-azothymine, 5-ribosyluracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl, 8-aza and other 8-substituted purines, 5-halo, particularly 5-bromo, 5-trifluoromethyl, 5-halouracil, and 5-halocytosine, 7-methylguanine, 7-methyladenine, 2-F-adenine, 2-aminoadenine, 7-deazaguanine, 7-deazaadenine, 3-deazaguanine, 3-deazaadenine, 6-N-benzoyladenine, 2-N-isobutyrylguanine, 4-N-benzoylcytosine, 4-N-benzoyluracil, 5-methyl 4-N-benzoylcytosine, 5-methyl 4-N-benzoyluracil, universal bases, hydrophobic bases, promiscuous bases, size-expanded bases, and fluorinated bases. Further modified nucleobases include tricyclic pyrimidines, such as 1,3-diazaphenoxazine-2-one, 1,3-diazaphenothiazine-2-one and 9-(2-aminoethoxy)-1,3-diazaphenoxazine-2-one (G-clamp). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in Merigan et al., U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz, J. I., Ed., John Wiley & Sons, 1990, 858-859; Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613; Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, Crooke, S. T. and Lebleu, B., Eds., CRC Press, 1993, 273-288; and those disclosed in Chapters 6 and 15, Antisense Drug Technology, Crooke S. T., Ed., CRC Press, 2008, 163-166 and 442-443.


Publications that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include without limitation, Manoharan et al., US2003/0158403; Manoharan et al., US2003/0175906; Dinh et al., U.S. Pat. No. 4,845,205; Spielvogel et al., U.S. Pat. No. 5,130,302; Rogers et al., U.S. Pat. No. 5,134,066; Bischofberger et al., U.S. Pat. No. 5,175,273; Urdea et al., U.S. Pat. No. 5,367,066; Benner et al., U.S. Pat. No. 5,432,272; Matteucci et al., U.S. Pat. No. 5,434,257; Gmeiner et al., U.S. Pat. No. 5,457,187; Cook et al., U.S. 5,459,255; Froehler et al., U.S. Pat. No. 5,484,908; Matteucci et al., U.S. Pat. No. 5,502,177; Hawkins et al., U.S. Pat. No. 5,525,711; Haralambidis et al., U.S. Pat. No. 5,552,540; Cook et al., U.S. Pat. No. 5,587,469; Froehler et al., U.S. Pat. No. 5,594,121; Switzer et al., U.S. Pat. No. 5,596,091; Cook et al., U.S. Pat. No. 5,614,617; Froehler et al., U.S. Pat. No. 5,645,985; Cook et al., U.S. Pat. No. 5,681,941; Cook et al., U.S. Pat. No. 5,811,534; Cook et al., U.S. Pat. No. 5,750,692; Cook et al., U.S. Pat. No. 5,948,903; Cook et al., U.S. Pat. No. 5,587,470; Cook et al., U.S. Pat. No. 5,457,191; Matteucci et al., U.S. Pat. No. 5,763,588; Froehler et al., U.S. Pat. No. 5,830,653; Cook et al., U.S. Pat. No. 5,808,027; Cook et al., U.S. Pat. No. 6,166,199; and Matteucci et al., U.S. Pat. No. 6,005,096.


3. Certain Modified Internucleoside Linkages


The naturally occurring internucleoside linkage of RNA and DNA is a 3′ to 5′ phosphodiester linkage. In certain embodiments, nucleosides of modified oligonucleotides may be linked together using one or more modified internucleoside linkages. The two main classes of internucleoside linking groups are defined by the presence or absence of a phosphorus atom. Representative phosphorus-containing internucleoside linkages include but are not limited to phosphates, which contain a phosphodiester bond (“P═O”) (also referred to as unmodified or naturally occurring linkages), phosphotriesters, methylphosphonates, phosphoramidates, and phosphorothioates (“P═S”), and phosphorodithioates (“HS-P═S”). Representative non-phosphorus containing internucleoside linking groups include but are not limited to methylenemethylimino (—CH2—N(CH3)—O—CH2—), thiodiester, thionocarbamate (—O—C(═O)(NH)—S—); siloxane (—O—SiH2—O—); and N,N′-dimethylhydrazine (—CH2—N(CH3)—N(CH3)—). Modified internucleoside linkages, compared to naturally occurring phosphate linkages, can be used to alter, typically increase, nuclease resistance of the oligonucleotide. In certain embodiments, internucleoside linkages having a chiral atom can be prepared as a racemic mixture, or as separate enantiomers. Methods of preparation of phosphorous-containing and non-phosphorous-containing internucleoside linkages are well known to those skilled in the art.


Representative internucleoside linkages having a chiral center include but are not limited to alkylphosphonates and phosphorothioates. Modified oligonucleotides comprising internucleoside linkages having a chiral center can be prepared as populations of modified oligonucleotides comprising stereorandom internucleoside linkages, or as populations of modified oligonucleotides comprising phosphorothioate linkages in particular stereochemical configurations. In certain embodiments, populations of modified oligonucleotides comprise phosphorothioate internucleoside linkages wherein all of the phosphorothioate internucleoside linkages are stereorandom. Such modified oligonucleotides can be generated using synthetic methods that result in random selection of the stereochemical configuration of each phosphorothioate linkage. Nonetheless, each individual phosphorothioate of each individual oligonucleotide molecule has a defined stereoconfiguration. In certain embodiments, populations of modified oligonucleotides are enriched for modified oligonucleotides comprising one or more particular phosphorothioate internucleoside linkages in a particular, independently selected stereochemical configuration. In certain embodiments, the particular configuration of the particular phosphorothioate linkage is present in at least 65% of the molecules in the population. In certain embodiments, the particular configuration of the particular phosphorothioate linkage is present in at least 70% of the molecules in the population. In certain embodiments, the particular configuration of the particular phosphorothioate linkage is present in at least 80% of the molecules in the population. In certain embodiments, the particular configuration of the particular phosphorothioate linkage is present in at least 90% of the molecules in the population. In certain embodiments, the particular configuration of the particular phosphorothioate linkage is present in at least 99% of the molecules in the population. Such chirally enriched populations of modified oligonucleotides can be generated using synthetic methods known in the art, e.g., methods described in Oka et al., JACS 125, 8307 (2003), Wan et al. Nuc. Acid. Res. 42, 13456 (2014), and WO 2017/015555. In certain embodiments, a population of modified oligonucleotides is enriched for modified oligonucleotides having at least one indicated phosphorothioate in the (Sp) configuration. In certain embodiments, a population of modified oligonucleotides is enriched for modified oligonucleotides having at least one phosphorothioate in the (Rp) configuration. In certain embodiments, modified oligonucleotides comprising (Rp) and/or (Sp) phosphorothioates comprise one or more of the following formulas, respectively, wherein “B” indicates a nucleobase:




embedded image


Unless otherwise indicated, chiral internucleoside linkages of modified oligonucleotides described herein can be stereorandom or in a particular stereochemical configuration.


Neutral internucleoside linkages include, without limitation, phosphotriesters, methylphosphonates, MMI (3′-CH2—N(CH3)—O-5′), amide-3 (3′—CH2—C(═O)—N(H)-5′), amide-4 (3′-CH2—N(H)—C(═O)-5′), formacetal (3′-O—CH2—O-5′), methoxypropyl (MOP), and thioformacetal (3′-S—CH2—O-5′). Further neutral internucleoside linkages include nonionic linkages comprising siloxane (dialkylsiloxane), carboxylate ester, carboxamide, sulfide, sulfonate ester and amides (See for example: Carbohydrate Modifications in Antisense Research; Y. S. Sanghvi and P. D. Cook, Eds., ACS Symposium Series 580; Chapters 3 and 4, 40-65). Further neutral internucleoside linkages include nonionic linkages comprising mixed N, O, S and CH2 component parts.


In certain embodiments, modified oligonucleotides (such as antisense RNAi oligonucleotides and/or sense RNAi oligonucleotides) comprise one or more inverted nucleoside, as shown below:




embedded image


wherein each Bx independently represents any nucleobase.


In certain embodiments, an inverted nucleoside is terminal (i.e., the last nucleoside on one end of an oligonucleotide) and so only one internucleoside linkage depicted above will be present. In certain such embodiments, additional features (such as a conjugate group) may be attached to the inverted nucleoside. Such terminal inverted nucleosides can be attached to either or both ends of an oligonucleotide.


In certain embodiments, such groups lack a nucleobase and are referred to herein as inverted sugar moieties. In certain embodiments, an inverted sugar moiety is terminal (i.e., attached to the last nucleoside on one end of an oligonucleotide) and so only one internucleoside linkage above will be present. In certain such embodiments, additional features (such as a conjugate group) may be attached to the inverted sugar moiety. Such terminal inverted sugar moieties can be attached to either or both ends of an oligonucleotide.


In certain embodiments, nucleic acids can be linked 2′ to 5′ rather than the standard 3′ to 5′ linkage. Such a linkage is illustrated below.




embedded image


wherein each Bx represents any nucleobase.


B. Certain Motifs


In certain embodiments, modified oligonucleotides comprise one or more modified nucleosides comprising a modified sugar moiety. In certain embodiments, modified oligonucleotides comprise one or more modified nucleosides comprising a modified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more modified internucleoside linkage. In such embodiments, the modified, unmodified, and differently modified sugar moieties, nucleobases, and/or internucleoside linkages of a modified oligonucleotide define a pattern or motif. In certain embodiments, the patterns of sugar moieties, nucleobases, and internucleoside linkages are each independent of one another. Thus, a modified oligonucleotide may be described by its sugar motif, nucleobase motif and/or internucleoside linkage motif (as used herein, nucleobase motif describes the modifications to the nucleobases independent of the sequence of nucleobases).


1. Certain Sugar Motifs


In certain embodiments, oligonucleotides comprise one or more type of modified sugar and/or unmodified sugar moiety arranged along the oligonucleotide or region thereof in a defined pattern or sugar motif. In certain instances, such sugar motifs include but are not limited to any of the sugar modifications discussed herein.


Uniformly Modified Oligonucleotides

In certain embodiments, modified oligonucleotides comprise or consist of a region having a fully modified sugar motif. In such embodiments, each nucleoside of the fully modified region of the modified oligonucleotide comprises a modified sugar moiety. In certain embodiments, each nucleoside of the entire modified oligonucleotide comprises a modified sugar moiety. In certain embodiments, modified oligonucleotides comprise or consist of a region having a fully modified sugar motif, wherein each nucleoside within the fully modified region comprises the same modified sugar moiety, referred to herein as a uniformly modified sugar motif. In certain embodiments, a fully modified oligonucleotide is a uniformly modified oligonucleotide.


Gapmer Oligonucleotides

In certain embodiments, modified oligonucleotides comprise or consist of a region having a gapmer motif, which is defined by two external regions or “wings” and a central or internal region or “gap.” The three regions of a gapmer motif (the 5′-wing, the gap, and the 3′-wing) form a contiguous sequence of nucleosides wherein at least some of the sugar moieties of the nucleosides of each of the wings differ from at least some of the sugar moieties of the nucleosides of the gap. Specifically, at least the sugar moieties of the nucleosides of each wing that are closest to the gap (the 3′-most nucleoside of the 5′-wing and the 5′-most nucleoside of the 3′-wing) differ from the sugar moiety of the neighboring gap nucleosides, thus defining the boundary between the wings and the gap (i.e., the wing/gap junction). In certain embodiments, the sugar moieties within the gap are the same as one another. In certain embodiments, the gap includes one or more nucleoside having a sugar moiety that differs from the sugar moiety of one or more other nucleosides of the gap. In certain embodiments, the sugar motifs of the two wings are the same as one another (symmetric gapmer). In certain embodiments, the sugar motif of the 5′-wing differs from the sugar motif of the 3′-wing (asymmetric gapmer).


In certain embodiments, the wings of a gapmer comprise 1-6 nucleosides. In certain embodiments, each nucleoside of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least one nucleoside of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least two nucleosides of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least three nucleosides of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least four nucleosides of each wing of a gapmer comprises a modified sugar moiety.


In certain embodiments, the gap of a gapmer comprises 7-12 nucleosides. In certain embodiments, each nucleoside of the gap of a gapmer comprises a 2′-β-D-deoxyribosyl sugar moiety. In certain embodiments, at least one nucleoside of the gap of a gapmer comprises a modified sugar moiety.


In certain embodiments, the gapmer is a deoxy gapmer. In certain embodiments, the nucleosides on the gap side of each wing/gap junction comprise 2′-deoxyribosyl sugar moieties and the nucleosides on the wing sides of each wing/gap junction comprise modified sugar moieties. In certain embodiments, each nucleoside of the gap comprises a 2′-β-D-deoxyribosyl sugar moiety. In certain embodiments, each nucleoside of each wing of a gapmer comprises a modified sugar moiety. In certain embodiments, at least one nucleoside of the gap of a gapmer comprises a modified sugar moiety. In certain embodiments, at least one nucleoside of the gap of a gapmer comprises a 2′-OMe sugar moiety.


Herein, the lengths (number of nucleosides) of the three regions of a gapmer may be provided using the notation [# of nucleosides in the 5′-wing]—[# of nucleosides in the gap]—[# of nucleosides in the 3′-wing]. Thus, a 3-10-3 gapmer consists of 3 linked nucleosides in each wing and 10 linked nucleosides in the gap. Where such nomenclature is followed by a specific modification, that modification is the modification in each sugar moiety of each wing and the gap nucleosides comprise 2′-β-D-deoxyribosyl sugar moieties. Thus, a 5-10-5 MOE gapmer consists of 5 linked 2′-MOE modified nucleosides in the 5′-wing, 10 linked 2′-β-D-deoxynucleosides in the gap, and 5 linked 2′-MOE modified nucleosides in the 3′-wing. A 3-10-3 cEt gapmer consists of 3 linked cEt nucleosides in the 5′-wing, 10 linked 2′-β-D-deoxynucleosides in the gap, and 3 linked cEt nucleosides in the 3′-wing. A 6-10-4 MOE gapmer consists of 6 linked 2′-MOE modified nucleosides in the 5′-wing, 10 linked 2′-β-D-deoxynucleosides in the gap, and 4 linked 2′-MOE modified nucleosides in the 3′-wing. A 5-8-5 gapmer consists of 5 linked nucleosides comprising a modified sugar moiety in the 5′-wing, 8 linked 2′-β-D-deoxynucleosides in the gap, and 5 linked nucleosides comprising a modified sugar moiety in the 3′-wing. A 5-8-5 mixed gapmer has at least two different modified sugar moieties in the 5′- and/or the 3′-wing.


In certain embodiments, modified oligonucleotides are 5-10-5 MOE gapmers. In certain embodiments, modified oligonucleotides are 3-10-3 BNA gapmers. In certain embodiments, modified oligonucleotides are 3-10-3 cEt gapmers. In certain embodiments, modified oligonucleotides are 3-10-3 LNA gapmers. In certain embodiments, modified oligonucleotides are 6-10-4 MOE gapmers. In certain embodiments, modified oligonucleotides are 5-8-5 MOE gapmers or 5-8-5 mixed gapmers.


In certain embodiments, modified oligonucleotides are 5-10-5 MOE gapmers that consist of 5 linked 2′-MOE modified nucleosides in the 5′-wing, 10 linked 2′-β-D-deoxynucleosides in the gap, and 5 linked 2′-MOE modified nucleosides in the 3′-wing. In certain embodiments, modified nucleosides have a sugar motif of eeeeeddddddddddeeeee, where each “e” represents a nucleoside comprising a 2′-MOE modified sugar moiety, and each “d” represents a nucleoside comprising a 2′-β-D-deoxyribosyl sugar moiety.


In certain embodiments, modified oligonucleotides are 3-10-3 cEt gapmers that consist of 3 linked cEt nucleosides in the 5′-wing, 10 linked 2′-β-D-deoxynucleosides in the gap, and 3 linked cEt nucleosides in the 3′-wing. In certain embodiments, modified nucleosides have a sugar motif of kkkddddddddddkkk, wherein each “k” represents a nucleoside comprising a cEt modified sugar moiety, and each “d” represents a nucleoside comprising a 2′-β-D-deoxyribosyl sugar moiety.


In certain embodiments, modified oligonucleotides are 6-10-4 MOE gapmers that consist of 6 linked 2′-MOE modified nucleosides in the 5′-wing, 10 linked 2′-β-D-deoxynucleosides in the gap, and 4 linked 2′-MOE modified nucleosides in the 3′-wing. In certain embodiments, modified nucleosides have a sugar motif of eeeeeeddddddddddeeee, where each “e” represents a nucleoside comprising a 2′-MOE modified sugar moiety, and each “d” represents a nucleoside comprising a 2′-β-D-deoxyribosyl sugar moiety.


In certain embodiments, modified oligonucleotides are 5-8-5 MOE gapmers that consist of 5 linked 2′-MOE modified nucleosides in the 5′-wing, 8 linked 2′-β-D-deoxynucleosides in the gap, and 5 linked 2′-MOE modified nucleosides in the 3′-wing. In certain embodiments, modified nucleosides have a sugar motif of eeeeeddddddddeeeee, where each “e” represents a nucleoside comprising a 2′-MOE modified sugar moiety, and each “d” represents a nucleoside comprising a 2′-β-D-deoxyribosyl sugar moiety.


In certain embodiments, modified oligonucleotides are 5-8-5 mixed gapmers that consist of 5 linked 2′-MOE modified nucleosides in the 5′-wing, 8 linked 2′-β-D-deoxynucleosides in the gap, and a mixture of cEt and 2′-MOE modified nucleosides in the 3′-wing. In certain embodiments, modified nucleosides have a sugar motif of eeeeeddddddddkkeee, where each “e” represents a nucleoside comprising a 2′-MOE modified sugar moiety, each “d” represents a nucleoside comprising a 2′-β-D-deoxyribosyl sugar moiety, and each “k” represents a nucleoside comprising a cEt modified sugar moiety. In certain embodiments, modified nucleosides have a sugar motif of eeeeeddddddddkeeee, where each “e” represents a nucleoside comprising a 2′-MOE modified sugar moiety, each “d” represents a nucleoside comprising a 2′-β-D-deoxyribosyl sugar moiety, and each “k” represents a nucleoside comprising a cEt modified sugar moiety.


Antisense RNAi Oligonucleotides

In certain embodiments, the sugar moiety of at least one nucleoside of an antisense RNAi oligonucleotide is a modified sugar moiety.


In certain such embodiments, at least one nucleoside of the antisense RNAi oligonucleotide comprises a 2′-OMe modified sugar moiety. In certain embodiments, at least 2 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 5 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 8 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 10 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 12 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 14 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 15 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 17 nucleosides comprise 2′-OMe modified sugar moieties. In certain such embodiments, at least 18 nucleosides comprise 2′-OMe modified sugar moieties. In certain such embodiments, at least 20 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 21 nucleosides comprise 2′-OMe modified sugar moieties. In certain such embodiments, the remainder of the nucleosides are 2′-F modified.


In certain embodiments, at least one nucleoside of the antisense RNAi oligonucleotide comprises a 2′-F modified sugar moiety. In certain embodiments, at least 2 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, at least 3 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, at least 4 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, one, but not more than one nucleoside comprises a 2′-F modified sugar. In certain embodiments, 1 or 2 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, 1-3 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, at least 1-4 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, antisense RNAi oligonucleotides have a block of 2-4 contiguous 2′-F modified nucleosides. In certain embodiments, 4 nucleosides of an antisense RNAi oligonucleotide are 2′-F modified nucleosides and 3 of those 2′-F modified nucleosides are contiguous. In certain such embodiments, the remainder of the nucleosides are 2′-OMe modified.


In certain embodiments, at least one nucleoside of the antisense RNAi oligonucleotide comprises a 2′-OMe modified sugar moiety and at least one nucleoside comprises a 2′-F modified sugar moiety. In certain embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleosides comprises a 2′-OMe modified sugar moiety and at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleosides comprises a 2′-F modified sugar moiety. In certain embodiments, the antisense RNAi oligonucleotide comprises a sugar motif of fyf or yfy, wherein each “f” represents a 2′-F modified sugar moiety and each “y” represents a 2′-OMe modified sugar moiety. In certain embodiments, the antisense RNAi oligonucleotide has a sugar motif of yfyfyfyfyfyfyfyfyfyfyyy, wherein each “f” represents a 2′-F modified sugar moiety and each “y” represents a 2′-OMe modified sugar moiety.


In certain embodiments, at least one nucleoside of the antisense RNAi oligonucleotide comprises a 2′-MOE modified sugar moiety. In certain embodiments, the antisense RNAi oligonucleotide further comprises one or more 2′-OMe modified sugar moieties and one or more 2′-F modified sugar moieties. In certain embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 nucleosides comprises a 2′-OMe modified sugar moiety. In certain embodiments, at least 1, 2, 3, or 4 nucleosides comprises a 2′-F modified sugar moiety. In certain embodiments, the antisense RNAi oligonucleotide has a sugar motif of efyyyfyyyyyyyfyfyyyyyyy, wherein ‘e’ represents a 2′-MOE modified sugar moiety, each “y” represents a 2′-O-methylribosyl sugar, and each “f” represents a 2′-fluororibosyl sugar.


Sense RNAi Oligonucleotides

In certain embodiments, the sugar moiety of at least one nucleoside of a sense RNAi oligonucleotides is a modified sugar moiety.


In certain such embodiments, at least one nucleoside of the sense RNAi oligonucleotide comprises a 2′-OMe modified sugar moiety. In certain embodiments, at least 2 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 5 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 8 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 10 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 12 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 14 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 15 nucleosides comprise 2′-OMe modified sugar moieties. In certain embodiments, at least 17 nucleosides comprise 2′-OMe modified sugar moieties. In certain such embodiments, at least 18 nucleosides comprise 2′-OMe modified sugar moieties. In certain such embodiments, at least 20 nucleosides comprise 2′-OMe modified sugar moieties. In certain such embodiments, at least 21 nucleosides comprise 2′-OMe modified sugar moieties.


In certain embodiments, at least one nucleoside of the sense RNAi oligonucleotide comprises a 2′-F modified sugar moiety. In certain embodiments, at least 2 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, at least 3 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, at least 4 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, one, but not more than nucleoside comprises a 2′-F modified sugar moiety. In certain embodiments, 1 or 2 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, 1-3 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, at least 1-4 nucleosides comprise 2′-F modified sugar moieties. In certain embodiments, sense RNAi oligonucleotides have a block of 2-4 contiguous 2′-F modified nucleosides. In certain embodiments, 4 nucleosides of a sense RNAi oligonucleotide are 2′-F modified nucleosides and 3 of those 2′-F modified nucleosides are contiguous. In certain such embodiments the remainder of the nucleosides are 2′OMe modified.


In certain embodiments, at least one nucleoside of the sense RNAi oligonucleotide comprises a 2′-OMe modified sugar moiety and at least one nucleoside comprises a 2′-F modified sugar moiety. In certain embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleosides comprises a 2′-OMe modified sugar moiety and at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleosides comprises a 2′-F modified sugar moiety. In certain embodiments, the sense RNAi oligonucleotide comprises a sugar motif of fyf or yfy, wherein each “f” represents a 2′-F modified sugar moiety and each “y” represents a 2′-OMe modified sugar moiety. In certain embodiments, the sense RNAi oligonucleotide has a sugar motif of fyfyfyfyfyfyfyfyfyfyf, wherein each “f” represents a 2′-F modified sugar moiety and each “y” represents a 2′-OMe modified sugar moiety. In certain embodiments, the sense RNAi oligonucleotide has a sugar motif of yyyyyyfyfffyyyyyyyyyy, wherein each “y” represents a 2′-O-methylribosyl sugar, and each “f” represents a 2′-fluororibosyl sugar.


2. Certain Nucleobase Motifs


In certain embodiments, oligonucleotides comprise modified and/or unmodified nucleobases arranged along the oligonucleotide or region thereof in a defined pattern or motif. In certain embodiments, each nucleobase is modified. In certain embodiments, none of the nucleobases are modified. In certain embodiments, each purine or each pyrimidine is modified. In certain embodiments, each adenine is modified. In certain embodiments, each guanine is modified. In certain embodiments, each thymine is modified. In certain embodiments, each uracil is modified. In certain embodiments, each cytosine is modified. In certain embodiments, some or all of the cytosine nucleobases in a modified oligonucleotide are 5-methyl cytosines. In certain embodiments, all of the cytosine nucleobases are 5-methyl cytosines and all of the other nucleobases of the modified oligonucleotide are unmodified nucleobases.


In certain embodiments, modified oligonucleotides comprise a block of modified nucleobases. In certain such embodiments, the block is at the 3′-end of the oligonucleotide. In certain embodiments the block is within 3 nucleosides of the 3′-end of the oligonucleotide. In certain embodiments, the block is at the 5′-end of the oligonucleotide. In certain embodiments the block is within 3 nucleosides of the 5′-end of the oligonucleotide.


Gapmer Oligonucleotides

In certain embodiments, oligonucleotides having a gapmer motif comprise a nucleoside comprising a modified nucleobase. In certain such embodiments, one nucleoside comprising a modified nucleobase is in the central gap of an oligonucleotide having a gapmer motif. In certain such embodiments, the sugar moiety of said nucleoside is a 2′-deoxyribosyl sugar moiety. In certain embodiments, the modified nucleobase is selected from: a 2-thiopyrimidine and a 5-propynepyrimidine.


Antisense RNAi Oligonucleotides

In certain embodiments, one nucleoside of an antisense RNAi oligonucleotide is a UNA. In certain embodiments, one nucleoside of an antisense RNAi oligonucleotide is a GNA. In certain embodiments, 1-4 nucleosides of an antisense RNAi oligonucleotide is/are DNA. In certain such embodiments, the 1-4 DNA nucleosides are at one or both ends of the antisense RNAi oligonucleotide.


Sense RNAi Oligonucleotides

In certain embodiments, one nucleoside of a sense RNAi oligonucleotide is a UNA. In certain embodiments, one nucleoside of a sense RNAi oligonucleotide is a GNA. In certain embodiments, 1-4 nucleosides of a sense RNAi oligonucleotide is/are DNA. In certain such embodiments, the 1-4 DNA nucleosides are at one or both ends of the sense RNAi oligonucleotide.


3. Certain Internucleoside Linkage Motifs


In certain embodiments, oligonucleotides comprise modified and/or unmodified internucleoside linkages arranged along the oligonucleotide or region thereof in a defined pattern or motif. In certain embodiments, each internucleoside linking group is a phosphodiester internucleoside linkage (P═0). In certain embodiments, each internucleoside linking group of a modified oligonucleotide is a phosphorothioate internucleoside linkage (P═S). In certain embodiments, each internucleoside linkage of a modified oligonucleotide is independently selected from a phosphorothioate internucleoside linkage and phosphodiester internucleoside linkage. In certain embodiments, each phosphorothioate internucleoside linkage is independently selected from a stereorandom phosphorothioate a (Sp) phosphorothioate, and a (Rp) phosphorothioate.


Gapmer Oligonucleotides

In certain embodiments, the sugar motif of a modified oligonucleotide is a gapmer and the internucleoside linkages within the gap are all modified. In certain embodiments, some or all of the internucleoside linkages in the wings are unmodified phosphodiester internucleoside linkages. In certain embodiments, the terminal internucleoside linkages are modified. In certain embodiments, the sugar motif of a modified oligonucleotide is a gapmer, and the internucleoside linkage motif comprises at least one phosphodiester internucleoside linkage in at least one wing, wherein the at least one phosphodiester linkage is not a terminal internucleoside linkage, and the remaining internucleoside linkages are phosphorothioate internucleoside linkages. In certain embodiments, all of the phosphorothioate linkages are stereorandom. In certain embodiments, all of the phosphorothioate linkages in the wings are (Sp) phosphorothioates, and the gap comprises at least one Sp, Sp, Rp motif. In certain embodiments, populations of modified oligonucleotides are enriched for modified oligonucleotides comprising such internucleoside linkage motifs.


In certain embodiments, modified nucleotides have an internucleoside linkage motif of sososssssssssosss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooosssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooosssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of soossssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of soooossssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of sossssssssssssssoss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of soossssssssssos, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of soosssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooosssssssssssooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. In certain embodiments, modified nucleotides have an internucleoside linkage motif of sooooossssssssssoss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


Antisense RNAi Oligonucleotides

In certain embodiments, at least one linkage of the antisense RNAi oligonucleotide is a modified linkage. In certain embodiments, the 5′-most linkage (i.e., linking the first nucleoside from the 5′-end to the second nucleoside from the 5′-end) is modified. In certain embodiments, the two 5′-most linkages are modified. In certain embodiments, the first one or 2 linkages from the 3′-end are modified. In certain such embodiments, the modified linkage is a phosphorothioate linkage. In certain embodiments, the remaining linkages are all unmodified phosphodiester linkages. In certain embodiments, antisense RNAi oligonucleotides have an internucleoside linkage motif of ssooooooooooooooooooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


In certain embodiments, at least one linkage of the antisense RNAi oligonucleotide is an inverted linkage.


Sense RNAi Oligonucleotides

In certain embodiments, at least one linkage of the sense RNAi oligonucleotides is a modified linkage. In certain embodiments, the 5′-most linkage (i.e., linking the first nucleoside from the 5′-end to the second nucleoside from the 5′-end) is modified. In certain embodiments, the two 5′-most linkages are modified. In certain embodiments, the first one or 2 linkages from the 3′-end are modified. In certain such embodiments, the modified linkage is a phosphorothioate linkage. In certain embodiments, the remaining linkages are all unmodified phosphodiester linkages. In certain embodiments, sense RNAi oligonucleotides have an internucleoside linkage motif of ssooooooooooooooooss, wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage.


In certain embodiments, at least one linkage of the sense RNAi oligonucleotides is an inverted linkage.


C. Certain Lengths


It is possible to increase or decrease the length of an oligonucleotide without eliminating activity. For example, in Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), a series of oligonucleotides 13-25 nucleobases in length were tested for their ability to induce cleavage of a target RNA in an oocyte injection model. Oligonucleotides 25 nucleobases in length with 8 or 11 mismatch bases near the ends of the oligonucleotides were able to direct specific cleavage of the target RNA, albeit to a lesser extent than the oligonucleotides that contained no mismatches. Similarly, target specific cleavage was achieved using 13 nucleobase oligonucleotides, including those with 1 or 3 mismatches.


In certain embodiments, oligonucleotides (including modified oligonucleotides) can have any of a variety of ranges of lengths. In certain embodiments, oligonucleotides consist of X to Y linked nucleosides, where X represents the fewest number of nucleosides in the range and Y represents the largest number nucleosides in the range. In certain such embodiments, X and Y are each independently selected from 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, and 50; provided that X<Y. For example, in certain embodiments, oligonucleotides consist of 12 to 13, 12 to 14, 12 to 15, 12 to 16, 12 to 17, 12 to 18, 12 to 19, 12 to 20, 12 to 21, 12 to 22, 12 to 23, 12 to 24, 12 to 25, 12 to 26, 12 to 27, 12 to 28, 12 to 29, 12 to 30, 13 to 14, 13 to 15, 13 to 16, 13 to 17, 13 to 18, 13 to 19, 13 to 20, 13 to 21, 13 to 22, 13 to 23, 13 to 24, 13 to 25, 13 to 26, 13 to 27, 13 to 28, 13 to 29, 13 to 30, 14 to 15, 14 to 16, 14 to 17, 14 to 18, 14 to 19, 14 to 20, 14 to 21, 14 to 22, 14 to 23, 14 to 24, 14 to 25, 14 to 26, 14 to 27, 14 to 28, 14 to 29, 14 to 30, 15 to 16, 15 to 17, 15 to 18, 15 to 19, 15 to 20, 15 to 21, 15 to 22, 15 to 23, 15 to 24, 15 to 25, 15 to 26, 15 to 27, 15 to 28, 15 to 29, 15 to 30, 16 to 17, 16 to 18, 16 to 19, 16 to 20, 16 to 21, 16 to 22, 16 to 23, 16 to 24, 16 to 25, 16 to 26, 16 to 27, 16 to 28, 16 to 29, 16 to 30, 17 to 18, 17 to 19, 17 to 20, 17 to 21, 17 to 22, 17 to 23, 17 to 24, 17 to 25, 17 to 26, 17 to 27, 17 to 28, 17 to 29, 17 to 30, 18 to 19, 18 to 20, 18 to 21, 18 to 22, 18 to 23, 18 to 24, 18 to 25, 18 to 26, 18 to 27, 18 to 28, 18 to 29, 18 to 30, 19 to 20, 19 to 21, 19 to 22, 19 to 23, 19 to 24, 19 to 25, 19 to 26, 19 to 29, 19 to 28, 19 to 29, 19 to 30, 20 to 21, 20 to 22, 20 to 23, 20 to 24, 20 to 25, 20 to 26, 20 to 27, 20 to 28, 20 to 29, 20 to 30, 21 to 22, 21 to 23, 21 to 24, 21 to 25, 21 to 26, 21 to 27, 21 to 28, 21 to 29, 21 to 30, 22 to 23, 22 to 24, 22 to 25, 22 to 26, 22 to 27, 22 to 28, 22 to 29, 22 to 30, 23 to 24, 23 to 25, 23 to 26, 23 to 27, 23 to 28, 23 to 29, 23 to 30, 24 to 25, 24 to 26, 24 to 27, 24 to 28, 24 to 29, 24 to 30, 25 to 26, 25 to 27, 25 to 28, 25 to 29, 25 to 30, 26 to 27, 26 to 28, 26 to 29, 26 to 30, 27 to 28, 27 to 29, 27 to 30, 28 to 29, 28 to 30, or 29 to 30 linked nucleosides.


Antisense RNAi Oligonucleotides

In certain embodiments, antisense RNAi oligonucleotides consist of 17-30 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 17-25 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 17-23 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 17-21 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 18-30 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 20-30 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 21-30 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 23-30 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 18-25 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 20-22 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 21-23 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 23-24 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 20 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 21 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 22 linked nucleosides. In certain embodiments, antisense RNAi oligonucleotides consist of 23 linked nucleosides.


Sense RNAi Oligonucleotides

In certain embodiments, sense RNAi oligonucleotides consist of 17-30 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 17-25 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 17-23 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 17-21 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 18-30 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 20-30 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 21-30 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 23-30 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 18-25 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 20-22 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 21-23 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 23-24 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 20 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 21 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 22 linked nucleosides. In certain embodiments, sense RNAi oligonucleotides consist of 23 linked nucleosides.


D. Certain Modified Oligonucleotides


In certain embodiments, the above modifications (sugar, nucleobase, internucleoside linkage) are incorporated into a modified oligonucleotide. In certain embodiments, modified oligonucleotides are characterized by their modification motifs and overall lengths. In certain embodiments, such parameters are each independent of one another. Thus, unless otherwise indicated, each internucleoside linkage of an oligonucleotide having a gapmer sugar motif may be modified or unmodified and may or may not follow the gapmer modification pattern of the sugar modifications. For example, the internucleoside linkages within the wing regions of a sugar gapmer may be the same or different from one another and may be the same or different from the internucleoside linkages of the gap region of the sugar motif. Likewise, such sugar gapmer oligonucleotides may comprise one or more modified nucleobase independent of the gapmer pattern of the sugar modifications. Unless otherwise indicated, all modifications are independent of nucleobase sequence.


E. Certain Populations of Modified Oligonucleotides


Populations of modified oligonucleotides in which all of the modified oligonucleotides of the population have the same molecular formula can be stereorandom populations or chirally enriched populations. All of the chiral centers of all of the modified oligonucleotides are stereorandom in a stereorandom population. In a chirally enriched population, at least one particular chiral center is not stereorandom in the modified oligonucleotides of the population. In certain embodiments, the modified oligonucleotides of a chirally enriched population are enriched for β-D ribosyl sugar moieties, and all of the phosphorothioate internucleoside linkages are stereorandom. In certain embodiments, the modified oligonucleotides of a chirally enriched population are enriched for both β-D ribosyl sugar moieties and at least one, particular phosphorothioate internucleoside linkage in a particular stereochemical configuration.


F. Nucleobase Sequence


In certain embodiments, oligonucleotides (unmodified or modified oligonucleotides) are further described by their nucleobase sequence. In certain embodiments oligonucleotides have a nucleobase sequence that is complementary to a second oligonucleotide or an identified reference nucleic acid, such as a target nucleic acid. In certain such embodiments, a region of an oligonucleotide has a nucleobase sequence that is complementary to a second oligonucleotide or an identified reference nucleic acid, such as a target nucleic acid. In certain embodiments, the nucleobase sequence of a region or entire length of an oligonucleotide is at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95%, or 100% complementary to the second oligonucleotide or nucleic acid, such as a target nucleic acid.


II. Certain Oligomeric Compounds


In certain embodiments, provided herein are oligomeric compounds, which consist of an oligonucleotide (modified or unmodified) and optionally one or more conjugate groups and/or terminal groups. Conjugate groups consist of one or more conjugate moiety and a conjugate linker which links the conjugate moiety to the oligonucleotide. Conjugate groups may be attached to either or both ends of an oligonucleotide and/or at any internal position. In certain embodiments, conjugate groups are attached to the 2′-position of a nucleoside of a modified oligonucleotide. In certain embodiments, conjugate groups that are attached to either or both ends of an oligonucleotide are terminal groups. In certain such embodiments, conjugate groups or terminal groups are attached at the 3′ and/or 5′-end of oligonucleotides. In certain such embodiments, conjugate groups (or terminal groups) are attached at the 3′-end of oligonucleotides. In certain embodiments, conjugate groups are attached near the 3′-end of oligonucleotides. In certain embodiments, conjugate groups (or terminal groups) are attached at the 5′-end of oligonucleotides. In certain embodiments, conjugate groups are attached near the 5′-end of oligonucleotides.


Examples of terminal groups include but are not limited to conjugate groups, capping groups, phosphate moieties, protecting groups, modified or unmodified nucleosides, and two or more nucleosides that are independently modified or unmodified.


A. Certain RNAi Agents


RNAi agents comprise an antisense RNAi oligonucleotide and optionally a sense RNAi oligonucleotide. RNAi agents may also comprise terminal groups and/or conjugate groups which may be attached to the antisense RNAi oligonucleotide or the sense RNAi oligonucleotide (when present).


Duplexes


RNAi agents comprising an antisense RNAi oligonucleotide and a sense RNAi oligonucleotide form a duplex, because the sense RNAi oligonucleotide comprises an antisense-hybridizing region that is complementary to the antisense RNAi oligonucleotide. In certain embodiments, each nucleobase of the antisense RNAi oligonucleotide and the sense RNAi oligonucleotide are complementary to one another. In certain embodiments, the two RNAi oligonucleotides have at least one mismatch relative to one another.


In certain embodiments, the antisense hybridizing region constitutes the entire length of the sense RNAi oligonucleotide and the antisense RNAi oligonucleotide. In certain embodiments, one or both of the antisense RNAi oligonucleotide and the sense RNAi oligonucleotide comprise additional nucleosides at one or both ends that do not hybridize (overhanging nucleosides). In certain embodiments, overhanging nucleosides are DNA. In certain embodiments, overhanging nucleosides are linked to each other (where there is more than one) and to the first non-overhanging nucleoside with phosphorothioate linkages.


B. Certain Conjugate Groups


In certain embodiments, oligonucleotides are covalently attached to one or more conjugate groups. In certain embodiments, conjugate groups modify one or more properties of the attached oligonucleotide, including but not limited to pharmacodynamics, pharmacokinetics, stability, binding, absorption, tissue distribution, cellular distribution, cellular uptake, charge and clearance.


In certain embodiments, conjugation of one or more carbohydrate moieties to a modified oligonucleotide can optimize one or more properties of the modified oligonucleotide. In certain embodiments, the carbohydrate moiety is attached to a modified subunit of the modified oligonucleotide. For example, the ribose sugar of one or more ribonucleotide subunits of a modified oligonucleotide can be replaced with another moiety, e.g. a non-carbohydrate (preferably cyclic) carrier to which is attached a carbohydrate ligand. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS), which is a modified sugar moiety. A cyclic carrier may be a carbocyclic ring system, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulphur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds. In certain embodiments, the modified oligonucleotide is a gapmer. In certain embodiments, the modified oligonucleotide is an antisense RNAi oligonucleotide. In certain embodiments, the modified oligonucleotide is a sense RNAi oligonucleotide.


In certain embodiments, conjugate groups impart a new property on the attached oligonucleotide, e.g., fluorophores or reporter groups that enable detection of the oligonucleotide. Certain conjugate groups and conjugate moieties have been described previously, for example: cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Lett., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., do-decan-diol or undecyl residues (Saison-Behmoaras et al., EMBO 1, 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937), a tocopherol group (Nishina et al., Molecular Therapy Nucleic Acids, 2015, 4, e220; and Nishina et al., Molecular Therapy, 2008, 16, 734-740), or a GalNAc cluster (e.g., WO2014/179620).


In certain embodiments, conjugate groups may be selected from any of a C22 alkyl, C20 alkyl, C16 alkyl, C10 alkyl, C21 alkyl, C19 alkyl, C18 alkyl, C15 alkyl, C14 alkyl, C13 alkyl, C12 alkyl, C11 alkyl, C9 alkyl, C8 alkyl, C7 alkyl, C6 alkyl, C5 alkyl, C22 alkenyl, C20 alkenyl, C16 alkenyl, C10 alkenyl, C21 alkenyl, C19 alkenyl, C18 alkenyl, C15 alkenyl, C14 alkenyl, C13 alkenyl, C12 alkenyl, C11 alkenyl, C9 alkenyl, C8 alkenyl, C7 alkenyl, C6 alkenyl, or C5 alkenyl.


In certain embodiments, conjugate groups may be selected from any of C22 alkyl, C20 alkyl, C16 alkyl, C10 alkyl, C21 alkyl, C19 alkyl, C18 alkyl, C15 alkyl, C14 alkyl, C13 alkyl, C12 alkyl, C11 alkyl, C9 alkyl, C8 alkyl, C7 alkyl, C6 alkyl, and C5 alkyl, where the alkyl chain has one or more unsaturated bonds.


In certain embodiments, a conjugate group is a lipid having the following structure:




embedded image


In certain embodiments, a conjugate group is a lipid having the following structure:




embedded image


which is also referred to herein as 3nC7-C16. “3nC7-C16” represents a palmitate moiety linked to a 3′-C7 amino modifier and is attached to the 3′-nucleoside of an RNAi oligonucleotide (e.g., the 3′-nucleoside of a sense oligonucleotide or the antisense oligonucleotide) via a phosphodiester linkage.


1. Conjugate Moieties


Conjugate moieties include, without limitation, intercalators, reporter molecules, polyamines, polyamides, peptides, carbohydrates (e.g., GalNAc), vitamin moieties, polyethylene glycols, thioethers, polyethers, cholesterols, thiocholesterols, cholic acid moieties, folate, lipids, phospholipids, biotin, phenazine, phenanthridine, anthraquinone, adamantane, acridine, fluoresceins, rhodamines, coumarins, fluorophores, and dyes.


In certain embodiments, a conjugate moiety comprises an active drug substance, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fen-bufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, fingolimod, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indo-methicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic.


2. Conjugate Linkers


Conjugate moieties are attached to oligonucleotides through conjugate linkers. In certain oligomeric compounds, the conjugate linker is a single chemical bond (i.e., the conjugate moiety is attached directly to an oligonucleotide through a single bond). In certain embodiments, the conjugate linker comprises a chain structure, such as a hydrocarbyl chain, or an oligomer of repeating units such as ethylene glycol, nucleosides, or amino acid units.


In certain embodiments, a conjugate linker comprises pyrrolidine.


In certain embodiments, a conjugate linker comprises one or more groups selected from alkyl, amino, oxo, amide, disulfide, polyethylene glycol, ether, thioether, and hydroxylamino. In certain such embodiments, the conjugate linker comprises groups selected from alkyl, amino, oxo, amide and ether groups. In certain embodiments, the conjugate linker comprises groups selected from alkyl and amide groups. In certain embodiments, the conjugate linker comprises groups selected from alkyl and ether groups. In certain embodiments, the conjugate linker comprises at least one phosphorus moiety. In certain embodiments, the conjugate linker comprises at least one phosphate group. In certain embodiments, the conjugate linker includes at least one neutral linking group.


In certain embodiments, conjugate linkers, including the conjugate linkers described above, are bifunctional linking moieties, e.g., those known in the art to be useful for attaching conjugate groups to compounds, such as the oligonucleotides provided herein. In general, a bifunctional linking moiety comprises at least two functional groups. One of the functional groups is selected to bind to a particular site on a compound and the other is selected to bind to a conjugate group. Examples of functional groups used in a bifunctional linking moiety include but are not limited to electrophiles for reacting with nucleophilic groups and nucleophiles for reacting with electrophilic groups. In certain embodiments, bifunctional linking moieties comprise one or more groups selected from amino, hydroxyl, carboxylic acid, thiol, alkyl, alkenyl, and alkynyl.


Examples of conjugate linkers include but are not limited to pyrrolidine, 8-amino-3,6-dioxaoctanoic acid (ADO), succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) and 6-aminohexanoic acid (AHEX or AHA). Other conjugate linkers include but are not limited to substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl or substituted or unsubstituted C2-C10 alkynyl, wherein a nonlimiting list of preferred substituent groups includes hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.


In certain embodiments, conjugate linkers comprise 1-10 linker-nucleosides. In certain embodiments, conjugate linkers comprise 2-5 linker-nucleosides. In certain embodiments, conjugate linkers comprise exactly 3 linker-nucleosides. In certain embodiments, conjugate linkers comprise the TCA motif. In certain embodiments, such linker-nucleosides are modified nucleosides. In certain embodiments such linker-nucleosides comprise a modified sugar moiety. In certain embodiments, linker-nucleosides are unmodified. In certain embodiments, linker-nucleosides comprise an optionally protected heterocyclic base selected from a purine, substituted purine, pyrimidine or substituted pyrimidine. In certain embodiments, a cleavable moiety is a nucleoside selected from uracil, thymine, cytosine, 4-N-benzoylcytosine, 5-methyl cytosine, 4-N-benzoyl-5-methyl cytosine, adenine, 6-N-benzoyladenine, guanine and 2-N-isobutyrylguanine. It is typically desirable for linker-nucleosides to be cleaved from the oligomeric compound after it reaches a target tissue. Accordingly, linker-nucleosides are typically linked to one another and to the remainder of the oligomeric compound through cleavable bonds. In certain embodiments, such cleavable bonds are phosphodiester bonds.


Herein, linker-nucleosides are not considered to be part of the oligonucleotide. Accordingly, in embodiments in which an oligomeric compound comprises an oligonucleotide consisting of a specified number or range of linked nucleosides and/or a specified percent complementarity to a reference nucleic acid and the oligomeric compound also comprises a conjugate group comprising a conjugate linker comprising linker-nucleosides, those linker-nucleosides are not counted toward the length of the oligonucleotide and are not used in determining the percent complementarity of the oligonucleotide for the reference nucleic acid. For example, an oligomeric compound may comprise (1) a modified oligonucleotide consisting of 8-30 nucleosides and (2) a conjugate group comprising 1-10 linker-nucleosides that are contiguous with the nucleosides of the modified oligonucleotide. The total number of contiguous linked nucleosides in such an oligomeric compound is more than 30. Alternatively, an oligomeric compound may comprise a modified oligonucleotide consisting of 8-30 nucleosides and no conjugate group. The total number of contiguous linked nucleosides in such an oligomeric compound is no more than 30. Unless otherwise indicated conjugate linkers comprise no more than 10 linker-nucleosides. In certain embodiments, conjugate linkers comprise no more than 5 linker-nucleosides. In certain embodiments, conjugate linkers comprise no more than 3 linker-nucleosides. In certain embodiments, conjugate linkers comprise no more than 2 linker-nucleosides. In certain embodiments, conjugate linkers comprise no more than 1 linker-nucleoside.


In certain embodiments, it is desirable for a conjugate group to be cleaved from the oligonucleotide. For example, in certain circumstances oligomeric compounds comprising a particular conjugate moiety are better taken up by a particular cell type, but once the oligomeric compound has been taken up, it is desirable that the conjugate group be cleaved to release the unconjugated or parent oligonucleotide. Thus, certain conjugate linkers may comprise one or more cleavable moieties. In certain embodiments, a cleavable moiety is a cleavable bond. In certain embodiments, a cleavable moiety is a group of atoms comprising at least one cleavable bond. In certain embodiments, a cleavable moiety comprises a group of atoms having one, two, three, four, or more than four cleavable bonds. In certain embodiments, a cleavable moiety is selectively cleaved inside a cell or subcellular compartment, such as a lysosome. In certain embodiments, a cleavable moiety is selectively cleaved by endogenous enzymes, such as nucleases.


In certain embodiments, a cleavable bond is selected from among: an amide, an ester, an ether, one or both esters of a phosphodiester, a phosphate ester, a carbamate, or a disulfide. In certain embodiments, a cleavable bond is one or both of the esters of a phosphodiester. In certain embodiments, a cleavable moiety comprises a phosphate or phosphodiester. In certain embodiments, the cleavable moiety is a phosphate linkage between an oligonucleotide and a conjugate moiety or conjugate group.


In certain embodiments, a cleavable moiety comprises or consists of one or more linker-nucleosides. In certain such embodiments, the one or more linker-nucleosides are linked to one another and/or to the remainder of the oligomeric compound through cleavable bonds. In certain embodiments, such cleavable bonds are unmodified phosphodiester bonds. In certain embodiments, a cleavable moiety is 2′-deoxynucleoside that is attached to either the 3′ or 5′-terminal nucleoside of an oligonucleotide by a phosphodiester internucleoside linkage and covalently attached to the remainder of the conjugate linker or conjugate moiety by a phosphodiester or phosphorothioate linkage. In certain such embodiments, the cleavable moiety is 2′-deoxyadenosine.


3. Cell-Targeting Moieties


In certain embodiments, a conjugate group comprises a cell-targeting moiety. In certain embodiments, a conjugate group has the general formula:




embedded image


wherein n is from 1 to about 3, m is 0 when n is 1, m is 1 when n is 2 or greater, j is 1 or 0, and k is 1 or O.


In certain embodiments, n is 1, j is 1 and k is 0. In certain embodiments, n is 1, j is 0 and k is 1. In certain embodiments, n is 1, j is 1 and k is 1. In certain embodiments, n is 2, j is 1 and k is 0. In certain embodiments, n is 2, j is 0 and k is 1. In certain embodiments, n is 2, j is 1 and k is 1. In certain embodiments, n is 3, j is 1 and k is 0. In certain embodiments, n is 3, j is 0 and k is 1. In certain embodiments, n is 3, j is 1 and k is 1.


In certain embodiments, conjugate groups comprise cell-targeting moieties that have at least one tethered ligand. In certain embodiments, cell-targeting moieties comprise two tethered ligands covalently attached to a branching group. In certain embodiments, cell-targeting moieties comprise three tethered ligands covalently attached to a branching group.


In certain embodiments, each ligand of a cell-targeting moiety has an affinity for at least one type of receptor on a target cell. In certain embodiments, each ligand has an affinity for at least one type of receptor on the surface of a mammalian liver cell. In certain embodiments, each ligand has an affinity for the hepatic asialoglycoprotein receptor (ASGP-R). In certain embodiments, each ligand is a carbohydrate.


In certain embodiments, the cell-targeting moiety targets neurons. In certain embodiments, the cell-targeting moiety targets a neurotransmitter receptor. In certain embodiments, the cell targeting moiety targets a neurotransmitter transporter. In certain embodiments, the cell targeting moiety targets a GABA transporter. See e.g., WO 2011/131693, WO 2014/064257.


C. Certain Terminal Groups


In certain embodiments, oligomeric compounds comprise one or more terminal groups. In certain such embodiments, modified oligonucleotides comprise a phosphorus-containing group at the 5′-end of the modified oligonucleotide. In certain embodiments, the phosphorus-containing group is at the 5′-end of the antisense RNAi oligonucleotide and/or the sense RNAi oligonucleotide. In certain embodiments, the terminal group is a phosphate stabilized phosphate group. The 5′-end phosphorus-containing group can be 5′-end phosphate (5′-P), 5′-end phosphorothioate (5′-PS), 5′-end phosphorodithioate (5′-PS2), 5′-end vinylphosphonate (5′-VP), 5′-end methylphosphonate (MePhos) or 5′-deoxy-5′-C-malonyl. When the 5′-end phosphorus-containing group is 5′-end vinylphosphonate, the 5′VP can be either 5′-E-VP isomer (i.e., trans-vinylphosphonate), 5′-Z-VP isomer (i.e., cis-vinylphosphonate), or mixtures thereof. Although such phosphate group can be attached to any modified oligonucleotide, it has particularly been shown that attachment of such a group to an antisense RNAi oligonucleotide improves activity of certain RNAi agents. See, e.g., Prakash et al., Nucleic Acids Res., 43(6):2993-3011, 2015; Elkayam, et al., Nucleic Acids Res., 45(6):3528-3536, 2017; Parmar, et al. ChemBioChem, 17(11)985-989; 2016; Harastzi, et al., Nucleic Acids Res., 45(13):7581-7592, 2017. In certain embodiments, the phosphate stabilizing group is 5′-cyclopropyl phosphonate. See e.g., WO/2018/027106.


In certain embodiments, terminal groups comprise one or more abasic nucleosides and/or inverted nucleosides. In certain embodiments, terminal groups comprise one or more 2′-linked nucleosides. In certain such embodiments, the 2′-linked nucleoside is an abasic nucleoside.


D. Certain Specific RNAi Motifs


RNAi agents can be described by motif or by specific features.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 3′-end; and
      • (iii) 2′-F modifications at positions 1, 3, 5, 7, 9 to 11, 13, 17, 19, and 21, and 2′-OMe modifications at positions 2, 4, 6, 8, 12, 14 to 16, 18, and 20 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5, 9, 11 to 13, 15, 17, 19, 21, and 23, and 2′F modifications at positions 2, 4, 6 to 8, 10, 14, 16, 18, 20, and 22 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end);
      • wherein the two nucleotides at the 3′end of the antisense RNAi oligonucleotide are overhanging nucleosides, and the end of the RNAi agent duplex constituting the 5′-end of the antisense RNAi oligonucleotide and the 3′-end of the sense RNAi oligonucleotide is blunt (i.e., neither oligonucleotide has overhang nucleoside at that end and instead the hybridizing region of the sense RNAi oligonucleotide includes the 3′-most nucleoside of the sense RNAi oligonucleotide and that nucleoside hybridizes with the 5′-most nucleoside of the antisense oligonucleotide).


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 3′-end;
      • (iii) 2′-F modifications at positions 1, 3, 5, 7, 9 to 11, 13, 17, 19, and 21, and 2′-OMe modifications at positions 2, 4, 6, 8, 12, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, and between nucleoside positions 2 and 3 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5, 7, 9, 11 to 13, 15, 17, 19, and 21 to 23, and 2′F modifications at positions 2, 4, 6, 8, 10, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end);
      • wherein the RNAi duplex includes a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 3′-end;
      • (iii) 2′-OMe modifications at positions 1 to 6, 8, 10, and 12 to 21, and 2′-F modifications at positions 7 and 9, and a deoxynucleotide at position 11 (counting from the 5′ end); and
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, and between nucleoside positions 2 and 3 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 7, 9, 11, 13, 15, 17, and 19 to 23, and 2′F modifications at positions 2, 4 to 6, 8, 10, 12, 14, 16, and 18 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end);
      • wherein the RNAi duplex has a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 3′-end;
      • (iii) 2′-OMe modifications at positions 1 to 6, 8, and 12 to 21, and 2′-F modifications at positions 7, and 9 to 11; and
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, and between nucleoside positions 2 and 3 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7, 8, 10 to 13, 15, and 17 to 23, and 2′F modifications at positions 2, 6, 9, 14, and 16 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end);
      • wherein the RNAi duplex has a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 3′-end;
      • (iii) 2′-OMe modifications at positions 1 to 6, 8, and 12 to 21, and 2′-F modifications at positions 7, and 9 to 11; and
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, and between nucleoside positions 2 and 3 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7, 10 to 13, 15, and 17 to 23, and 2′F modifications at positions 2, 6, 8, 9, 14, and 16 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end);
      • wherein the RNAi duplex has a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 19 nucleotides;
      • (ii) a conjugate attached to the 3′-end;
      • (iii) 2′-OMe modifications at positions 1 to 4, 6, and 10 to 19, and 2′-F modifications at positions 5, and 7 to 9; and
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, and between nucleoside positions 2 and 3 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7, 10 to 13, 15, and 17 to 21, and 2′F modifications at positions 2, 6, 8, 9, 14, and 16 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 19 and 20, and between nucleoside positions 20 and 21 (counting from the 5′ end);
      • wherein the RNAi duplex has a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached at position 6 (counting from the 5′ end);
      • (iii) 2′-F modifications at positions 7 and 9 to 11, and 2′-OMe modifications at positions 1 to 5, 8, and 12 to 21 (counting from the 5′ end); and
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 19 and 20, and between nucleoside positions 20 and 21 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7, 10 to 13, 15, and 17 to 23, and 2′F modifications at positions 2, 6, 8, 9, 14, and 16 (counting from the 5′ end);
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end); and
      • (iv) a stabilized phosphate group attached to the 5′ position of the 5′-most nucleoside;
      • wherein the RNAi duplex includes a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 3′-end;
      • (iii) 2′-F modifications at positions 7 and 9 to 11, and 2′-OMe modifications at positions 1 to 6, 8, and 12 to 21 (counting from the 5′ end);
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2 and between nucleoside positions 2 and 3 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7 to 13, 15, and 17 to 23 an (S)-GNA modification at position 6, and 2′F modifications at positions 2, 14, and 16 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end);
      • wherein the RNAi duplex includes a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 3′-end;
      • (iii) 2′-F modifications at positions 7 and 9 to 11, and 2′-OMe modifications at positions 1 to 6, 8, and 12 to 21 (counting from the 5′ end);
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2 and between nucleoside positions 2 and 3 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 6, 8 to 13, 15, and 17 to 23 an (S)-GNA modification at position 7, and 2′F modifications at positions 2, 14, and 16 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end);
      • wherein the RNAi duplex includes a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached at position 6 (counting from the 5′ end); and
      • (iii) 2′-F modifications at positions 7 and 9 to 11, and 2′-OMe modifications at positions 1 to 5, 8, and 12 to 21 (counting from the 5′ end);
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 19 and 20, and between nucleoside positions 20 and 21 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7 to 13, 15, and 17 to 23 an (S)-GNA modification at position 6, and 2′F modifications at positions 2, 14, and 16 (counting from the 5′ end);
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end); and
      • (iv) a stabilized phosphate group attached to the 5′ position of the 5′-most nucleoside;
      • wherein the RNAi duplex includes a two nucleotide overhang at the 3′end of the antisense RNAi oligonucleotide, and a blunt end at the 5′-end of the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached at position 6 (counting from the 5′ end);
      • (iii) 2′-F modifications at positions 7 and 9 to 11, and 2′-OMe modifications at positions 1 to 5, 8, and 12 to 21 (counting from the 5′ end); and
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 19 and 20, and between nucleoside positions 20 and 21 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 6, 8 to 13, 15, and 17 to 23 an (S)-GNA modification at position 7, and 2′F modifications at positions 2, 14, and 16 (counting from the 5′ end);
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 21 and 22, and between nucleoside positions 22 and 23 (counting from the 5′ end); and
      • (iv) a stabilized phosphate group attached to the 5′ position of the 5′-most nucleoside;
      • wherein the two nucleotides at the 3′end of the antisense RNAi oligonucleotide are overhanging nucleosides, and the end of the RNAi agent duplex constituting the 5′-end of the antisense RNAi oligonucleotide and the 3′-end of the sense RNAi oligonucleotide is blunt (i.e., neither oligonucleotide has overhang nucleoside at that end and instead the hybridizing region of the sense RNAi oligonucleotide includes the 3′-most nucleoside of the sense RNAi oligonucleotide and that nucleoside hybridizes with the 5′-most nucleoside of the antisense oligonucleotide).


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 5′-end;
      • (iii) 2′-OMe modifications at positions 1 to 8, and 12 to 21, and 2′-F modifications at positions 9 to 11; and
      • (iv) inverted abasic sugar moieties attached to both the 5′-most and 3′-most nucleosides;
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21, and 2′F modifications at positions 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 3 and 4, and between nucleoside positions 20 and 21 (counting from the 5′ end).


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) a conjugate attached to the 5′-end;
      • (iii) 2′-OMe modifications at positions 1 to 8, and 12 to 21, and 2′-F modifications at positions 9 to 11;
      • (iv) a phosphorothioate internucleoside linkage between nucleoside positions 1 and 2 (counting from the 5′ end); and
      • (v) an inverted abasic sugar moiety attached to the 3′-most nucleoside;
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 21 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21, and 2′F modifications at positions 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 3 and 4, and between nucleoside positions 20 and 21 (counting from the 5′ end).


In certain embodiments, the RNAi agents described herein comprise:

    • (a) a sense RNAi oligonucleotide having:
      • (i) a length of 19 nucleotides;
      • (ii) a conjugate attached to the 5′-end;
      • (iii) 2′-OMe modifications at positions 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20, and 2′-F modifications at positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21; and
      • (iv) phosphorothioate internucleoside linkages between nucleoside positions 17 and 18, and between nucleoside positions 18 and 19 (counting from the 5′ end);
    • and
    • (b) an antisense RNAi oligonucleotide having:
      • (i) a length of 19 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21, and 2′F modifications at positions 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleoside linkages between nucleoside positions 1 and 2, between nucleoside positions 2 and 3, between nucleoside positions 17 and 18, and between nucleoside positions 18 and 19 (counting from the 5′ end).


In any of the above embodiments, the conjugate at the 3′-end of the sense RNAi oligonucleotide may comprise a targeting moiety. In certain embodiments, the targeting moiety targets a neurotransmitter receptor. In certain embodiments, the cell targeting moiety targets a neurotransmitter transporter. In certain embodiments, the cell targeting moiety targets a GABA transporter. See e.g., WO 2011/131693, WO 2014/064257.


In certain embodiments, the RNAi agent comprises a 21 nucleotide sense RNAi oligonucleotide and a 23 nucleotide antisense RNAi oligonucleotide, wherein the sense RNAi oligonucleotide contains at least one motif of three contiguous 2′-F modified nucleosides at positions 9, 10, 11 from the 5′-end; the antisense RNAi oligonucleotide contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′ end, wherein one end of the RNAi agent is blunt, while the other end comprises a 2 nucleotide overhang. Preferably, the 2 nucleotide overhang is at the 3′-end of the antisense RNAi oligonucleotide.


In certain embodiments, when the 2 nucleotide overhang is at the 3′-end of the antisense RNAi oligonucleotide, there may be two phosphorothioate internucleoside linkages between the terminal three nucleotides, wherein two of the three nucleotides are the overhang nucleotides, and the third nucleotide is a paired nucleotide next to the overhang nucleotide. In certain embodiments, the RNAi agent additionally has two phosphorothioate internucleoside linkages between the terminal three nucleotides at both the 5′-end of the sense RNAi oligonucleotide and at the 5′-end of the antisense RNAi oligonucleotide. In certain embodiments, every nucleotide in the sense RNAi oligonucleotide and the antisense RNAi oligonucleotide of the RNAi agent is a modified nucleotide. In certain embodiments, each nucleotide is independently modified with a 2′-O-methyl or 3′-fluoro, e.g. in an alternating motif. Optionally, the RNAi agent comprises a conjugate.


In certain embodiments, every nucleotide in the sense RNAi oligonucleotide and antisense RNAi oligonucleotide of the RNAi agent, including the nucleotides that are part of the motifs, may be modified. Each nucleotide may be modified with the same or different modification, which can include one or more alteration of one or both of the non-linking phosphate oxygens; alteration of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar; wholesale replacement of the phosphate moiety with “dephospho” linkers; modification or replacement of a naturally occurring base; and replacement or modification of the ribose-phosphate backbone.


In certain embodiments, each nucleoside of the sense RNAi oligonucleotide and antisense RNAi oligonucleotide is independently modified with LNA, cEt, UNA, HNA, CeNA, 2′-MOE, 2′-OMe, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, 2′-hydroxyl, or 2′-fluoro. The RNAi agent can contain more than one modification. In certain embodiments, each nucleoside of the sense RNAi oligonucleotide and antisense RNAi oligonucleotide is independently modified with 2′-O-methyl or 2′-F. In certain embodiments, the modification is a 2′-NMA modification.


The term “alternating motif” as used herein refers to a motif having one or more modifications, each modification occurring on alternating nucleotides of one RNAi oligonucleotide. The alternating nucleotide may refer to one per every other nucleotide or one per every three nucleotides, or a similar pattern. For example, if A, B and C each represent one type of modification to the nucleotide, the alternating motif can be “ABABABABABAB . . . ,” “AABBAABBAABB . . . ,” “AABAABAABAAB . . . ,” “AAABAAABAAAB . . . ,” “AAABBBAAABBB . . . ,” or “ABCABCABCABC . . . ,” etc.


The type of modifications contained in the alternating motif may be the same or different. For example, if A, B, C, D each represent one type of modification on the nucleotide, the alternating pattern, i.e., modifications on every other nucleotide, may be the same, but each of the sense RNAi oligonucleotide or antisense RNAi oligonucleotide can be selected from several possibilities of modifications within the alternating motif such as “ABABAB . . . ”, “ACACAC . . . ” “BDBDBD . . . ” or “CDCDCD . . . ,” etc.


In certain embodiments, the modification pattern for the alternating motif on the sense RNAi oligonucleotide relative to the modification pattern for the alternating motif on the antisense RNAi oligonucleotide is shifted. The shift may be such that the group of modified nucleotides of the sense RNAi oligonucleotide corresponds to a group of differently modified nucleotides of the antisense RNAi oligonucleotide and vice versa. For example, the sense RNAi oligonucleotide when paired with the antisense RNAi oligonucleotide in the RNAi duplex, the alternating motif in the sense RNAi oligonucleotide may start with “ABABAB” from 5′-3′ of the RNAi oligonucleotide and the alternating motif in the antisense RNAi oligonucleotide may start with “BABABA” from 5′-3 ‘of the RNAi oligonucleotide within the duplex region. As another example, the alternating motif in the sense RNAi oligonucleotide may start with “AABBAABB” from 5’-3′ of the RNAi oligonucleotide and the alternating motif in the antisense RNAi oligonucleotide may start with “BBAABBAA” from 5′-3′ of the RNAi oligonucleotide within the duplex region, so that there is a complete or partial shift of the modification 10 patterns between the sense RNAi oligonucleotide and the antisense RNAi oligonucleotide.


In certain embodiments, the RNAi agent comprising the pattern of the alternating motif of 2′-O-methyl modification and 2′-F modification on the sense RNAi oligonucleotide initially has a shift relative to the pattern of the alternating motif of 2′-O-methyl modification and 2′-F modification on the antisense RNAi oligonucleotide initially, i.e., the 2′-O-methyl modified nucleotide on the sense RNAi oligonucleotide base pairs with a 2′-F modified nucleotides on the antisense RNAi oligonucleotide and vice versa. The 1 position of the sense RNAi oligonucleotide may start with the 2′-F modification, and the 1 position of the antisense RNAi oligonucleotide may start with a 2′-O-methyl modification.


The introduction of one or more motifs of three identical modifications on three consecutive nucleotides to the sense RNAi oligonucleotide and/or antisense RNAi oligonucleotide interrupts the initial modification pattern present in the sense RNAi oligonucleotide and/or antisense RNAi oligonucleotide. This interruption of the modification pattern of the sense and/or antisense RNAi oligonucleotide by introducing one or more motifs of three identical modifications on three consecutive nucleotides to the sense and/or antisense RNAi oligonucleotide surprisingly enhances the gene silencing activity to the target gene. In one embodiment, when the motif of three identical modifications on three consecutive 25 nucleotides is introduced to any of the RNAi oligonucleotide s, the modification of the nucleotide next to the motif is a different modification than the modification of the motif. For example, the portion of the sequence containing the motif is “ . . . NaYYYNb . . . ,” where “Y” represents the modification of the motif of three identical modifications on three consecutive nucleotide, and “Na” and “Nb” represent a modification to the nucleotide next to the motif “YYY” that is different than the modification of Y, and where Na and Nb can be the same or different modifications. Alternatively, Na and/or Nb may be present or absent when there is a wing modification present.


In certain embodiments, the sense RNAi oligonucleotide may be represented by formula (I):





5′np-Na—(XXX)i-Nb—YYY—Nb—(ZZZ)rNa-nq3′  (I)

    • wherein:
    • i and j are each independently 0 or 1;
    • p and q are each independently 0-6;
    • each Na independently represents 0-25 linked nucleosides comprising at least two differently modified nucleosides;
    • each Nb independently represents 0-10 linked nucleosides;
    • each np and nq independently represent an overhanging nucleoside;
    • wherein Nb and Y do not have the same modification; and
    • XXX, YYY, and ZZZ each independently represent modified nucleosides where each X nucleoside has the same modification; each Y nucleoside has the same modification; and each Z nucleoside has the same modification. In certain embodiments, each Y comprises a 2′-F modification.


In certain embodiments, the Na and Nb comprise modifications of alternating patterns.


In certain embodiments, the YYY motif occurs at or near the cleavage site of the target nucleic acid. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the YYY motif can occur at or near the vicinity of the cleavage site (e.g., can occur at positions 6, 7, 8; 7, 8, 9; 8, 9, 10; 9, 10, 11; 10, 11, 12; or 11, 12, 13) of the sense RNAi oligonucleotide, the count starting from the 1st nucleotide from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end.


In certain embodiments, the antisense RNAi oligonucleotide of the RNAi may be represented by the formula:





5′nq-Na′—(Z′Z′Z′)k—Nb′—Y′Y′Y′—Nb′—(X′X′X′)l—N′a-np3′  (II)

    • wherein:
    • k and l are each independently 0 or 1;
    • p′ and q′ are each independently 0-6;
    • each Na′ independently represents 0-25 linked nucleotides comprising at least two differently modified nucleotides;
    • each Nb′ independently represents 0-10 linked nucleotides;
    • each np′ and nq′ independently represent an overhanging nucleoside;
    • wherein Nb′ and Y′ do not have the same modification; and
    • X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent modified nucleosides where each X′ nucleoside has the same modification; each Y′ nucleoside has the same modification; and each Z′ nucleoside has the same modification. In certain embodiments, each Y′ comprises a 2′-F modification. In certain embodiments, each Y′ comprises a 2′-OMe modification.


In certain embodiments, the Na′ and/or Nb′ comprise modifications of alternating patterns.


In certain embodiments, the Y′Y′Y′ motif occurs at or near the cleavage site of the target nucleic acid. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the Y′Y′Y′ motif can occur at positions 9, 10, 11; 10, 11, 12; 11, 12, 13; 12, 13, 14; or 13, 14, 15 of the antisense RNAi oligonucleotide, with the count starting from the 1st nucleotide from the 5′-end; or, optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end. Preferably, the Y′Y′Y′ motif occurs at positions 11, 12, 13.


In certain embodiments, k is 1 and l is 0, or k is 0 and l is 1, or both k and l are 1.


The antisense RNAi oligonucleotide can therefore be represented by the following formulas:





5′nq′—Na′—Z′Z′Z′—Nb′—Y′Y′Y′—Na′-np′3′  (IIb);





5′nq′—Na′—Y′Y′Y′—Nb′—X′X′X′-np′3′  (IIc); or





5′nq′—Na′—Z′Z′Z′—Nb′—Y′Y′Y′—Nb′—X′X′X′—Na′-np′3′  (IId).


When the antisense RNAi oligonucleotide is represented by formula IIb, Nb′ represents 0-10, 0-7, 0-5, 0-4, 0-2, or 0 linked nucleosides. Each Na′ independently represents 2-20, 2-15, or 2-10 linked nucleosides.


When the antisense RNAi oligonucleotide is represented by formula IIc, Nb′ represents 0-10, 0-7, 0-5, 0-4, 0-2, or 0 linked nucleosides. Each Na′ independently represents 2-20, 2-15, or 2-10 linked nucleosides.


When the antisense RNAi oligonucleotide is represented by formula IId, Nb′ represents 0-10, 0-7, 0-5, 0-4, 0-2, or 0 linked nucleosides. Each Na′ independently represents 2-20, 2-15, or 2-10 linked nucleosides. Preferably, Nb′ is 0, 1, 2, 3, 4, 5, or 6.


In certain embodiments, k is 0 and 1 is 0 and the antisense RNAi oligonucleotide may be represented by the formula:





5′np′—Na′—Y′Y′Y′—Na′-nq′3′  (Ia).


When the antisense RNAi oligonucleotide is represented by formula IIa, each Na′ independently represents 2-20, 2-15, or 2-10 linked nucleosides.


Each X′, Y′, and Z′ may be the same or different from each other.


Each nucleotide of the sense RNAi oligonucleotide and antisense RNAi oligonucleotide may be independently modified with LNA, UNA, cEt, HNA, CeNA, 2′-methoxyethyl, 2′-O-allyl, 2′-C-allyl, 2′-hydroxyl, or 2′-fluoro. For example, each nucleotide of the sense RNAi oligonucleotide and antisense RNAi oligonucleotide is independently modified with, 2′-O-methyl or 2′-fluoro. Each X, Y, Z, X′, Y′, and Z′, in particular, may represent a 2′-O-methyl modification or 2′-fluoro modification. In certain embodiments, the modification is a 2′-NMA modification.


In certain embodiments, the sense RNAi oligonucleotide of the RNAi agent may contain YYY motif occurring at 9, 10, and 11 positions of the RNAi oligonucleotide when the duplex region is 21 nucleotides, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y represents 2′-F modification. The sense RNAi oligonucleotide may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex region; and XXX and ZZZ each independently represents a 2′-O-methyl modification or 2′-fluoro modification.


In certain embodiments, the antisense RNAi oligonucleotide may contain Y′Y′Y′ motif occurring at positions 11, 12, 13 of the RNAi oligonucleotide, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y′ represents 2′-O-methyl modification. The antisense RNAi oligonucleotide may additionally contain X′X′X′ motif or Z′Z′Z′ motif as wing modifications at the opposite end of the duplex region; and X′X′X′ or Z′Z′Z′ each independently represents a 2′-O-methyl modification or 2′-fluoro modification.


The sense RNAi oligonucleotide represented by any one of the above formulas Ia, Ib, Ic, and Id forms a duplex with an antisense RNAi oligonucleotide being represented by any one of the formulas IIa, IIb, IIc, and Hd, respectively.


Accordingly, the RNAi agents described herein may comprise a sense RNAi oligonucleotide and an antisense RNAi oligonucleotide, each RNAi oligonucleotide having 14 to 30 nucleotides, the RNAi duplex represented by formula (III):





Sense: 5′np-Na—(XXX)i—Nb—YYY—Nb—(ZZZ)j—Na-nq3′





Antisense: 3′np′—Na′—(X′X′X′)k—Nb′—Y′Y′Y′—Nb′—(Z′Z′Z′)i—Na′-nq′5′

    • wherein:
    • j, k, and l are each independently 0 or 1;
    • p, p′, q, and q′ are each independently 0-6;
    • each Na and Na′ independently represents 0-25 linked nucleosides, each sequence comprising at least two differently modified nucleotides;
    • each Nb and Nb′ independently represents 0-10 linked nucleosides;
    • wherein each np′, np, nq′ and nq, each of which may or may not be present, independently represents an overhang nucleotide; and
    • XXX, YYY, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.


In certain embodiments, i is 0 and j is 0; or i is 1 and j is 0; ori is 0 and j is 1; or both i and j are 0; or both i and j are 1. In another embodiment, k is 0 and l is 0; or k is 1 and l is 0, or k is 0 and l is 1; or both k and l are 0; or both k and l are 1.


Exemplary combinations of the sense RNAi oligonucleotide and antisense RNAi oligonucleotide forming a RNAi duplex include the formulas below:





5′np-Na—YYY—Na-nq3′





3′np′—Na′—Y′Y′Y′—Na′nq′5′   (IIIa)





5′np-Na—YYY—Nb—ZZZ—Na-nq3′





3′np′-Na′—Y′Y′Y′—Nb′—Z′Z′Z′—Na′nq′5′   (IIIb)





5′np-Na—XXX—Nb—YYY—Na-nq3′





3′np′—Na′—X′X′X′—Nb′—Y′Y′Y′—Na′-nq′5′   (IIIc)





5′np-Na—XXX—Nb—YYY—Nb—ZZZ—Na-nq3′





3′np′—Na—X′X′X′—Nb′—Y′Y′Y′—Nb′—Z′Z′Z′—Na-nq′5′   (IIId)


When the RNAi agent is represented with formula IIIa, each Na independently represents 2-20, 2-15, or 2-10 linked nucleosides.


When the RNAi agent is represented with formula IIIb, each Nb independently represents 1-10, 1-7, 1-5, or 1-4 linked nucleosides. Each Na independently represents 2-20, 2-15, or 2-10 linked nucleosides.


When the RNAi agent is represented with formula IIIc, each Nb, Nb′ independently represents 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2, or 0 linked nucleosides. Each Na independently represents 2-20, 2-15, or 2-10 linked nucleosides.


When the RNAi agent is represented with formula IIId, each Nb, Nb′ independently represents 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2, or 0 linked nucleosides. Each Na, Na′ independently 2-20, 2-15, or 2-10 linked nucleosides. Each Na, Na′, Nb, Nb′ independently comprises modifications of alternating pattern.


Each of X, Y, and Z in formulas III, IIIa, IIIb, IIIc, and IIId may be the same or different from each other.


When the RNAi agent is represented by formula III, IIIa, IIIb, IIIc, and/or IIId, at least one of the Y nucleotides may form a base pair with one of the Y′ nucleotides. Alternatively, at least two of the Y nucleotides may form base pairs with the corresponding Y′ nucleotides; or all three of the Y nucleotides may form base pairs with the corresponding Y′ nucleotides.


When the RNAi agent is represented by formula IIIb or IIId, at least one of the Z nucleotides may form a base pair with one of the Z′ nucleotides. Alternatively, at least two of the Z nucleotides may form base pairs with the corresponding Z′ nucleotides; or all three of the Z nucleotides may form base pairs with the corresponding Z′ nucleotides.


When the RNAi agent is represented by formula IIIc or IIId, at least one of the X nucleotides may form a base pair with one of the X′ nucleotides. Alternatively, at least two of the X nucleotides may form base pairs with the corresponding X′ nucleotides; or all three of the X nucleotides may form base pairs with the corresponding X′ nucleotides.


In certain embodiments, the modification of the Y nucleotide is different than the modification on the Y′ nucleotide, the modification on the Z nucleotide is different than the modification on the Z′ nucleotide, and/or the modification on the X nucleotide is different than the modification on the X′ nucleotide.


In certain embodiments, when the RNAi agent is represented by the formula IIId, the Na modifications are 2′-O-methyl or 2′-fluoro modifications. In another embodiment, when the RNAi agent is represented by formula IIId, the Na modifications are 2′-O-methyl or 2′-fluoro modifications and np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage. In other embodiments, when the RNAi agent is represented by formula IIId, the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, and the sense RNAi oligonucleotide is conjugated to one or more cell targeting group attached through a bivalent or trivalent branched linker. In certain embodiments, when the RNAi agent is represented by formula Hid, the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense RNAi oligonucleotide comprises at least one phosphorothioate linkage and the sense RNAi oligonucleotide is conjugated to one or more cell targeting group attached through a bivalent or trivalent branched linker.


In certain embodiments, when the RNAi agent is represented by the formula IIIa, the Na modifications are 2′-O-methyl or 2′-fluoro modifications and np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense RNAi oligonucleotide comprises at least one phosphorothioate linkage and the sense RNAi oligonucleotide is conjugated to one or more cell targeting group attached through a bivalent or trivalent branched linker.


In certain embodiments, the modification is a 2′-NMA modification.


In certain embodiments, the antisense strand may comprise a stabilized phosphate group attached to the 5′ position of the 5′-most nucleoside. In certain embodiments, the stabilized phosphate group comprises an (E)-vinyl phosphonate. In certain embodiments, the stabilized phosphate group comprises a cyclopropyl phosphonate.


In certain embodiments, the antisense strand may comprise a seed-pairing destabilizing modification. In certain embodiments, the seed-pairing destabilizing modification is located at position 6 (counting from the 5′ end). In certain embodiments, the seed-pairing destabilizing modification is located at position 7 (counting from the 5′ end). In certain embodiments, the seed-pairing destabilizing modification is a GNA sugar surrogate. In certain embodiments, the seed-pairing destabilizing modification is an (S)-GNA. In certain embodiments, the seed-pairing destabilizing modification is a UNA. In certain embodiments, the seed-pairing destabilizing modification is a morpholino.


In certain embodiments, the sense strand may comprise an inverted abasic sugar moiety attached to the 5′-most nucleoside. In certain embodiments, the sense strand may comprise an inverted abasic sugar moiety attached to the 3′-most nucleoside. In certain embodiments, the sense strand may comprise inverted abasic sugar moieties attached to both the 5′-most and 3′-most nucleosides.


In certain embodiments, the sense strand may comprise a conjugate attached at position 6 (counting from the 5′ end). In certain embodiments, the conjugate is attached at the 2′ position of the nucleoside. In certain embodiments the conjugate is a C16 lipid conjugate. In certain embodiments, the modified nucleoside at position 6 of the sense strand has a 2′-O-hexadecyl modified sugar moiety.


IV. Antisense Activity


In certain embodiments, oligomeric compounds and oligomeric duplexes are capable of hybridizing to a target nucleic acid, resulting in at least one antisense activity; such oligomeric compounds and oligomeric duplexes are antisense compounds. In certain embodiments, antisense compounds have antisense activity when they reduce or inhibit the amount or activity of a target nucleic acid by 25% or more in a standard in vitro assay. In certain embodiments, antisense compounds selectively affect one or more target nucleic acid. Such antisense compounds comprise a nucleobase sequence that hybridizes to one or more target nucleic acid, resulting in one or more desired antisense activity and does not hybridize to one or more non-target nucleic acid or does not hybridize to one or more non-target nucleic acid in such a way that results in significant undesired antisense activity.


In certain antisense activities, hybridization of an antisense compound to a target nucleic acid results in recruitment of a protein that cleaves the target nucleic acid. For example, certain antisense compounds result in RNase H mediated cleavage of the target nucleic acid. RNase H is a cellular endonuclease that cleaves the RNA strand of an RNA:DNA duplex. The DNA in such an RNA:DNA duplex need not be unmodified DNA. In certain embodiments, described herein are antisense compounds that are sufficiently “DNA-like” to elicit RNase H activity. In certain embodiments, one or more non-DNA-like nucleoside in the gap of a gapmer is tolerated.


In certain antisense activities, an antisense compound or a portion of an antisense compound is loaded into an RNA-induced silencing complex (RISC), ultimately resulting in cleavage of the target nucleic acid. For example, certain antisense compounds result in cleavage of the target nucleic acid by Argonaute. Antisense compounds that are loaded into RISC are RNAi agents. RNAi agents may be double-stranded (siRNA or dsRNAi) or single-stranded (ssRNA).


In certain embodiments, hybridization of an antisense compound to a target nucleic acid does not result in recruitment of a protein that cleaves that target nucleic acid. In certain embodiments, hybridization of the antisense compound to the target nucleic acid results in alteration of splicing of the target nucleic acid. In certain embodiments, hybridization of an antisense compound to a target nucleic acid results in inhibition of a binding interaction between the target nucleic acid and a protein or other nucleic acid. In certain embodiments, hybridization of an antisense compound to a target nucleic acid results in alteration of translation of the target nucleic acid.


Antisense activities may be observed directly or indirectly. In certain embodiments, observation or detection of an antisense activity involves observation or detection of a change in an amount of a target nucleic acid or protein encoded by such target nucleic acid, a change in the ratio of splice variants of a nucleic acid or protein and/or a phenotypic change in a cell or animal.


V. Certain Target Nucleic Acids


In certain embodiments, oligomeric compounds comprise or consist of an oligonucleotide comprising a region that is complementary to a target nucleic acid. In certain embodiments, the target nucleic acid is an endogenous RNA molecule. In certain embodiments, the target nucleic acid encodes a protein. In certain such embodiments, the target nucleic acid is selected from: a mature mRNA and a pre-mRNA, including intronic, exonic and untranslated regions. In certain embodiments, the target RNA is a mature mRNA. In certain embodiments, the target nucleic acid is a pre-mRNA. In certain embodiments, the target region is entirely within an intron. In certain embodiments, the target region spans an intron/exon junction. In certain embodiments, the target region is at least 50% within an intron. In certain embodiments, the target nucleic acid is the RNA transcriptional product of a retrogene. In certain embodiments, the target nucleic acid is a non-coding RNA. In certain embodiments, the target non-coding RNA is selected from: a long non-coding RNA, a short non-coding RNA, an intronic RNA molecule.


A. Complementarity/Mismatches to the Target Nucleic Acid and Duplex Complementarity


In certain embodiments, oligonucleotides are complementary to the target nucleic acid over the entire length of the oligonucleotide. In certain embodiments, oligonucleotides are 99%, 95%, 90%, 85%, or 80% complementary to the target nucleic acid. In certain embodiments, oligonucleotides are at least 80% complementary to the target nucleic acid over the entire length of the oligonucleotide and comprise a region that is 100% or fully complementary to a target nucleic acid. In certain embodiments, the region of full complementarity is from 6 to 20, 10 to 18, or 18 to 20 nucleobases in length.


Gapmer Oligonucleotides

It is possible to introduce mismatch bases without eliminating activity. For example, Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001) demonstrated the ability of an oligonucleotide having 100% complementarity to the bcl-2 mRNA and having 3 mismatches to the bcl-xL mRNA to reduce the expression of both bcl-2 and bcl-xL in vitro and in vivo. Furthermore, this oligonucleotide demonstrated potent anti-tumor activity in vivo. Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988) tested a series of tandem 14 nucleobase oligonucleotides, and 28 and 42 nucleobase oligonucleotides comprised of the sequence of two or three of the tandem oligonucleotides, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase oligonucleotides alone was able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase oligonucleotides.


In certain embodiments, oligonucleotides comprise one or more mismatched nucleobases relative to the target nucleic acid. In certain embodiments, antisense activity against the target is reduced by such mismatch, but activity against a non-target is reduced by a greater amount. Thus, in certain embodiments selectivity of the oligonucleotide is improved. In certain embodiments, the mismatch is specifically positioned within an oligonucleotide having a gapmer motif. In certain embodiments, the mismatch is at position 1, 2, 3, 4, 5, 6, 7, or 8 from the 5′-end of the gap region. In certain embodiments, the mismatch is at position 9, 8, 7, 6, 5, 4, 3, 2, 1 from the 3′-end of the gap region. In certain embodiments, the mismatch is at position 1, 2, 3, or 4 from the 5′-end of the wing region. In certain embodiments, the mismatch is at position 4, 3, 2, or 1 from the 3′-end of the wing region.


Antisense RNAi Oligonucleotides

In certain embodiments, antisense RNAi oligonucleotides comprise one or more mismatched nucleobases relative to the target nucleic acid. In certain embodiments, RNAi activity against the target is reduced by such mismatch, but activity against a non-target is reduced by a greater amount. Thus, in certain embodiments selectivity of the antisense RNAi oligonucleotides is improved.


In certain embodiments, antisense RNAi oligonucleotides comprise a targeting region complementary to the target nucleic acid. In certain embodiments, the targeting region comprises or consists of at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, or at least 25 contiguous nucleotides. In certain embodiments, the targeting region constitutes 70%, 80%, 85%, 90%, or 95% of the nucleosides of the antisense RNAi oligonucleotide. In certain embodiments, the targeting region constitutes all of the nucleosides of the antisense RNAi oligonucleotide. In certain embodiments, the targeting region of the antisense RNAi oligonucleotide is at least 99%, 95%, 90%, 85%, or 80% complementary to the target nucleic acid. In certain embodiments, the targeting region of the antisense RNAi oligonucleotide is 100% complementary to the target nucleic acid.


Sense RNAi Oligonucleotides

In certain embodiments, RNAi agents comprise a sense RNAi oligonucleotide. In such embodiments, sense RNAi oligonucleotides comprise an antisense hybridizing region complementary to the antisense RNAi oligonucleotide. In certain embodiments, the antisense hybridizing region comprises or consists of at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, or at least 25 contiguous nucleotides. In certain embodiments, the antisense hybridizing region constitutes 70%, 80%, 85%, 90%, or 95% of the nucleosides of the sense RNAi oligonucleotide. In certain embodiments, the antisense hybridizing region constitutes all of the nucleosides of the sense RNAi oligonucleotide. In certain embodiments, the antisense hybridizing region of the sense RNAi oligonucleotide is at least 99%, 95%, 90%, 85%, or 80% complementary to the antisense RNAi oligonucleotide. In certain embodiments, the antisense hybridizing region of the sense RNAi oligonucleotide is 100% complementary to the antisense RNAi oligonucleotide.


The hybridizing region of a sense RNAi oligonucleotide hybridizes with the antisense RNAi oligonucleotide to form a duplex region. In certain embodiments, such duplex region consists of 7 hybridized pairs of nucleosides (one of each pair being on the antisense RNAi oligonucleotide and the other of each pair bien on the sense RNAi oligonucleotide). In certain embodiments, a duplex region comprises least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, or at least 25 hybridized pairs. In certain embodiments, each nucleoside of antisense RNAi oligonucleotide is paired in the duplex region (i.e., the antisense RNAi oligonucleotide has no overhanging nucleosides). In certain embodiments, the antisense RNAi oligonucleotide includes unpaired nucleosides at the 3′-end and/or the 5′end (overhanging nucleosides). In certain embodiments, each nucleoside of sense RNAi oligonucleotide is paired in the duplex region (i.e., the sense RNAi oligonucleotide has no overhanging nucleosides). In certain embodiments, the sense RNAi oligonucleotide includes unpaired nucleosides at the 3′-end and/or the 5′end (overhanging nucleosides). In certain embodiments, duplexes formed by the antisense RNAi oligonucleotide and the sense RNAi oligonucleotide do not include any overhangs at one or both ends. Such ends without overhangs are referred to as blunt. In certain embodiments wherein the antisense RNAi oligonucleotide has overhanging nucleosides, one or more of those overhanging nucleosides are complementary to the target nucleic acid. In certain embodiments wherein the antisense RNAi oligonucleotide has overhanging nucleosides, one or more of those overhanging nucleosides are not complementary to the target nucleic acid.


B. APOE


In certain embodiments, oligomeric compounds comprise or consist of an oligonucleotide comprising a region that is complementary to a target nucleic acid, wherein the target nucleic acid is an APOE nucleic acid. In certain embodiments, the APOE nucleic acid has the sequence set forth as SEQ ID NO: 1 (GENBANK Accession No. NC_000019.10, truncated from nucleotides 44903001 to 44912000). In certain embodiments, the APOE nucleic acid has the sequence set forth as SEQ ID NO: 2 (GENBANK Accession No. NM_001302688.1). In certain embodiments, the APOE nucleic acid has the sequence set forth as SEQ ID NO: 3 (GENBANK Accession No. AU126799.1). In certain embodiments, the APOE nucleic acid has the sequence set forth as SEQ ID NO: 4 (GENBANK Accession No. BI602495.1). In certain embodiments, the APOE nucleic acid has the sequence set forth as SEQ ID NO: 5 (the complement of GENBANK Accession No. CA306379.1). In certain embodiments, the APOE nucleic acid has the sequence set forth as SEQ ID NO: 6 (GENBANK Accession No. NM_000041.2 with T-->C at pos 471 to result in APOE4 mutant mRNA).


In certain embodiments, contacting a cell with an oligomeric compound complementary to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5 reduces the amount of APOE RNA, and in certain embodiments reduces the amount of APOE protein in the cell. In certain embodiments, administering an oligomeric compound complementary to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5 to a subject in need thereof results in reduced amyloid plaques and/or reduced neurofibrillary tangles in the brain of the subject as compared to the amount of amyloid plaques and/or neurofibrillary tangles in the brain of the subject before administering. In certain embodiments, administering an oligomeric compound complementary to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5 to a subject in need thereof results in less amyloid plaques and/or less neurofibrillary tangles in the brain of the subject as compared to the amount of amyloid plaques and/or neurofibrillary tangles in the brain of a control subject not receiving the oligomeric compound. In certain embodiments, the oligomeric compound consists of a modified oligonucleotide. In certain embodiments, the oligomeric compound consists of a modified oligonucleotide and a conjugate group. In certain embodiments, the oligomeric compound is paired with an additional oligomeric compound in an oligomeric duplex. In certain embodiments, the oligomeric duplex comprises a conjugate group.


C. Certain Target Nucleic Acids in Certain Tissues


In certain embodiments, oligomeric compounds comprise or consist of an oligonucleotide comprising a region that is complementary to a target nucleic acid, wherein the target nucleic acid is expressed in a pharmacologically relevant tissue. In certain embodiments, the pharmacologically relevant tissues are the cells and tissues that comprise the central nervous system. Such tissues include the brain, cortex, spinal cord, and the hippocampus.


VI. Certain Pharmaceutical Compositions


In certain embodiments, described herein are pharmaceutical compositions comprising one or more oligomeric compounds. In certain embodiments, the one or more oligomeric compounds each consists of a modified oligonucleotide. In certain embodiments, the pharmaceutical composition comprises a pharmaceutically acceptable diluent or carrier. In certain embodiments, a pharmaceutical composition comprises or consists of a sterile saline solution and one or more oligomeric compound. In certain embodiments, the sterile saline is pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition comprises or consists of one or more oligomeric compound and sterile water. In certain embodiments, the sterile water is pharmaceutical grade water. In certain embodiments, a pharmaceutical composition comprises or consists of one or more oligomeric compound and phosphate-buffered saline (PBS). In certain embodiments, the sterile PBS is pharmaceutical grade PBS. In certain embodiments, a pharmaceutical composition comprises or consists of one or more oligomeric compound and artificial cerebrospinal fluid. In certain embodiments, the artificial cerebrospinal fluid is pharmaceutical grade.


In certain embodiments, a pharmaceutical composition comprises a modified oligonucleotide and artificial cerebrospinal fluid (aCSF). In certain embodiments, a pharmaceutical composition consists of a modified oligonucleotide and artificial cerebrospinal fluid. In certain embodiments, a pharmaceutical composition consists essentially of a modified oligonucleotide and artificial cerebrospinal fluid. In certain embodiments, the artificial cerebrospinal fluid is pharmaceutical grade.


In certain embodiments, aCSF comprises sodium chloride, potassium chloride, sodium dihydrogen phosphate dihydrate, sodium phosphate dibasic anhydrous, calcium chloride dihydrate, and magnesium chloride hexahydrate. In certain embodiments, the pH of an aCSF solution is modulated with a suitable pH-adjusting agent, for example, with acids such as hydrochloric acid and alkalis such as sodium hydroxide, to a range of from about 7.1-7.3, or to about 7.2.


In certain embodiments, pharmaceutical compositions comprise one or more oligomeric compound and one or more excipients. In certain embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose and polyvinylpyrrolidone.


In certain embodiments, oligomeric compounds may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


In certain embodiments, pharmaceutical compositions comprising an oligomeric compound encompass any pharmaceutically acceptable salts of the oligomeric compound, esters of the oligomeric compound, or salts of such esters. In certain embodiments, pharmaceutical compositions comprising oligomeric compounds comprising one or more oligonucleotide, upon administration to an animal, including a human, are capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of oligomeric compounds, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. In certain embodiments, pharmaceutically acceptable salts comprise inorganic salts, such as monovalent or divalent inorganic salts. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium, potassium, calcium, and magnesium salts. In certain embodiments, prodrugs comprise one or more conjugate group attached to an oligonucleotide, wherein the conjugate group is cleaved by endogenous nucleases within the body.


In certain embodiments, oligomeric compounds are lyophilized and isolated as sodium salts. In certain embodiments, the sodium salt of an oligomeric compound is mixed with a pharmaceutically acceptable diluent. In certain embodiments, the pharmaceutically acceptable diluent comprises sterile saline, sterile water, PBS, or aCSF. In certain embodiments, the sodium salt of an oligomeric compound is mixed with PBS. In certain embodiments, the sodium salt of an oligomeric compound is mixed with aCSF.


Lipid moieties have been used in nucleic acid therapies in a variety of methods. In certain such methods, the nucleic acid, such as an oligomeric compound, is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, DNA complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of a pharmaceutical agent to a particular cell or tissue. In certain embodiments, a lipid moiety is selected to increase distribution of a pharmaceutical agent to fat tissue. In certain embodiments, a lipid moiety is selected to increase distribution of a pharmaceutical agent to muscle tissue.


In certain embodiments, pharmaceutical compositions comprise a delivery system. Examples of delivery systems include, but are not limited to, liposomes and emulsions. Certain delivery systems are useful for preparing certain pharmaceutical compositions including those comprising hydrophobic compounds. In certain embodiments, certain organic solvents such as dimethylsulfoxide are used.


In certain embodiments, pharmaceutical compositions comprise one or more tissue-specific delivery molecules designed to deliver the one or more pharmaceutical agents of the present invention to specific tissues or cell types. For example, in certain embodiments, pharmaceutical compositions include liposomes coated with a tissue-specific antibody.


In certain embodiments, pharmaceutical compositions comprise a co-solvent system. Certain of such co-solvent systems comprise, for example, benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. In certain embodiments, such co-solvent systems are used for hydrophobic compounds. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. The proportions of such co-solvent systems may be varied considerably without significantly altering their solubility and toxicity characteristics. Furthermore, the identity of co-solvent components may be varied: for example, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


In certain embodiments, pharmaceutical compositions are prepared for oral administration. In certain embodiments, pharmaceutical compositions are prepared for buccal administration. In certain embodiments, a pharmaceutical composition is prepared for administration by injection (e.g., intravenous, subcutaneous, intramuscular, intrathecal (IT), intracerebroventricular (ICV), etc.). In certain of such embodiments, a pharmaceutical composition comprises a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In certain embodiments, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In certain embodiments, injectable suspensions are prepared using appropriate liquid carriers, suspending agents and the like. Certain pharmaceutical compositions for injection are presented in unit dosage form, e.g., in ampoules or in multi-dose containers. Certain pharmaceutical compositions for injection are suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Certain solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


Under certain conditions, certain compounds disclosed herein act as acids. Although such compounds may be drawn or described in protonated (free acid) form, or ionized and in association with a cation (salt) form, aqueous solutions of such compounds exist in equilibrium among such forms. For example, a phosphodiester linkage of an oligonucleotide in aqueous solution exists in equilibrium among free acid, anion and salt forms. Unless otherwise indicated, compounds described herein are intended to include all such forms. Moreover, certain oligonucleotides have several such linkages, each of which is in equilibrium. Thus, oligonucleotides in solution exist in an ensemble of forms at multiple positions all at equilibrium. The term “oligonucleotide” is intended to include all such forms. Drawn structures necessarily depict a single form. Nevertheless, unless otherwise indicated, such drawings are likewise intended to include corresponding forms. Herein, a structure depicting the free acid of a compound followed by the term “or a pharmaceutically acceptable salt thereof” expressly includes all such forms that may be fully or partially protonated/de-protonated/in association with a cation or a combination of cations. In certain embodiments, one or more specific cation is identified. The cations include, but are not limited to, sodium, potassium, calcium, and magnesium. In certain embodiments, a structure depicting the free acid of a compound followed by the term “or a pharmaceutically acceptable salt thereof” expressly includes all such forms that may be fully or partially protonated/de-protonated/in association with one or more cations selected from sodium, potassium, calcium, and magnesium.


In certain embodiments, modified oligonucleotides or oligomeric compounds are in aqueous solution with sodium. In certain embodiments, modified oligonucleotides or oligomeric compounds are in aqueous solution with potassium. In certain embodiments, modified oligonucleotides or oligomeric compounds are in PBS. In certain embodiments, modified oligonucleotides or oligomeric compounds are in water. In certain such embodiments, the pH of the solution is adjusted with NaOH and/or HCl to achieve a desired pH.


Herein, certain specific doses are described. A dose may be in the form of a dosage unit. For clarity, a dose (or dosage unit) of a modified oligonucleotide or an oligomeric compound in milligrams indicates the mass of the free acid form of the modified oligonucleotide or oligomeric compound. As described above, in aqueous solution, the free acid is in equilibrium with anionic and salt forms. However, for the purpose of calculating dose, it is assumed that the modified oligonucleotide or oligomeric compound exists as a solvent-free, sodium-acetate free, anhydrous, free acid.


In certain embodiments, where a modified oligonucleotide or an oligomeric compound is in solution comprising sodium (e.g., saline), the modified oligonucleotide or oligomeric compound may be partially or fully de-protonated and in association with sodium ions. However, the mass of the protons is nevertheless counted toward the weight of the dose, and the mass of the sodium ions is not counted toward the weight of the dose. Thus, for example, a dose, or dosage unit, of 10 mg of a number of fully protonated molecules that weighs 10 mg. This would be equivalent to 10.58 mg of solvent-free, sodium acetate-free, anhydrous sodiated Compound No. 699467 or 10.65 mg of solvent-free, sodium acetate-free, anhydrous sodiated Compound No. 1381709.


In certain embodiments, where a modified oligonucleotide or oligomeric compound is in a solution, such as aCSF, comprising sodium, potassium, calcium, and magnesium, the modified oligonucleotide or oligomeric compound may be partially or fully de-protonated and in association with sodium, potassium, calcium, and/or magnesium. However, the mass of the protons is nevertheless counted toward the weight of the dose, and the mass of the sodium, potassium, calcium, and magnesium ions is not counted toward the weight of the dose.


In certain embodiments, when an oligomeric compound comprises a conjugate group, the mass of the conjugate group is included in calculating the dose of such oligomeric compound. If the conjugate group also has an acid, the conjugate group is likewise assumed to be fully protonated for the purpose of calculating dose.


VII. Certain Hotspot Regions


1. Nucleobases 1155-1178 of SEQ ID NO: 2


In certain embodiments, nucleobases 1155-1178 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, modified oligonucleotides are complementary to a portion of nucleobases 1155-1178 of SEQ ID NO: 2. In certain embodiments, the modified oligonucleotides are 16 to 20 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are cEt gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified nucleotides are phosphorothioate internucleoside linkages and phosphodiester linkages, of a combination thereof.


The nucleobase sequences of SEQ ID NOs: 70, 71, 169, 170, 447, 448, 543, 552, 553, 919, 1061, 1132, 1938, 1991, 2066, 2154, 2226, 2259, 2324, 2417, and 2486 are complementary to nucleobases 1155-1178 of SEQ ID NO: 2.


The nucleobase sequences of Compound NOs: 426048, 426049, 689013, 689014, 689015, 689016, 689118, 708021, 708022, 729682, 729683, 942586, 942587, 942588, 1516539, 1516559, 1516570, 1516656, 1516771, 1516839, 1516862, 1516866, and 1516877 are complementary to nucleobases 1155-1178 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 1155-1178 of SEQ ID NO: 2 achieve at least 46% reduction of APOE RNA in a standard in vitro assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 1155-1178 of SEQ ID NO: 2 achieve an average of 83.4% reduction of APOE RNA in a standard in vitro assay.


2. Nucleobases 1207-1230 of SEQ ID NO: 2


In certain embodiments, nucleobases 1207-1230 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, modified oligonucleotides are complementary to a portion of nucleobases 1207-1230 of SEQ ID NO: 2. In certain embodiments, the modified oligonucleotides are 16 to 20 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are cEt gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified nucleotides are phosphorothioate internucleoside linkages and phosphodiester linkages, of a combination thereof.


The nucleobase sequences of SEQ ID NOs: 460, 461, 462, 563, 564, 565, 566, 990, 1469, 1572, 1653, 1746, 1914, 1955, 2026, 2110, 2211, 2247, 2344, 2393, and 2481 are complementary to nucleobases 1207-1230 of SEQ ID NO: 2.


The nucleobase sequences of Compound NOs: 689028, 689029, 689030, 729693, 729694, 729695, 729696, 942591, 1516614, 1516652, 1516784, 1516831, 1516890, 1516931, 1516936, 1516973, 1517107, 1517281, 1517604, 1517622, and 1517806 are complementary to nucleobases 1207-1230 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 1207-1230 of SEQ ID NO: 2 achieve at least 30% reduction of APOE RNA in a standard in vitro assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 1207-1230 of SEQ ID NO: 2 achieve an average of 60.9% reduction of APOE RNA in a standard in vitro assay.


3. Nucleobases 1259-1295 of SEQ ID NO: 2


In certain embodiments, nucleobases 1259-1295 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, modified oligonucleotides are complementary to a portion of nucleobases 1259-1295 of SEQ ID NO: 2. In certain embodiments, the modified oligonucleotides are 16 to 20 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are cEt gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified nucleotides are phosphorothioate internucleoside linkages and phosphodiester linkages, of a combination thereof.


The nucleobase sequences of SEQ ID NOs: 77, 475, 476, 477, 478, 479, 480, 481, 482, 483, 578, 579, 580, 581, 582, 622, 623, 624, 625, 626, 627, 1063, 1193, 1231, 1232, 1300, 1305, 1378, 1409, 1493, 1526, 1564, 1576, 1678, 1679, 1695, 1827, 1870, 1921, 1928, 1950, 1982, 2012, 2046, 2051, 2074, 2088, 2118, 2158, 2169, 2208, 2223, 2232, 2255, 2321, 2343, 2380, 2436, 2449, and 2451 are complementary to nucleobases 1259-1295 of SEQ ID NO: 2.


The nucleobase sequences of Compound NOs: 689043, 689044, 689045, 689046, 689047, 689048, 689049, 689050, 689051, 708024, 729709, 729710, 729711, 729712, 729713, 729714, 729715, 729716, 729717, 729718, 729719, 942598, 1516533, 1516549, 1516553, 1516613, 1516617, 1516658, 1516672, 1516681, 1516726, 1516740, 1516743, 1516758, 1516778, 1516834, 1516921, 1516932, 1516974, 1517003, 1517024, 1517063, 1517082, 1517130, 1517220, 1517383, 1517427, 1517508, 1517519, 1517578, 1517652, 1517770, 1517837, 1517841, 1517842, 1517849, 1517853, 1517874, 1517885, and 1517891 are complementary to nucleobases 1259-1295 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 1259-1295 of SEQ ID NO: 2 achieve at least 29% reduction of APOE RNA in a standard in vitro assay. In certain embodiments, modified oligonucleotides complementary to a portion of nucleobases 1259-1295 of SEQ ID NO: 2 achieve an average of 72.4% reduction of APOE RNA in a standard in vitro assay.


4. Nucleobases 1135-1166 of SEQ ID NO: 2


In certain embodiments, nucleobases 1135-1166 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, oligomeric compounds or oligomeric duplexes comprise modified oligonucleotides that are complementary within nucleobases 1135-1166 of SEQ ID NO: 2. In certain embodiments, modified oligonucleotides are 23 nucleobases in length. In certain embodiments, modified oligonucleotides are antisense RNAi oligonucleotides. In certain embodiments, the antisense RNAi oligonucleotide has a sugar motif (from 5′ to 3′) of: mfinfmfmfinfinfmfinfmfinfmmm; wherein “m” represents a 2′-O methylribosyl sugar, and the “f” represents a 2′-fluororibosyl sugar; and a linkage motif (from 5′ to 3′) of: ssoooooooooooooooooss; wherein ‘o’ represents a phosphodiester internucleoside linkage and ‘s’ represents a phosphorothioate internucleoside linkage.


The nucleobase sequences of SEQ ID NOs: 2600, 2601, 2604, 2605, 2606, 2607, 2608, 2609, 2610, and 2613 are complementary within nucleobases 1135-1166 of SEQ ID NO: 2.


RNAi compounds 1518282, 1518283, 1518286, 1518299, 1518300, 1518301, 1518302, 1518303, 1518304, and 1518319 comprise an antisense RNAi oligonucleotide that is complementary within nucleobases 1135-1166 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary within nucleobases 1135-1166 of SEQ ID NO: 2 achieve at least 45% reduction of APOE RNA in a standard in vitro assay. In certain embodiments, modified oligonucleotides complementary within nucleobases 1135-1166 of SEQ ID NO: 2 achieve an average of 73.1% reduction of APOE RNA in a standard in vitro assay.


5. Nucleobases 1255-1294 of SEQ ID NO: 2


In certain embodiments, nucleobases 1255-1294 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, oligomeric compounds or oligomeric duplexes comprise modified oligonucleotides that are complementary within nucleobases 1255-1294 of SEQ ID NO: 2. In certain embodiments, modified oligonucleotides are 23 nucleobases in length. In certain embodiments, modified oligonucleotides are antisense RNAi oligonucleotides. In certain embodiments, the antisense RNAi oligonucleotide has a sugar motif (from 5′ to 3′) of: mfmfmfmfmfmfmfmfmfmfmmm; wherein “m” represents a 2′-O methylribosyl sugar, and the “f” represents a 2′-fluororibosyl sugar; and a linkage motif (from 5′ to 3′) of: ssooooooooooooooooooss; wherein ‘o’ represents a phosphodiester internucleoside linkage and ‘s’ represents a phosphorothioate internucleoside linkage.


The nucleobase sequences of SEQ ID NOs: 2720, 2721, 2722, 2726, 2727, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, and 2740 are complementary within nucleobases 1255-1294 of SEQ ID NO: 2.


RNAi compounds 1518642, 1518643, 1518644, 1518659, 1518660, 1518661, 1518663, 1518664, 1518677, 1518678, 1518679, 1518680, 1518681, 1518682, 1518695, 1518697, and 1518699 comprise an antisense RNAi oligonucleotide that is complementary within nucleobases 1255-1294 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary within nucleobases 1255-1294 of SEQ ID NO: 2 achieve at least 88% reduction of APOE RNA in a standard in vitro assay. In certain embodiments, modified oligonucleotides complementary within nucleobases 1255-1294 of SEQ ID NO: 2 achieve an average of 94.9% reduction of APOE RNA in a standard in vitro assay.


6. Nucleobases 1255-1295 of SEQ ID NO: 2


In certain embodiments, nucleobases 1255-1295 of SEQ ID NO: 2 comprise a hotspot region. In certain embodiments, oligomeric compounds or oligomeric duplexes comprise modified oligonucleotides that are complementary within nucleobases 1255-1295 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides are 23 nucleobases in length. In certain embodiments, modified oligonucleotides are antisense RNAi oligonucleotides. In certain embodiments, the antisense RNAi oligonucleotide has a sugar motif (from 5′ to 3′) of: mfmfmfmfmfmfmfmfmfmfmmm; wherein “m” represents a 2′-O methylribosyl sugar, and the “f” represents a 2′-fluororibosyl sugar; and a linkage motif (from 5′ to 3′) of: ssooooooooooooooooooss; wherein ‘o’ represents a phosphodiester internucleoside linkage and ‘s’ represents a phosphorothioate internucleoside linkage. In certain embodiments, the antisense RNAi oligonucleotide has a sugar motif (from 5′ to 3′) of: efmmmfmmmmmmmfmfmmmmmmm; wherein ‘e’ represents a 2′-MOE modified sugar moiety, each “m” represents a 2′-O-methylribosyl sugar, and each “f” represents a 2′-fluororibosyl sugar; and an internucleoside linkage motif (from 5′ to 3′) of: ssooooooooooooooooooss; wherein ‘o’ represents a phosphodiester internucleoside linkage and ‘s’ represents a phosphorothioate internucleoside linkage.


In certain embodiments, the modified oligonucleotides are 16 to 20 nucleobases in length. In certain embodiments, modified oligonucleotides are gapmers. In certain embodiments, the gapmers are cEt gapmers. In certain embodiments, the gapmers are MOE gapmers. In certain embodiments, the internucleoside linkages of the modified nucleotides are phosphorothioate internucleoside linkages and phosphodiester linkages, of a combination thereof.


The nucleobase sequences of SEQ ID NOs: 76, 77, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 576, 578, 579, 580, 581, 582, 622, 623, 624, 625, 626, 627, 1063, 1193, 1231, 1232, 1300, 1305, 1378, 1409, 1493, 1526, 1564, 1576, 1678, 1679, 1695, 1701, 1792, 1827, 1870, 1886, 1906, 1921, 1928, 1950, 1982, 2012, 2046, 2051, 2074, 2088, 2118, 2158, 2169, 2208, 2223, 2232, 2255, 2321, 2343, 2370, 2380, 2436, 2449, 2490, 2451, 2720, 2721, 2722, 2725, 2726, 2727, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2740, 2935, or 2936 are complementary within nucleobases 1255-1294 of SEQ ID NO: 2.


RNAi compounds 1518642, 1518643, 1518644, 1518659, 1518660, 1518661, 1518663, 1518664, 1518677, 1518678, 1518679, 1518680, 1518681, 1518682, 1518695, 1518697, and 1518699 comprise an antisense RNAi oligonucleotide that is complementary within nucleobases 1255-1294 of SEQ ID NO: 2. The nucleobase sequences of Compound Nos: 689043, 689044, 689045, 689046, 689047, 689048, 689049, 689050, 689051, 708024, 729709, 729710, 729711, 729712, 729713, 729714, 729715, 729716, 729717, 729718, 729719, 942598, 1516533, 1516549, 1516553, 1516613, 1516617, 1516658, 1516672, 1516681, 1516726, 1516740, 1516743, 1516758, 1516778, 1516834, 1516921, 1516932, 1516974, 1517003, 1517024, 1517063, 1517082, 1517130, 1517220, 1517383, 1517427, 1517508, 1517519, 1517578, 1517652, 1517770, 1517837, 1517841, 1517842, 1517849, 1517853, 1517874, 1517885, 1517891, 1642901, and 1644690 are complementary to nucleobases 1259-1295 of SEQ ID NO: 2.


In certain embodiments, modified oligonucleotides complementary within nucleobases 1255-1295 of SEQ ID NO: 2 achieve at least 37% reduction of APOE RNA in a standard in vitro assay. In certain embodiments, modified oligonucleotides complementary within nucleobases 1255-1295 of SEQ ID NO: 2 achieve an average of 70% reduction of APOE RNA in a standard in vitro assay.


Nonlimiting Disclosure and Incorporation by Reference

Each of the literature and patent publications listed herein is incorporated by reference in its entirety.


While certain compounds, compositions and methods described herein have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds described herein and are not intended to limit the same. Each of the references, GenBank accession numbers, ENSEMBL identifiers, and the like recited in the present application is incorporated herein by reference in its entirety.


Although the sequence listing accompanying this filing identifies each sequence as either “RNA” or “DNA” as required, in reality, those sequences may be modified with any combination of chemical modifications. One of skill in the art will readily appreciate that such designation as “RNA” or “DNA” to describe modified oligonucleotides is, in certain instances, arbitrary. For example, an oligonucleotide comprising a nucleoside comprising a 2′-OH sugar moiety and a thymine base could be described as a DNA having a modified sugar (2′-OH in place of one 2′-H of DNA) or as an RNA having a modified base (thymine (methylated uracil) in place of an uracil of RNA). Accordingly, nucleic acid sequences provided herein, including, but not limited to those in the sequence listing, are intended to encompass nucleic acids containing any combination of natural or modified RNA and/or DNA, including, but not limited to such nucleic acids having modified nucleobases. By way of further example and without limitation, an oligomeric compound having the nucleobase sequence “ATCGATCG” encompasses any oligomeric compounds having such nucleobase sequence, whether modified or unmodified, including, but not limited to, such compounds comprising RNA bases, such as those having sequence “AUCGAUCG” and those having some DNA bases and some RNA bases such as “AUCGATCG” and oligomeric compounds having other modified nucleobases, such as “ATmCGAUCG,” wherein mC indicates a cytosine base comprising a methyl group at the 5-position.


Certain compounds described herein (e.g., modified oligonucleotides) have one or more asymmetric center and thus give rise to enantiomers, diastereomers, and other stereoisomeric configurations that may be defined, in terms of absolute stereochemistry, as (R) or (S), as a or 13 such as for sugar anomers, or as (D) or (L), such as for amino acids, etc. Compounds provided herein that are drawn or described as having certain stereoisomeric configurations include only the indicated compounds. Compounds provided herein that are drawn or described with undefined stereochemistry include all such possible isomers, including their stereorandom and optically pure forms, unless specified otherwise. Likewise, tautomeric forms of the compounds herein are also included unless otherwise indicated. Unless otherwise indicated, compounds described herein are intended to include corresponding salt forms.


The compounds described herein include variations in which one or more atoms are replaced with a non-radioactive isotope or radioactive isotope of the indicated element. For example, compounds herein that comprise hydrogen atoms encompass all possible deuterium substitutions for each of the 1H hydrogen atoms. Isotopic substitutions encompassed by the compounds herein include but are not limited to: 2H or 3H in place of 1H, 13C or 14C in place of 12C, 15N in place of 14N, 17O or 18O in place of 16O, and 33S, 34S, 35S, or 36S in place of 32S. In certain embodiments, non-radioactive isotopic substitutions may impart new properties on the oligomeric compound that are beneficial for use as a therapeutic or research tool. In certain embodiments, radioactive isotopic substitutions may make the compound suitable for research or diagnostic purposes such as imaging.


EXAMPLES

The following examples illustrate certain embodiments of the present disclosure and are not limiting. Moreover, where specific embodiments are provided, the inventors have contemplated generic application of those specific embodiments. For example, disclosure of an oligonucleotide having a particular motif provides reasonable support for additional oligonucleotides having the same or similar motif. And, for example, where a particular high-affinity modification appears at a particular position, other high-affinity modifications at the same position are considered suitable, unless otherwise indicated.


Example 1: Effect of 5-10-5 MOE Full Phosphorothioate Modified Oligonucleotides on Human APOE RNA In Vitro, Single Dose

Modified oligonucleotides complementary to human APOE nucleic acid were designed and tested for their single dose effects on APOE RNA in vitro. The modified oligonucleotides were tested in a series of experiments that had the same culture conditions.


The modified oligonucleotides in the table below are 5-10-5 MOE gapmers with full phosphorothioate internucleoside linkages. The gapmers are 20 nucleosides in length, wherein the central gap segment consists of ten 2′-β-D-deoxynucleosides, and wherein the 5′ and 3′ wing segments each consist of five 2′-MOE modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeddddddddddeeeee; wherein ‘d’ represents a 2′-β-D-deoxyribosyl sugar, and ‘e’ represents a 2′-MOE modified sugar moiety. The internucleoside linkage motif for the gapmers is (from 5′ to 3′): sssssssssssssssssss; wherein each ‘s’ represents a phosphorothioate internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.


“Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified oligonucleotide listed in the tables below is 100% complementary to SEQ ID NO: 1 (GENBANK Accession No. NC_000019.10, truncated from nucleotides 44903001 to 44912000), to SEQ ID NO: 2 (GENBANK Accession No. NM_001302688.1), to SEQ ID NO: 3 (GENBANK Accession No. AU126799.1), to SEQ ID NO: 4 (GENBANK Accession No. BI602495.1), to SEQ ID NO: 5 (the complement of GENBANK Accession No. CA306379.1), or to any combination of these SEQ ID NOs. ‘N/A’ indicates that the modified oligonucleotide is not 100% complementary to that particular target nucleic acid sequence.


Cultured HepG2 cells were treated with modified oligonucleotide at a concentration of 100 nM using Lipofectin at a density of 10,000 cells per well. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. APOE RNA levels were measured by human primer-probe set RTS3073 (forward sequence TGGGTCGCTTTTGGGATTAC, designated herein as SEQ ID NO: 10; reverse sequence CCATCAGCGCCCTCAGTT, designated herein as SEQ ID NO: 11; probe sequence CTGCTCAGCTCCCAGGTCACCCA, designated herein as SEQ ID NO: 12). APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in the tables below as percent APOE RNA relative to untreated control cells (% UTC). Each table represents results from an individual assay plate. The values marked with an “†” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.









TABLE 1







Reduction of APOE RNA by 5-10-5 MOE gapmers with full phosphorothioate internucleoside


linkages at a concentration of 100 nM in HepG2 cells plated at 10,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





425997
2782
2801
  34
  53
GAGTAGGACTCAAGGATCCC
108
20





425999
3625
3644
 199
 218
GCAGCCCACAGAACCTTCAT
122
21





426000
3628
3647
 202
 221
AACGCAGCCCACAGAACCTT
 88
22





426001
3636
3655
 210
 229
TGACCAGCAACGCAGCCCAC
 79
23





426002
3642
3661
 216
 235
GGAATGTGACCAGCAACGCA
 66
24





426003
3649
3668
 223
 242
CCTGCCAGGAATGTGACCAG
 26
25





426004
N/A
N/A
 226
 245
CATCCTGCCAGGAATGTGAC
 72
26





426005
N/A
N/A
 235
 254
TTGGCCTGGCATCCTGCCAG
 81
27





426006
4759
4778
 241
 260
TCCACCTTGGCCTGGCATCC
 84
28





426007
4844
4863
 326
 345
ACCCAGTGCCAGTTCCCAGC
 79†
29





426008
4854
4873
 336
 355
CCCAAAAGCGACCCAGTGCC
 73†
30





426009
4861
4880
 343
 362
AGGTAATCCCAAAAGCGACC
 60†
31





426010
4864
4883
 346
 365
CGCAGGTAATCCCAAAAGCG
 47†
32





426011
4872
4891
 354
 373
GCACCCAGCGCAGGTAATCC
 33†
33





426012
4875
4894
 357
 376
TCTGCACCCAGCGCAGGTAA
 53†
34





426013
4879
4898
 361
 380
AGTGTCTGCACCCAGCGCAG
 14†
35





426014
4886
4905
 368
 387
CTCAGACAGTGTCTGCACCC
 62†
36





426015
4893
4912
 375
 394
GCACCTGCTCAGACAGTGTC
 57†
37





426016
4921
4940
 403
 422
GTGACCTGGGAGCTGAGCAG
 42†
38





426017
4932
4951
 414
 433
TCAGTTCCTGGGTGACCTGG
 19†
39





426018
N/A
N/A
 419
 438
CGCCCTCAGTTCCTGGGTGA
 68†
40





426019
5559
5578
 461
 480
CGATTTGTAGGCCTTCAACT
 32
41





426020
5565
5584
 467
 486
CAGTTCCGATTTGTAGGCCT
 25
42





426021
5618
5637
 520
 539
TCCTTGGACAGCCGTGCCCG
 56
43





426022
5682
5701
 584
 603
CTGCACCAGGCGGCCGCACA
 66
44





426023
5688
5707
 590
 609
GCGGTACTGCACCAGGCGGC
116
45





426024
5691
5710
 593
 612
GCCGCGGTACTGCACCAGGC
 60
46





426025
5715
5734
 617
 636
CTGGCCGAGCATGGCCTGCA
 96
47





426026
5765
5784
 667
 686
CGCAGCTTGCGCAGGTGGGA
 82
48





426027
5775
5794
 677
 696
GAGCCGCTTACGCAGCTTGC
 76
49





426028
5799
5818
 701
 720
CTGCAGGTCATCGGCATCGC
 24
50





426029
5804
5823
 706
 725
CGCTTCTGCAGGTCATCGGC
 35
51





426030
5825
5844
 727
 746
CCGGCCTGGTACACTGCCAG
 75
52





426031
5828
5847
 730
 749
GCCCCGGCCTGGTACACTGC
 70
53





426032
5832
5851
 734
 753
GCGGGCCCCGGCCTGGTACA
 87
54





426033
5919
5938
 821
 840
GCCCACAGTGGCGGCCCGCA
 84
55





426034
5922
5941
 824
 843
GGAGCCCACAGTGGCGGCCC
115
56





426035
5925
5944
 827
 846
CAGGGAGCCCACAGTGGCGG
106
57





426036
5928
5947
 830
 849
GGCCAGGGAGCCCACAGTGG
 97
58





426037
5934
5953
 836
 855
CTGGCCGGCCAGGGAGCCCA
111
59





426038
6009
6028
 911
 930
GCGGGTCCGGCTGCCCATCT
 61
60





426039
6062
6081
 964
 983
TCCAGCTTGGCGCGCACCTC
 37
61





426040
6103
6122
1005
1024
GGAAGGCCTCGGCCTGCAGG
 92
62





426041
6118
6137
1020
1039
TCTTGAGGCGGGCCTGGAAG
 91
63





426042
6127
6146
1029
1048
CGAACCAGCTCTTGAGGCGG
117
64





426043
6150
6169
1052
1071
CTGCATGTCTTCCACCAGGG
 37
65





426044
6153
6172
1055
1074
GCGCTGCATGTCTTCCACCA
 50
66





426045
6197
6216
1099
1118
GTGCCCACGGCAGCCTGCAC
 90
67





426046
6230
6249
1132
1151
CAGTGATTGTCGCTGGGCAC
136
68





426047
6234
6253
1136
1155
CGTTCAGTGATTGTCGCTGG
 31
69





426048
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
  5
70





426049
6257
6276
1159
1178
GGTCGCATGGCTGCAGGCTT
 10
71





426050
6336
6355
1238
1257
ACCCCAGGAGGACGGCTGGG
 32
72





426051
6340
6359
1242
1261
GTCCACCCCAGGAGGACGGC
 69
73





426052
6343
6362
1245
1264
AGGGTCCACCCCAGGAGGAC
 37
74





426053
6347
6366
1249
1268
AACTAGGGTCCACCCCAGGA
214
75





426054
6353
6372
1255
1274
TTATTAAACTAGGGTCCACC
 56
76





426055
6371
6390
1273
1292
GTGAAACTTGGTGAATCTTT
 30
77





426062
2888
2907
 140
 159
CCCAGGGTCCCAGCTCTTTC
163
78





426067
2892
2911
 144
 163
GGTTCCCAGGGTCCCAGCTC
 87
79





426068
2912
2931
N/A
N/A
GAGACTACCTGGAGGCCAGG
 96
80





426069
3167
3186
N/A
N/A
ACCGTGTCGCTGCCCCTGGC
 99
81





426070
3656
3675
N/A
N/A
CCCCATACCTGCCAGGAATG
130
82





426071
4272
4291
N/A
N/A
TGTGTGCCCCAGGCAGGGCT
113
83





426072
4937
4956
N/A
N/A
TCACCTCAGTTCCTGGGTGA
 91†
84





426073
4976
4995
N/A
N/A
GCCGCCCACCAGGAGGGTCA
105†
85





426074
7222
7241
N/A
N/A
GCAGGCCGGGCTCGGAGCCC
107
86
















TABLE 2







Reduction of APOE RNA by 5-10-5 MOE gapmers with full phosphorothioate internucleoside


linkages at a concentration of 100 nM in HepG2 cells plated at 10,000 cells per well

















SEQ
SEQ
SEQ
SEQ
SEQ
SEQ






ID No:
ID No:
ID No:
ID No:
ID No:
ID No:

APOE



Compound
3 Start
3 Stop
4 Start
4 Stop
5 Start
5 Stop
Sequence
(%
SEQ


Number
Site
Site
Site
Site
Site
Site
(5′ to 3′)
UTC)
ID NO





425998
 40
 59
N/A
N/A
N/A
N/A
TGTGATTGGC
 85
87









CAGTCGGCTC







426056
103
122
N/A
N/A
N/A
N/A
TGGCTGGCAT
106
88









CCTGCCAGGA







426057
534
553
N/A
N/A
N/A
N/A
TACGCAGTTG
123
89









CGCAGGTGGG







426058
543
562
N/A
N/A
N/A
N/A
AGGAGCCGTT
109
90









ACGCAGTTGC







426060
731
750
N/A
N/A
N/A
N/A
ATTAAACTTA
133
91









GGGTCCACTC







426061
734
753
N/A
N/A
N/A
N/A
TTTATTAAACT
 73
92









TAGGGTCCA







426063
N/A
N/A
747
766
N/A
N/A
TGTTCCACCA
125
93









GGGCCCCAGG







426064
N/A
N/A
777
796
N/A
N/A
GGAGCCCACA
135
94









GTGCCGGCCG







426065
N/A
N/A
N/A
N/A
 98
117
CACTTCTGCA
 67
95









GGTCATCGGC







426066
N/A
N/A
N/A
N/A
103
122
CCAGGCACTT
121
96









CTGCAGGTCA









Example 2: Effect of 5-8-5 MOE Mixed Backbone Modified Oligonucleotides on Human APOE RNA In Vitro, Single Dose

Modified oligonucleotides complementary to human APOE nucleic acid were designed and tested for their single dose effects on APOE RNA in vitro. The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The modified oligonucleotides in the tables below are 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages. The gapmers are 18 nucleosides in length, wherein the central gap segment consists of eight 2′-β-D-deoxynucleosides, and wherein the 5′ and 3′ wing segments each consist of five 2′-MOE modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeddddddddeeeee; wherein ‘d’ represents a 2′-β-D-deoxyribosyl sugar, and ‘e’ represents a 2′-MOE modified sugar moiety. The internucleoside linkage motif for the gapmers is (from 5′ to 3′): soossssssssssooss; wherein each ‘o’ represents a phosphodiester internucleoside linkage and each ‘s’ represents a phosphorothioate internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.


“Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified oligonucleotide listed in the tables below is 100% complementary to SEQ ID NO: 1 (described herein above), to SEQ ID NO: 2 (described herein above), to SEQ ID NO: 3 (described herein above), to SEQ ID NO: 4 (described herein above), to SEQ ID NO: 5 (described herein above), to SEQ ID NO: 6 (GENBANK Accession No. NM_000041.2 with T-->C at pos 471 to result in APOE4 mutant mRNA), or to any combination of these SEQ ID NOs. ‘N/A’ indicates that the modified oligonucleotide is not 100% complementary to that particular target nucleic acid sequence.


Cultured Hep3B or HepG2 cells were treated with modified oligonucleotide at a concentration of 2000 or 4000 nM by electroporation at a density of either 5,000 or 20,000 cells per well, as indicated in the tables below. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. APOE RNA levels were measured by human primer-probe set RTS3073 (described herein in Example 1). APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in the tables below as percent APOE RNA relative to untreated control cells (% UTC). Each table represents results from an individual assay plate. The values marked with an “†” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region. In Tables 3-8 below, Compound 426048 (described herein above) was included as a reference.









TABLE 3







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





426048
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
 42
 70





688661
2783
2800
  35
  52
AGTAGGACTCAAGGATCC
103
 97





688662
2785
2802
  37
  54
TGAGTAGGACTCAAGGAT
108
 98





688663
2787
2804
  39
  56
GCTGAGTAGGACTCAAGG
108
 99





688664
2789
2806
  41
  58
GGGCTGAGTAGGACTCAA
108
100





688665
2805
2822
  57
  74
TCCTTCACCTCCGCTGGG
120
101





688666
2807
2824
  59
  76
CGTCCTTCACCTCCGCTG
109
102





688671
3601
3618
 175
 192
GCCTGTGATTGGCCAGTC
 92
103





688672
3603
3620
 177
 194
CTGCCTGTGATTGGCCAG
 70
104





688673
3605
3622
 179
 196
TCCTGCCTGTGATTGGCC
 96
105





688674
3607
3624
 181
 198
CTTCCTGCCTGTGATTGG
 96
106





688675
3609
3626
 183
 200
ATCTTCCTGCCTGTGATT
100
107





688676
3613
3630
 187
 204
CTTCATCTTCCTGCCTGT
 95
108





688677
3615
3632
 189
 206
ACCTTCATCTTCCTGCCT
110
109





688678
3617
3634
 191
 208
GAACCTTCATCTTCCTGC
 93
110





688679
3619
3636
 193
 210
CAGAACCTTCATCTTCCT
 96
111





688680
3621
3638
 195
 212
CACAGAACCTTCATCTTC
 88
112





688681
3623
3640
 197
 214
CCCACAGAACCTTCATCT
 78
113





688682
3625
3642
 199
 216
AGCCCACAGAACCTTCAT
 80
114





688683
3627
3644
 201
 218
GCAGCCCACAGAACCTTC
101
115





688684
3629
3646
 203
 220
ACGCAGCCCACAGAACCT
 97
116





688685
3631
3648
 205
 222
CAACGCAGCCCACAGAAC
102
117





688686
3633
3650
 207
 224
AGCAACGCAGCCCACAGA
 94
118





688687
3635
3652
 209
 226
CCAGCAACGCAGCCCACA
 68
119





688688
3637
3654
 211
 228
GACCAGCAACGCAGCCCA
 80
120





688689
3639
3656
 213
 230
GTGACCAGCAACGCAGCC
109
121





688690
3641
3658
 215
 232
ATGTGACCAGCAACGCAG
113
122





688691
3645
3662
 219
 236
AGGAATGTGACCAGCAAC
 93
123





688692
3647
3664
 221
 238
CCAGGAATGTGACCAGCA
100
124





688693
3649
3666
 223
 240
TGCCAGGAATGTGACCAG
105
125





688694
3651
3668
 225
 242
CCTGCCAGGAATGTGACC
123
126





688695
N/A
N/A
 227
 244
ATCCTGCCAGGAATGTGA
122
127





688696
N/A
N/A
 229
 246
GCATCCTGCCAGGAATGT
112
128





688697
N/A
N/A
 231
 248
TGGCATCCTGCCAGGAAT
112
129





688698
N/A
N/A
 233
 250
CCTGGCATCCTGCCAGGA
 99
130





688699
N/A
N/A
 235
 252
GGCCTGGCATCCTGCCAG
 90
131





688700
4757
4774
 239
 256
CCTTGGCCTGGCATCCTG
105
132





688701
4759
4776
 241
 258
CACCTTGGCCTGGCATCC
132
133





688702
4761
4778
 243
 260
TCCACCTTGGCCTGGCAT
132
134





688703
4763
4780
 245
 262
GCTCCACCTTGGCCTGGC
121
135





688704
4765
4782
 247
 264
TTGCTCCACCTTGGCCTG
112
136





688705
4767
4784
 249
 266
GCTTGCTCCACCTTGGCC
119
137





688706
4769
4786
 251
 268
CCGCTTGCTCCACCTTGG
111
138





688707
4773
4790
 255
 272
TCCACCGCTTGCTCCACC
118
139





688708
4775
4792
 257
 274
TCTCCACCGCTTGCTCCA
120
140





688709
4777
4794
 259
 276
TGTCTCCACCGCTTGCTC
155
141





688710
4779
4796
 261
 278
TCTGTCTCCACCGCTTGC
104
142





688711
4781
4798
 263
 280
GCTCTGTCTCCACCGCTT
 53
143





688712
4783
4800
 265
 282
CGGCTCTGTCTCCACCGC
 68
144





688713
4785
4802
 267
 284
TCCGGCTCTGTCTCCACC
 81
145





688714
4787
4804
 269
 286
GCTCCGGCTCTGTCTCCA
 71
146





688715
4791
4808
 273
 290
TCGGGCTCCGGCTCTGTC
110
147





688716
4794
4811
 276
 293
AGCTCGGGCTCCGGCTCT
 83
148





688717
4796
4813
 278
 295
GCAGCTCGGGCTCCGGCT
 88
149





688718
4798
4815
 280
 297
GCGCAGCTCGGGCTCCGG
134
150





688719
4800
4817
 282
 299
TGGCGCAGCTCGGGCTCC
 90
151





688720
4802
4819
 284
 301
GCTGGCGCAGCTCGGGCT
 98
152





688721
4804
4821
 286
 303
CTGCTGGCGCAGCTCGGG
 86
153





688722
4806
4823
 288
 305
GTCTGCTGGCGCAGCTCG
113
154





688723
4808
4825
 290
 307
CGGTCTGCTGGCGCAGCT
 97
155





688724
4810
4827
 292
 309
CTCGGTCTGCTGGCGCAG
103
156





688725
4812
4829
 294
 311
CACTCGGTCTGCTGGCGC
 96
157





688726
4814
4831
 296
 313
GCCACTCGGTCTGCTGGC
100
158





688727
4816
4833
 298
 315
CTGCCACTCGGTCTGCTG
112
159





688728
4818
4835
 300
 317
CTCTGCCACTCGGTCTGC
 75
160





688729
4820
4837
 302
 319
CGCTCTGCCACTCGGTCT
 98
161





688730
4822
4839
 304
 321
GCCGCTCTGCCACTCGGT
 86
162





688731
4824
4841
 306
 323
TGGCCGCTCTGCCACTCG
100
163





688732
4826
4843
 308
 325
GCTGGCCGCTCTGCCACT
109
164





688733
4828
4845
 310
 327
GCGCTGGCCGCTCTGCCA
125
165





688734
4842
4859
 324
 341
AGTGCCAGTTCCCAGCGC
127†
166





688735
4844
4861
 326
 343
CCAGTGCCAGTTCCCAGC
136†
167





688736
4848
4865
 330
 347
CGACCCAGTGCCAGTTCC
 79†
168





689014
6255
6272
1157
1174
GCATGGCTGCAGGCTTCG
 38
169





689016
6258
6275
1160
1177
GTCGCATGGCTGCAGGCT
 28
170
















TABLE 4







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





426048
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
 36
 70





688737
4850
4867
 332
 349
AGCGACCCAGTGCCAGTT
 42†
171





688738
4852
4869
 334
 351
AAAGCGACCCAGTGCCAG
 59†
172





688739
4854
4871
 336
 353
CAAAAGCGACCCAGTGCC
 60†
173





688740
4856
4873
 338
 355
CCCAAAAGCGACCCAGTG
 32†
174





688741
4858
4875
 340
 357
ATCCCAAAAGCGACCCAG
 39†
175





688742
4860
4877
 342
 359
TAATCCCAAAAGCGACCC
 51†
176





688743
4862
4879
 344
 361
GGTAATCCCAAAAGCGAC
 44†
177





688744
4866
4883
 348
 365
CGCAGGTAATCCCAAAAG
 31†
178





688745
4868
4885
 350
 367
AGCGCAGGTAATCCCAAA
 32†
179





688746
4870
4887
 352
 369
CCAGCGCAGGTAATCCCA
 17†
180





688747
4872
4889
 354
 371
ACCCAGCGCAGGTAATCC
 13†
181





688748
4874
4891
 356
 373
GCACCCAGCGCAGGTAAT
 43†
182





688749
4876
4893
 358
 375
CTGCACCCAGCGCAGGTA
 28†
183





688750
4878
4895
 360
 377
GTCTGCACCCAGCGCAGG
 24†
184





688751
4881
4898
 363
 380
AGTGTCTGCACCCAGCGC
 24†
185





688752
4882
4899
 364
 381
CAGTGTCTGCACCCAGCG
 41†
186





688753
4884
4901
 366
 383
GACAGTGTCTGCACCCAG
 42†
187





688754
4886
4903
 368
 385
CAGACAGTGTCTGCACCC
 81†
188





688755
4888
4905
 370
 387
CTCAGACAGTGTCTGCAC
 49†
189





688756
4890
4907
 372
 389
TGCTCAGACAGTGTCTGC
 57†
190





688757
4894
4911
 376
 393
CACCTGCTCAGACAGTGT
 43†
191





688758
4896
4913
 378
 395
TGCACCTGCTCAGACAGT
 40†
192





688759
4898
4915
 380
 397
CCTGCACCTGCTCAGACA
 12†
193





688760
4900
4917
 382
 399
CTCCTGCACCTGCTCAGA
 17†
194





688761
4902
4919
 384
 401
TCCTCCTGCACCTGCTCA
 11†
195





688762
4904
4921
 386
 403
GCTCCTCCTGCACCTGCT
 16†
196





688763
4906
4923
 388
 405
CAGCTCCTCCTGCACCTG
 13†
197





688764
4908
4925
 390
 407
AGCAGCTCCTCCTGCACC
 46†
198





688765
4912
4929
 394
 411
GCTGAGCAGCTCCTCCTG
 21†
199





688766
4914
4931
 396
 413
GAGCTGAGCAGCTCCTCC
 52†
200





688767
4916
4933
 398
 415
GGGAGCTGAGCAGCTCCT
 76†
201





688768
4918
4935
 400
 417
CTGGGAGCTGAGCAGCTC
 31†
202





688769
4922
4939
 404
 421
TGACCTGGGAGCTGAGCA
 51†
203





688770
4924
4941
 406
 423
GGTGACCTGGGAGCTGAG
 20†
204





688771
4932
4949
 414
 431
AGTTCCTGGGTGACCTGG
 43†
205





688772
4934
4951
 416
 433
TCAGTTCCTGGGTGACCT
 82†
206





688773
4936
4953
 418
 435
CCTCAGTTCCTGGGTGAC
 61†
207





688774
N/A
N/A
 420
 437
GCCCTCAGTTCCTGGGTG
 35†
208





688775
N/A
N/A
 422
 439
GCGCCCTCAGTTCCTGGG
 10†
209





688776
5545
5562
 447
 464
AACTCCTTCATGGTCTCG
 85
210





688777
5549
5566
 451
 468
CTTCAACTCCTTCATGGT
115
211





688778
5551
5568
 453
 470
GCCTTCAACTCCTTCATG
101
212





688779
5553
5570
 455
 472
AGGCCTTCAACTCCTTCA
 67
213





688780
5555
5572
 457
 474
GTAGGCCTTCAACTCCTT
 84
214





688781
5559
5576
 461
 478
ATTTGTAGGCCTTCAACT
 72
215





688782
5561
5578
 463
 480
CGATTTGTAGGCCTTCAA
 45
216





688783
5563
5580
 465
 482
TCCGATTTGTAGGCCTTC
 51
217





688784
5565
5582
 467
 484
GTTCCGATTTGTAGGCCT
 57
218





688785
5567
5584
 469
 486
CAGTTCCGATTTGTAGGC
 98
219





688786
5569
5586
 471
 488
TCCAGTTCCGATTTGTAG
102
220





688787
5571
5588
 473
 490
CCTCCAGTTCCGATTTGT
 51
221





688788
5573
5590
 475
 492
TTCCTCCAGTTCCGATTT
 68
222





688789
5575
5592
 477
 494
TGTTCCTCCAGTTCCGAT
 83
223





688790
5577
5594
 479
 496
GTTGTTCCTCCAGTTCCG
 70
224





688791
5579
5596
 481
 498
CAGTTGTTCCTCCAGTTC
115
225





688792
5581
5598
 483
 500
GTCAGTTGTTCCTCCAGT
 82
226





688793
5583
5600
 485
 502
GGGTCAGTTGTTCCTCCA
 62
227





688794
5599
5616
 501
 518
GTCTCCTCCGCCACCGGG
 89
228





688795
5616
5633
 518
 535
TGGACAGCCGTGCCCGCG
 58
229





688796
5618
5635
 520
 537
CTTGGACAGCCGTGCCCG
 79
230





688797
5620
5637
 522
 539
TCCTTGGACAGCCGTGCC
 80
231





688798
5622
5639
 524
 541
GCTCCTTGGACAGCCGTG
 58
232





688799
5624
5641
 526
 543
CAGCTCCTTGGACAGCCG
 92
233





688800
5626
5643
 528
 545
TGCAGCTCCTTGGACAGC
 80
234





688801
5628
5645
 530
 547
CCTGCAGCTCCTTGGACA
 92
235





688802
5632
5649
 534
 551
GCCGCCTGCAGCTCCTTG
 69
236





688803
5634
5651
 536
 553
GCGCCGCCTGCAGCTCCT
 80
237





688804
5636
5653
 538
 555
CTGCGCCGCCTGCAGCTC
 71
238





688805
5638
5655
 540
 557
GCCTGCGCCGCCTGCAGC
 99
239





688806
5640
5657
 542
 559
GGGCCTGCGCCGCCTGCA
 81
240





688807
5642
5659
 544
 561
CCGGGCCTGCGCCGCCTG
 88
241





688808
5644
5661
 546
 563
AGCCGGGCCTGCGCCGCC
 67
242





688809
5648
5665
 550
 567
GCCCAGCCGGGCCTGCGC
114
243





688810
5650
5667
 552
 569
GCGCCCAGCCGGGCCTGC
 65
244





688811
5652
5669
 554
 571
CCGCGCCCAGCCGGGCCT
 58
245





688812
5654
5671
 556
 573
GTCCGCGCCCAGCCGGGC
 75
246





689014
6255
6272
1157
1174
GCATGGCTGCAGGCTTCG
 44
169





689016
6258
6275
1160
1177
GTCGCATGGCTGCAGGCT
 27
170
















TABLE 5







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 2000 nM in HepG2 cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





426048
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
 21
 70





688813
5656
5673
 558
 575
ATGTCCGCGCCCAGCCGG
144
247





688814
5658
5675
 560
 577
CCATGTCCGCGCCCAGCC
112
248





688815
5660
5677
 562
 579
CTCCATGTCCGCGCCCAG
 98
249





688816
5662
5679
 564
 581
TCCTCCATGTCCGCGCCC
102
250





688817
5664
5681
 566
 583
CGTCCTCCATGTCCGCGC
122
251





688818
5680
5697
 582
 599
ACCAGGCGGCCGCACACG
 73
252





688819
5682
5699
 584
 601
GCACCAGGCGGCCGCACA
 67
253





688820
5684
5701
 586
 603
CTGCACCAGGCGGCCGCA
126
254





688821
5686
5703
 588
 605
TACTGCACCAGGCGGCCG
131
255





688822
5688
5705
 590
 607
GGTACTGCACCAGGCGGC
119
256





688823
5690
5707
 592
 609
GCGGTACTGCACCAGGCG
108
257





688824
5692
5709
 594
 611
CCGCGGTACTGCACCAGG
 89
258





688825
5694
5711
 596
 613
CGCCGCGGTACTGCACCA
 79
259





688826
5698
5715
 600
 617
ACCTCGCCGCGGTACTGC
114
260





688827
5700
5717
 602
 619
GCACCTCGCCGCGGTACT
124
261





688828
5704
5721
 606
 623
GCCTGCACCTCGCCGCGG
110
262





688829
5706
5723
 608
 625
TGGCCTGCACCTCGCCGC
163
263





688830
5708
5725
 610
 627
CATGGCCTGCACCTCGCC
 74
264





688831
5710
5727
 612
 629
AGCATGGCCTGCACCTCG
 63
265





688832
5712
5729
 614
 631
CGAGCATGGCCTGCACCT
 68
266





688833
5714
5731
 616
 633
GCCGAGCATGGCCTGCAC
 86
267





688834
5716
5733
 618
 635
TGGCCGAGCATGGCCTGC
142
268





688835
5720
5737
 622
 639
GCTCTGGCCGAGCATGGC
112
269





688836
5722
5739
 624
 641
GTGCTCTGGCCGAGCATG
 94
270





688837
5724
5741
 626
 643
CGGTGCTCTGGCCGAGCA
128
271





688838
5726
5743
 628
 645
CTCGGTGCTCTGGCCGAG
 74
272





688839
5728
5745
 630
 647
TCCTCGGTGCTCTGGCCG
127
273





688840
5730
5747
 632
 649
GCTCCTCGGTGCTCTGGC
 98
274





688841
5732
5749
 634
 651
CAGCTCCTCGGTGCTCTG
147
275





688842
5734
5751
 636
 653
CGCAGCTCCTCGGTGCTC
134
276





688843
5736
5753
 638
 655
CCCGCAGCTCCTCGGTGC
104
277





688844
5738
5755
 640
 657
CACCCGCAGCTCCTCGGT
 92
278





688845
5740
5757
 642
 659
CGCACCCGCAGCTCCTCG
110
279





688846
5742
5759
 644
 661
GGCGCACCCGCAGCTCCT
 84
280





688847
5744
5761
 646
 663
GAGGCGCACCCGCAGCTC
102
281





688848
5746
5763
 648
 665
GCGAGGCGCACCCGCAGC
 61
282





688849
5748
5765
 650
 667
AGGCGAGGCGCACCCGCA
125
283





688850
5750
5767
 652
 669
GGAGGCGAGGCGCACCCG
 93
284





688851
5752
5769
 654
 671
TGGGAGGCGAGGCGCACC
126
285





688852
5754
5771
 656
 673
GGTGGGAGGCGAGGCGCA
113
286





688853
5756
5773
 658
 675
CAGGTGGGAGGCGAGGCG
114
287





688854
5758
5775
 660
 677
CGCAGGTGGGAGGCGAGG
133
288





688855
5762
5779
 664
 681
CTTGCGCAGGTGGGAGGC
 78
289





688856
5764
5781
 666
 683
AGCTTGCGCAGGTGGGAG
131
290





688857
5768
5785
 670
 687
ACGCAGCTTGCGCAGGTG
 71
291





688858
5770
5787
 672
 689
TTACGCAGCTTGCGCAGG
120
292





688859
5772
5789
 674
 691
GCTTACGCAGCTTGCGCA
 78
293





688860
5774
5791
 676
 693
CCGCTTACGCAGCTTGCG
143
294





688861
5776
5793
 678
 695
AGCCGCTTACGCAGCTTG
 79
295





688862
5778
5795
 680
 697
GGAGCCGCTTACGCAGCT
131
296





688863
5782
5799
 684
 701
CGGAGGAGCCGCTTACGC
131
297





688864
5784
5801
 686
 703
CGCGGAGGAGCCGCTTAC
 96
298





688865
5786
5803
 688
 705
ATCGCGGAGGAGCCGCTT
109
299





688866
5788
5805
 690
 707
GCATCGCGGAGGAGCCGC
107
300





688867
5790
5807
 692
 709
CGGCATCGCGGAGGAGCC
 82
301





688868
5792
5809
 694
 711
ATCGGCATCGCGGAGGAG
122
302





688869
5796
5813
 698
 715
GGTCATCGGCATCGCGGA
131
303





688870
5798
5815
 700
 717
CAGGTCATCGGCATCGCG
104
304





688871
5801
5818
 703
 720
CTGCAGGTCATCGGCATC
123
305





688872
5802
5819
 704
 721
TCTGCAGGTCATCGGCAT
 91
306





688873
5804
5821
 706
 723
CTTCTGCAGGTCATCGGC
102
307





688874
5806
5823
 708
 725
CGCTTCTGCAGGTCATCG
101
308





688875
5821
5838
 723
 740
TGGTACACTGCCAGGCGC
 87
309





688876
5823
5840
 725
 742
CCTGGTACACTGCCAGGC
148
310





688877
5825
5842
 727
 744
GGCCTGGTACACTGCCAG
104
311





688878
5827
5844
 729
 746
CCGGCCTGGTACACTGCC
137
312





688879
5829
5846
 731
 748
CCCCGGCCTGGTACACTG
 81
313





688880
5831
5848
 733
 750
GGCCCCGGCCTGGTACAC
 81
314





688881
5833
5850
 735
 752
CGGGCCCCGGCCTGGTAC
 87
315





688882
5835
5852
 737
 754
CGCGGGCCCCGGCCTGGT
104
316





688883
5837
5854
 739
 756
CTCGCGGGCCCCGGCCTG
105
317





688884
5839
5856
 741
 758
CCCTCGCGGGCCCCGGCC
126
318





688885
5841
5858
 743
 760
CGCCCTCGCGGGCCCCGG
 88
319





688886
5856
5873
 758
 775
TGAGGCCGCGCTCGGCGC
 62
320





688887
5858
5875
 760
 777
GCTGAGGCCGCGCTCGGC
100
321





688888
5860
5877
 762
 779
GCGCTGAGGCCGCGCTCG
 87
322





689014
6255
6272
1157
1174
GCATGGCTGCAGGCTTCG
 13
169





689016
6258
6275
1160
1177
GTCGCATGGCTGCAGGCT
 15
170
















TABLE 6







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 2000 nM in HepG2 cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





426048
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
 23
 70





688889
5898
5915
 800
 817
GGCCCTGTTCCACCAGGG
145
323





688890
5900
5917
 802
 819
GCGGCCCTGTTCCACCAG
149
324





688891
5902
5919
 804
 821
ACGCGGCCCTGTTCCACC
 98
325





688892
5904
5921
 806
 823
GCACGCGGCCCTGTTCCA
107
326





688893
5906
5923
 808
 825
CCGCACGCGGCCCTGTTC
163
327





688894
5908
5925
 810
 827
GCCCGCACGCGGCCCTGT
128
328





688895
5910
5927
 812
 829
CGGCCCGCACGCGGCCCT
 79
329





688896
5912
5929
 814
 831
GGCGGCCCGCACGCGGCC
103
330





688897
5914
5931
 816
 833
GTGGCGGCCCGCACGCGG
118
331





688898
5916
5933
 818
 835
CAGTGGCGGCCCGCACGC
143
332





688899
5918
5935
 820
 837
CACAGTGGCGGCCCGCAC
 97
333





688900
5920
5937
 822
 839
CCCACAGTGGCGGCCCGC
 65
334





688901
5922
5939
 824
 841
AGCCCACAGTGGCGGCCC
 96
335





688902
5924
5941
 826
 843
GGAGCCCACAGTGGCGGC
 92
336





688903
5928
5945
 830
 847
CCAGGGAGCCCACAGTGG
 87
337





688904
5930
5947
 832
 849
GGCCAGGGAGCCCACAGT
114
338





688905
5932
5949
 834
 851
CCGGCCAGGGAGCCCACA
125
339





688906
5934
5951
 836
 853
GGCCGGCCAGGGAGCCCA
 72
340





688907
5936
5953
 838
 855
CTGGCCGGCCAGGGAGCC
128
341





688908
5938
5955
 840
 857
GGCTGGCCGGCCAGGGAG
 95
342





688909
5941
5958
 843
 860
AGCGGCTGGCCGGCCAGG
 64
343





688910
5943
5960
 845
 862
GTAGCGGCTGGCCGGCCA
105
344





688911
5945
5962
 847
 864
CTGTAGCGGCTGGCCGGC
117
345





688912
5947
5964
 849
 866
TCCTGTAGCGGCTGGCCG
110
346





688913
5949
5966
 851
 868
GCTCCTGTAGCGGCTGGC
 63
347





688914
5951
5968
 853
 870
CCGCTCCTGTAGCGGCTG
109
348





688915
5955
5972
 857
 874
GGGCCCGCTCCTGTAGCG
 90
349





688916
5957
5974
 859
 876
CTGGGCCCGCTCCTGTAG
148
350





688917
5959
5976
 861
 878
GCCTGGGCCCGCTCCTGT
 98
351





688918
5961
5978
 863
 880
AGGCCTGGGCCCGCTCCT
111
352





688919
5963
5980
 865
 882
CCAGGCCTGGGCCCGCTC
137
353





688920
5965
5982
 867
 884
CCCCAGGCCTGGGCCCGC
111
354





688921
5967
5984
 869
 886
CGCCCCAGGCCTGGGCCC
102
355





688922
5971
5988
 873
 890
CGCTCGCCCCAGGCCTGG
117
356





688923
5973
5990
 875
 892
GCCGCTCGCCCCAGGCCT
 90
357





688924
5975
5992
 877
 894
CAGCCGCTCGCCCCAGGC
108
358





688925
5977
5994
 879
 896
CGCAGCCGCTCGCCCCAG
108
359





688926
5979
5996
 881
 898
CGCGCAGCCGCTCGCCCC
 63
360





688927
5981
5998
 883
 900
CGCGCGCAGCCGCTCGCC
129
361





688928
5983
6000
 885
 902
CGCGCGCGCAGCCGCTCG
102
362





688929
5985
6002
 887
 904
TCCGCGCGCGCAGCCGCT
 67
363





688930
5987
6004
 889
 906
CATCCGCGCGCGCAGCCG
 74
364





688931
5989
6006
 891
 908
TCCATCCGCGCGCGCAGC
106
365





688932
5991
6008
 893
 910
CCTCCATCCGCGCGCGCA
119
366





688933
5993
6010
 895
 912
CTCCTCCATCCGCGCGCG
104
367





688934
5995
6012
 897
 914
ATCTCCTCCATCCGCGCG
118
368





688935
5997
6014
 899
 916
CCATCTCCTCCATCCGCG
114
369





688936
5999
6016
 901
 918
GCCCATCTCCTCCATCCG
103
370





688937
6003
6020
 905
 922
GGCTGCCCATCTCCTCCA
101
371





688938
6005
6022
 907
 924
CCGGCTGCCCATCTCCTC
 83
372





688939
6007
6024
 909
 926
GTCCGGCTGCCCATCTCC
 68
373





688940
6009
6026
 911
 928
GGGTCCGGCTGCCCATCT
101
374





688941
6011
6028
 913
 930
GCGGGTCCGGCTGCCCAT
106
375





688942
6013
6030
 915
 932
TCGCGGGTCCGGCTGCCC
133
376





688943
6015
6032
 917
 934
GGTCGCGGGTCCGGCTGC
134
377





688944
6017
6034
 919
 936
GCGGTCGCGGGTCCGGCT
 88
378





688945
6019
6036
 921
 938
AGGCGGTCGCGGGTCCGG
105
379





688946
6021
6038
 923
 940
CCAGGCGGTCGCGGGTCC
102
380





688947
6023
6040
 925
 942
GTCCAGGCGGTCGCGGGT
 64
381





688948
6040
6057
 942
 959
ACCTGCTCCTTCACCTCG
 94
382





688949
6042
6059
 944
 961
CCACCTGCTCCTTCACCT
129
383





688950
6044
6061
 946
 963
CGCCACCTGCTCCTTCAC
 99
384





688951
6046
6063
 948
 965
TCCGCCACCTGCTCCTTC
168
385





688952
6048
6065
 950
 967
CCTCCGCCACCTGCTCCT
 69
386





688953
6050
6067
 952
 969
CACCTCCGCCACCTGCTC
130
387





688954
6052
6069
 954
 971
CGCACCTCCGCCACCTGC
 59
388





688955
6054
6071
 956
 973
CGCGCACCTCCGCCACCT
 88
389





688956
6056
6073
 958
 975
GGCGCGCACCTCCGCCAC
 86
390





688957
6058
6075
 960
 977
TTGGCGCGCACCTCCGCC
122
391





688958
6060
6077
 962
 979
GCTTGGCGCGCACCTCCG
115
392





688959
6062
6079
 964
 981
CAGCTTGGCGCGCACCTC
 83
393





688960
6066
6083
 968
 985
CCTCCAGCTTGGCGCGCA
138
394





688961
6068
6085
 970
 987
CTCCTCCAGCTTGGCGCG
 53
395





688962
6070
6087
 972
 989
TGCTCCTCCAGCTTGGCG
 83
396





688963
6072
6089
 974
 991
CCTGCTCCTCCAGCTTGG
 55
397





688964
6074
6091
 976
 993
GGCCTGCTCCTCCAGCTT
 84
398





689014
6255
6272
1157
1174
GCATGGCTGCAGGCTTCG
 21
169





689016
6258
6275
1160
1177
GTCGCATGGCTGCAGGCT
 21
170
















TABLE 7







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 2000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





426048
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
 19
 70





688965
6076
6093
 978
 995
TGGGCCTGCTCCTCCAGC
 92
399





688966
6078
6095
 980
 997
GCTGGGCCTGCTCCTCCA
 76
400





688967
6080
6097
 982
 999
CTGCTGGGCCTGCTCCTC
 90
401





688968
6082
6099
 984
1001
ATCTGCTGGGCCTGCTCC
 90
402





688969
6084
6101
 986
1003
GTATCTGCTGGGCCTGCT
 79
403





688970
6101
6118
1003
1020
GGCCTCGGCCTGCAGGCG
 84
404





688971
6103
6120
1005
1022
AAGGCCTCGGCCTGCAGG
 92
405





688972
6105
6122
1007
1024
GGAAGGCCTCGGCCTGCA
 96
406





688973
6107
6124
1009
1026
CTGGAAGGCCTCGGCCTG
 88
407





688974
6109
6126
1011
1028
GCCTGGAAGGCCTCGGCC
 78
408





688975
6111
6128
1013
1030
GGGCCTGGAAGGCCTCGG
 82
409





688976
6113
6130
1015
1032
GCGGGCCTGGAAGGCCTC
 75
410





688977
6115
6132
1017
1034
AGGCGGGCCTGGAAGGCC
 77
411





688978
6117
6134
1019
1036
TGAGGCGGGCCTGGAAGG
 81
412





688979
6119
6136
1021
1038
CTTGAGGCGGGCCTGGAA
 79
413





688980
6123
6140
1025
1042
AGCTCTTGAGGCGGGCCT
 78
414





688981
6125
6142
1027
1044
CCAGCTCTTGAGGCGGGC
 84
415





688982
6127
6144
1029
1046
AACCAGCTCTTGAGGCGG
 85
416





688983
6129
6146
1031
1048
CGAACCAGCTCTTGAGGC
117
417





688984
6131
6148
1033
1050
CTCGAACCAGCTCTTGAG
 66
418





688985
6133
6150
1035
1052
GGCTCGAACCAGCTCTTG
 76
419





688986
6150
6167
1052
1069
GCATGTCTTCCACCAGGG
 72
420





688987
6152
6169
1054
1071
CTGCATGTCTTCCACCAG
 80
421





688988
6154
6171
1056
1073
CGCTGCATGTCTTCCACC
 69
422





688989
6169
6186
1071
1088
AGCCCGGCCCACTGGCGC
 76
423





688990
6171
6188
1073
1090
CCAGCCCGGCCCACTGGC
 82
424





688991
6173
6190
1075
1092
CACCAGCCCGGCCCACTG
 74
425





688992
6175
6192
1077
1094
TCCACCAGCCCGGCCCAC
108
426





688993
6177
6194
1079
1096
TCTCCACCAGCCCGGCCC
223
427





688994
6179
6196
1081
1098
CTTCTCCACCAGCCCGGC
 75
428





688995
6181
6198
1083
1100
ACCTTCTCCACCAGCCCG
101
429





688996
6185
6202
1087
1104
CTGCACCTTCTCCACCAG
 99
430





688997
6187
6204
1089
1106
GCCTGCACCTTCTCCACC
 89
431





688998
6189
6206
1091
1108
CAGCCTGCACCTTCTCCA
 80
432





688999
6191
6208
1093
1110
GGCAGCCTGCACCTTCTC
 57
433





689000
6193
6210
1095
1112
ACGGCAGCCTGCACCTTC
 90
434





689001
6195
6212
1097
1114
CCACGGCAGCCTGCACCT
 74
435





689002
6197
6214
1099
1116
GCCCACGGCAGCCTGCAC
 93
436





689003
6199
6216
1101
1118
GTGCCCACGGCAGCCTGC
 51
437





689004
6201
6218
1103
1120
TGGTGCCCACGGCAGCCT
 79
438





689005
6203
6220
1105
1122
GCTGGTGCCCACGGCAGC
 78
439





689006
6205
6222
1107
1124
GCGCTGGTGCCCACGGCA
 61
440





689007
6227
6244
1129
1146
ATTGTCGCTGGGCACAGG
 88
441





689008
6229
6246
1131
1148
TGATTGTCGCTGGGCACA
 83
442





689009
6231
6248
1133
1150
AGTGATTGTCGCTGGGCA
 56
443





689010
6233
6250
1135
1152
TCAGTGATTGTCGCTGGG
100
444





689011
6235
6252
1137
1154
GTTCAGTGATTGTCGCTG
 91
445





689012
6252
6269
1154
1171
TGGCTGCAGGCTTCGGCG
 72
446





689013
6254
6271
1156
1173
CATGGCTGCAGGCTTCGG
 32
447





689014
6255
6272
1157
1174
GCATGGCTGCAGGCTTCG
 50
169





689015
6257
6274
1159
1176
TCGCATGGCTGCAGGCTT
 19
448





689016
6258
6275
1160
1177
GTCGCATGGCTGCAGGCT
 33
170





689017
6260
6277
1162
1179
GGGTCGCATGGCTGCAGG
 41
449





689018
6286
6303
1188
1205
GGAGGCAGGAGGCACGGG
 91
450





689019
6288
6305
1190
1207
GCGGAGGCAGGAGGCACG
 82
451





689020
6290
6307
1192
1209
GCGCGGAGGCAGGAGGCA
 65
452





689021
6292
6309
1194
1211
CTGCGCGGAGGCAGGAGG
 69
453





689022
6294
6311
1196
1213
GGCTGCGCGGAGGCAGGA
 86
454





689023
6296
6313
1198
1215
CAGGCTGCGCGGAGGCAG
 56
455





689024
6298
6315
1200
1217
TGCAGGCTGCGCGGAGGC
 92
456





689025
6300
6317
1202
1219
GCTGCAGGCTGCGCGGAG
 75
457





689026
6302
6319
1204
1221
CCGCTGCAGGCTGCGCGG
 78
458





689027
6304
6321
1206
1223
TCCCGCTGCAGGCTGCGC
 53
459





689028
6306
6323
1208
1225
TCTCCCGCTGCAGGCTGC
 37
460





689029
6308
6325
1210
1227
GGTCTCCCGCTGCAGGCT
 42
461





689030
6310
6327
1212
1229
AGGGTCTCCCGCTGCAGG
 70
462





689031
6312
6329
1214
1231
ACAGGGTCTCCCGCTGCA
 68
463





689032
6314
6331
1216
1233
GGACAGGGTCTCCCGCTG
 61
464





689033
6336
6353
1238
1255
CCCAGGAGGACGGCTGGG
 86
465





689034
6338
6355
1240
1257
ACCCCAGGAGGACGGCTG
105
466





689035
6340
6357
1242
1259
CCACCCCAGGAGGACGGC
 80
467





689036
6342
6359
1244
1261
GTCCACCCCAGGAGGACG
 82
468





689037
6344
6361
1246
1263
GGGTCCACCCCAGGAGGA
 97
469





689038
6346
6363
1248
1265
TAGGGTCCACCCCAGGAG
 66
470





689039
6348
6365
1250
1267
ACTAGGGTCCACCCCAGG
 79
471





689040
6352
6369
1254
1271
TTAAACTAGGGTCCACCC
 61
472





689041
6354
6371
1256
1273
TATTAAACTAGGGTCCAC
 79
473





689042
6356
6373
1258
1275
TTTATTAAACTAGGGTCC
 58
474
















TABLE 8







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 2000 nM in HepG2 cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





426048
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
 37
 70





689014
6255
6272
1157
1174
GCATGGCTGCAGGCTTCG
 33
169





689016
6258
6275
1160
1177
GTCGCATGGCTGCAGGCT
 14
170





689043
6358
6375
1260
1277
TCTTTATTAAACTAGGGT
 23
475





689044
6360
6377
1262
1279
AATCTTTATTAAACTAGG
 39
476





689045
6362
6379
1264
1281
TGAATCTTTATTAAACTA
103
477





689046
6364
6381
1266
1283
GGTGAATCTTTATTAAAC
 12
478





689047
6366
6383
1268
1285
TTGGTGAATCTTTATTAA
 33
479





689048
6368
6385
1270
1287
ACTTGGTGAATCTTTATT
 28
480





689049
6370
6387
1272
1289
AAACTTGGTGAATCTTTA
 41
481





689050
6372
6389
1274
1291
TGAAACTTGGTGAATCTT
 29
482





689051
6374
6391
1276
1293
CGTGAAACTTGGTGAATC
 22
483





689052
3652
3669
N/A
N/A
ACCTGCCAGGAATGTGAC
113
484





689053
3667
3684
N/A
N/A
AAGCCCCGCCCCCATACC
 69
485





689054
3708
3725
N/A
N/A
TGAGGTGAGGATGAGAGG
101
486





689055
3737
3754
N/A
N/A
CAGGGTCTGCCTGAATGG
101
487





689056
3759
3776
N/A
N/A
AGAAGCCTCAGAAGAGGG
116
488





689057
3774
3791
N/A
N/A
GCCAGGAAGCAGCACAGA
130
489





689058
3789
3806
N/A
N/A
AAATCGCTGTTCAGAGCC
107
490





689059
3809
3826
N/A
N/A
ACCGAGGCCCAGAGAGCG
128
491





689060
3831
3848
N/A
N/A
TCCTATCTCAAGGATGGG
125
492





689061
3846
3863
N/A
N/A
AAAACAACTTCTAACTCC
102
493





689062
4119
4136
N/A
N/A
TCGAAACGGGCAGATCAC
 56
494





689063
4172
4189
N/A
N/A
AACTCCCAGCCAGGTGCG
117
495





689064
4187
4204
N/A
N/A
GCATTAGAAACCTCTAAC
101
496





689065
4202
4219
N/A
N/A
CTATCTGCCTGCAATGCA
 82
497





689066
4232
4249
N/A
N/A
AGATCACAGCTGCCCCGT
109
498





689067
4247
4264
N/A
N/A
GGTGATGGAGAATAAAGA
118
499





689068
4266
4283
N/A
N/A
CCAGGCAGGGCTGTGTGG
 89
500





689069
4281
4298
N/A
N/A
GTGTCCTTGTGTGCCCCA
 54
501





689070
4296
4313
N/A
N/A
AAAAGCATGTATTGAGTG
 56
502





689071
4460
4477
N/A
N/A
GCACAGGTGTGTGGCACC
 70
503





689072
4536
4553
N/A
N/A
CTGAACATGGTTCACTGC
103
504





689073
4586
4603
N/A
N/A
GTATTTATAAACAGGGTC
 96
505





689074
4601
4618
N/A
N/A
CTTGGAAAGCATTATGTA
130
506





689075
4616
4633
N/A
N/A
GAGTCGGTTTAATCACTT
 85
507





689076
4643
4660
N/A
N/A
GGAGCCATGGTGGGCAGG
 69
508





689077
4658
4675
N/A
N/A
CACAAATGCTTCTTTGGA
 68
509





689078
4673
4690
N/A
N/A
ACACAGAAGGTGCTCCAC
111
510





689079
4693
4710
N/A
N/A
GGCATCTAGTACCTAGGG
 81
511





689080
4708
4725
N/A
N/A
TTCTGACCCCGTCCAGGC
 65
512





689081
4730
4747
N/A
N/A
AGTTCAAGGTGGGTCAGG
 83
513





689082
4745
4762
N/A
N/A
ATCCTGTGTGGAACAAGT
 77
514





689083
4937
4954
N/A
N/A
ACCTCAGTTCCTGGGTGA
 76†
515





689084
4963
4980
N/A
N/A
GGTCAAGGGCCAGGATGG
 93†
516





689085
4978
4995
N/A
N/A
GCCGCCCACCAGGAGGGT
132†
517





689086
5004
5021
N/A
N/A
ATGAAACCTGGACCTGGG
126†
518





689087
5027
5044
N/A
N/A
CAAGACTTAGCGACAGGG
110†
519





689088
5042
5059
N/A
N/A
GAGACCCAGGCCCCCCAA
120†
520





689089
5057
5074
N/A
N/A
AAGCTAGAACCAGCAGAG
 82†
521





689090
5073
5090
N/A
N/A
CAGAAATGGGAAGAGGAA
 46†
522





689091
5088
5105
N/A
N/A
GCTAAAGCCAGGAGTCAG
116†
523





689092
5103
5120
N/A
N/A
AGAGAATTCCAGAGAGCT
100†
524





689093
5118
5135
N/A
N/A
AGACAAAGCTGAGAGAGA
103†
525





689094
5136
5153
N/A
N/A
TCAGAAGGGAAGAGAGAG
 95†
526





689095
5151
5168
N/A
N/A
GTGTGAGAGACTGAGTCA
102†
527





689096
5166
5183
N/A
N/A
ACAGAGCCAGGACGAGTG
 65†
528





689097
5181
5198
N/A
N/A
TAGGGAAGGACAGAGACA
 75†
529





689098
5196
5213
N/A
N/A
TCTATATAAAAGAGCTAG
108†
530





689099
5213
5230
N/A
N/A
GACCCCATCTCTCTGTCT
 56†
531





689100
5323
5340
N/A
N/A
TAGGAGGCCGGGCAAGGT
 88†
532





689101
5338
5355
N/A
N/A
AGACGAAGAAGGAGCTAG
 99†
533





689102
5353
5370
N/A
N/A
AGAGGGCAGAGGCAGAGA
 42†
534





689103
5368
5385
N/A
N/A
GCAGAGAGCAGATGCAGA
 80†
535





689104
5392
5409
N/A
N/A
CGAGAGAAGGAGACAGAG
104†
536





689105
5436
5453
N/A
N/A
GAGCCAGAGAGACCCAAG
102†
537





689106
5490
5507
N/A
N/A
TCGCACAGTGGGAGGCGG
 61†
538





689107
5515
5532
N/A
N/A
CTGCGGCCGAGAGGGCGG
 90†
539





689108
2831
2848
  83
 100
TTCTCACCGGCTCCTGGG
 99
540





689109
2864
2881
 116
 133
CCCCTGAGCTCATCCCCG
128
541





689117
6236
6253
1138
1155
CGTTCAGTGATTGTCGCT
 86
542





689118
6256
6273
1158
1175
CGCATGGCTGCAGGCTTC
  8
543
















TABLE 9







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





689014
6255
6272
1157
1174
GCATGGCTGCAGGCTTCG
 43
169





689015
6257
6274
1159
1176
TCGCATGGCTGCAGGCTT
 34
448





689046
6364
6381
1266
1283
GGTGAATCTTTATTAAAC
 27
478





689047
6366
6383
1268
1285
TTGGTGAATCTTTATTAA
 65
479





689048
6368
6385
1270
1287
ACTTGGTGAATCTTTATT
 35
480





689049
6370
6387
1272
1289
AAACTTGGTGAATCTTTA
 36
481





689050
6372
6389
1274
1291
TGAAACTTGGTGAATCTT
 37
482





689051
6374
6391
1276
1293
CGTGAAACTTGGTGAATC
 40
483





729667
6237
6254
1139
1156
GCGTTCAGTGATTGTCGC
 77
544





729669
6239
6256
1141
1158
CGGCGTTCAGTGATTGTC
 61
545





729671
6241
6258
1143
1160
TTCGGCGTTCAGTGATTG
 86
546





729673
6243
6260
1145
1162
GCTTCGGCGTTCAGTGAT
 77
547





729675
6245
6262
1147
1164
AGGCTTCGGCGTTCAGTG
 83
548





729677
6247
6264
1149
1166
GCAGGCTTCGGCGTTCAG
 72
549





729679
6249
6266
1151
1168
CTGCAGGCTTCGGCGTTC
 70
550





729681
6251
6268
1153
1170
GGCTGCAGGCTTCGGCGT
105
551





729682
6253
6270
1155
1172
ATGGCTGCAGGCTTCGGC
 52
552





729683
6259
6276
1161
1178
GGTCGCATGGCTGCAGGC
 54
553





729684
6287
6304
1189
1206
CGGAGGCAGGAGGCACGG
 83
554





729685
6289
6306
1191
1208
CGCGGAGGCAGGAGGCAC
 75
555





729686
6291
6308
1193
1210
TGCGCGGAGGCAGGAGGC
 82
556





729687
6293
6310
1195
1212
GCTGCGCGGAGGCAGGAG
 78
557





729688
6295
6312
1197
1214
AGGCTGCGCGGAGGCAGG
 64
558





729689
6297
6314
1199
1216
GCAGGCTGCGCGGAGGCA
 72
559





729690
6299
6316
1201
1218
CTGCAGGCTGCGCGGAGG
 85
560





729691
6301
6318
1203
1220
CGCTGCAGGCTGCGCGGA
 83
561





729692
6303
6320
1205
1222
CCCGCTGCAGGCTGCGCG
 83
562





729693
6305
6322
1207
1224
CTCCCGCTGCAGGCTGCG
 59
563





729694
6307
6324
1209
1226
GTCTCCCGCTGCAGGCTG
 56
564





729695
6309
6326
1211
1228
GGGTCTCCCGCTGCAGGC
 67
565





729696
6311
6328
1213
1230
CAGGGTCTCCCGCTGCAG
 63
566





729697
6313
6330
1215
1232
GACAGGGTCTCCCGCTGC
 69
567





729698
6337
6354
1239
1256
CCCCAGGAGGACGGCTGG
 85
568





729699
6339
6356
1241
1258
CACCCCAGGAGGACGGCT
 95
569





729700
6341
6358
1243
1260
TCCACCCCAGGAGGACGG
 96
570





729701
6343
6360
1245
1262
GGTCCACCCCAGGAGGAC
101
571





729702
6345
6362
1247
1264
AGGGTCCACCCCAGGAGG
 87
572





729703
6347
6364
1249
1266
CTAGGGTCCACCCCAGGA
 92
573





729704
6349
6366
1251
1268
AACTAGGGTCCACCCCAG
 73
574





729706
6351
6368
1253
1270
TAAACTAGGGTCCACCCC
 84
575





729707
6353
6370
1255
1272
ATTAAACTAGGGTCCACC
 63
576





729708
6355
6372
1257
1274
TTATTAAACTAGGGTCCA
 59
577





729709
6357
6374
1259
1276
CTTTATTAAACTAGGGTC
 30
578





729710
6359
6376
1261
1278
ATCTTTATTAAACTAGGG
 46
579





729711
6361
6378
1263
1280
GAATCTTTATTAAACTAG
 36
580





729712
6363
6380
1265
1282
GTGAATCTTTATTAAACT
 45
581





729719
6376
6393
1278
1295
TGCGTGAAACTTGGTGAA
 45
582





1517923
6263
6280
1165
1182
GTGGGGTCGCATGGCTGC
 62
583





1517925
6321
6338
1223
1240
GGGGCGGGGACAGGGTCT
 98
584





1517934
6273
6290
1175
1192
ACGGGGTGGCGTGGGGTC
103
585





1517936
6333
6350
1235
1252
AGGAGGACGGCTGGGGCG
117
586





1517938
6329
6346
1231
1248
GGACGGCTGGGGCGGGGA
107
587





1517940
3338
3355
N/A
N/A
CAAATTCCATCCCCCCAC
102
588





1517958
3431
3448
N/A
N/A
CCCATTCCCTATTTAACT
 97
589





1517963
6279
6296
1181
1198
GGAGGCACGGGGTGGCGT
101
590





1517974
3517
3534
N/A
N/A
CCGGCCTCACCCCAGGTT
 99
591





1517975
3425
3442
N/A
N/A
CCCTATTTAACTCCCTCC
 94
592





1517981
3271
3288
N/A
N/A
TCTCCCTTCACATTCTAA
 92
593





1517986
6315
6332
1217
1234
GGGACAGGGTCTCCCGCT
 74
594





1517987
6277
6294
1179
1196
AGGCACGGGGTGGCGTGG
 88
595





1517997
6325
6342
1227
1244
GGCTGGGGCGGGGACAGG
100
596





1518001
6267
6284
1169
1186
TGGCGTGGGGTCGCATGG
 66
597





1518004
3284
3301
N/A
N/A
TCGCATTCCTCATTCTCC
 96
598





1518008
6323
6340
1225
1242
CTGGGGCGGGGACAGGGT
108
599





1518010
6335
6352
1237
1254
CCAGGAGGACGGCTGGGG
 96
600





1518014
6317
6334
1219
1236
CGGGGACAGGGTCTCCCG
103
601





1518029
6269
6286
1171
1188
GGTGGCGTGGGGTCGCAT
 79
602





1518030
6265
6282
1167
1184
GCGTGGGGTCGCATGGCT
 49
603





1518039
6261
6278
1163
1180
GGGGTCGCATGGCTGCAG
 69
604





1518041
6285
6302
1187
1204
GAGGCAGGAGGCACGGGG
 99
605





1518046
6271
6288
1173
1190
GGGGTGGCGTGGGGTCGC
 67
606





1518050
6283
6300
1185
1202
GGCAGGAGGCACGGGGTG
101
607





1518052
6319
6336
1221
1238
GGCGGGGACAGGGTCTCC
 88
608





1518056
6327
6344
1229
1246
ACGGCTGGGGCGGGGACA
 96
609





1518059
5552
5569
 454
 471
GGCCTTCAACTCCTTCAT
 88
610





1518061
6275
6292
1177
1194
GCACGGGGTGGCGTGGGG
 95
611





1518063
6281
6298
1183
1200
CAGGAGGCACGGGGTGGC
 89
612





1518064
6331
6348
1233
1250
GAGGACGGCTGGGGCGGG
102
613
















TABLE 10







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





 689012
6252
6269
1154
1171
TGGCTGCAGGCTTCGGCG
 89
446





 689013
6254
6271
1156
1173
CATGGCTGCAGGCTTCGG
 39
447





 689016
6258
6275
1160
1177
GTCGCATGGCTGCAGGCT
 39
170





 689017
6260
6277
1162
1179
GGGTCGCATGGCTGCAGG
 64
449





 689018
6286
6303
1188
1205
GGAGGCAGGAGGCACGGG
 80
450





 689019
6288
6305
1190
1207
GCGGAGGCAGGAGGCACG
 78
451





 689020
6290
6307
1192
1209
GCGCGGAGGCAGGAGGCA
 90
452





 689021
6292
6309
1194
1211
CTGCGCGGAGGCAGGAGG
 82
453





 689022
6294
6311
1196
1213
GGCTGCGCGGAGGCAGGA
 71
454





 689023
6296
6313
1198
1215
CAGGCTGCGCGGAGGCAG
 80
455





 689024
6298
6315
1200
1217
TGCAGGCTGCGCGGAGGC
 85
456





 689025
6300
6317
1202
1219
GCTGCAGGCTGCGCGGAG
 80
457





 689026
6302
6319
1204
1221
CCGCTGCAGGCTGCGCGG
 97
458





 689027
6304
6321
1206
1223
TCCCGCTGCAGGCTGCGC
 59
459





 689028
6306
6323
1208
1225
TCTCCCGCTGCAGGCTGC
 63
460





 689029
6308
6325
1210
1227
GGTCTCCCGCTGCAGGCT
 64
461





 689030
6310
6327
1212
1229
AGGGTCTCCCGCTGCAGG
 73
462





 689031
6312
6329
1214
1231
ACAGGGTCTCCCGCTGCA
 78
463





 689032
6314
6331
1216
1233
GGACAGGGTCTCCCGCTG
 73
464





 689033
6336
6353
1238
1255
CCCAGGAGGACGGCTGGG
102
465





 689034
6338
6355
1240
1257
ACCCCAGGAGGACGGCTG
 92
466





 689035
6340
6357
1242
1259
CCACCCCAGGAGGACGGC
 95
467





 689036
6342
6359
1244
1261
GTCCACCCCAGGAGGACG
 98
468





 689037
6344
6361
1246
1263
GGGTCCACCCCAGGAGGA
 99
469





 689038
6346
6363
1248
1265
TAGGGTCCACCCCAGGAG
 96
470





 689039
6348
6365
1250
1267
ACTAGGGTCCACCCCAGG
 90
471





 689040
6352
6369
1254
1271
TTAAACTAGGGTCCACCC
 83
472





 689041
6354
6371
1256
1273
TATTAAACTAGGGTCCAC
 57
473





 689042
6356
6373
1258
1275
TTTATTAAACTAGGGTCC
 81
474





 689043
6358
6375
1260
1277
TCTTTATTAAACTAGGGT
 29
475





 689044
6360
6377
1262
1279
AATCTTTATTAAACTAGG
 46
476





 689045
6362
6379
1264
1281
TGAATCTTTATTAAACTA
 71
477





 689046
6364
6381
1266
1283
GGTGAATCTTTATTAAAC
 35
478





 689117
6236
6253
1138
1155
CGTTCAGTGATTGTCGCT
 81
542





 689118
6256
6273
1158
1175
CGCATGGCTGCAGGCTTC
 32
543





 729668
6238
6255
1140
1157
GGCGTTCAGTGATTGTCG
 70
614





 729670
6240
6257
1142
1159
TCGGCGTTCAGTGATTGT
 81
615





 729672
6242
6259
1144
1161
CTTCGGCGTTCAGTGATT
 81
616





 729674
6244
6261
1146
1163
GGCTTCGGCGTTCAGTGA
 73
617





 729676
6246
6263
1148
1165
CAGGCTTCGGCGTTCAGT
 80
618





 729678
6248
6265
1150
1167
TGCAGGCTTCGGCGTTCA
 73
619





 729680
6250
6267
1152
1169
GCTGCAGGCTTCGGCGTT
 83
620





 729705
6350
6367
1252
1269
AAACTAGGGTCCACCCCA
 93
621





 729713
6365
6382
1267
1284
TGGTGAATCTTTATTAAA
 58
622





 729714
6367
6384
1269
1286
CTTGGTGAATCTTTATTA
 36
623





 729715
6369
6386
1271
1288
AACTTGGTGAATCTTTAT
 50
624





 729716
6371
6388
1273
1290
GAAACTTGGTGAATCTTT
 48
625





 729717
6373
6390
1275
1292
GTGAAACTTGGTGAATCT
 41
626





 729718
6375
6392
1277
1294
GCGTGAAACTTGGTGAAT
 42
627





1517913
6278
6295
1180
1197
GAGGCACGGGGTGGCGTG
 89
628





1517914
6328
6345
1230
1247
GACGGCTGGGGCGGGGAC
101
629





1517915
6316
6333
1218
1235
GGGGACAGGGTCTCCCGC
 88
630





1517919
6272
6289
1174
1191
CGGGGTGGCGTGGGGTCG
105
631





1517931
3066
3083
N/A
N/A
ATGGCTTACATCCCAGTC
107
632





1517933
6282
6299
1184
1201
GCAGGAGGCACGGGGTGG
 80
633





1517945
6334
6351
1236
1253
CAGGAGGACGGCTGGGGC
114
634





1517947
3340
3357
N/A
N/A
TTCAAATTCCATCCCCCC
 99
635





1517955
6274
6291
1176
1193
CACGGGGTGGCGTGGGGT
 94
636





1517960
6326
6343
1228
1245
CGGCTGGGGCGGGGACAG
119
637





1517965
6318
6335
1220
1237
GCGGGGACAGGGTCTCCC
 88
638





1517968
6276
6293
1178
1195
GGCACGGGGTGGCGTGGG
 83
639





1517971
6280
6297
1182
1199
AGGAGGCACGGGGTGGCG
 96
640





1517973
6284
6301
1186
1203
AGGCAGGAGGCACGGGGT
 98
641





1517990
6262
6279
1164
1181
TGGGGTCGCATGGCTGCA
 58
642





1518000
6268
6285
1170
1187
GTGGCGTGGGGTCGCATG
 87
643





1518002
6330
6347
1232
1249
AGGACGGCTGGGGCGGGG
105
644





1518006
6270
6287
1172
1189
GGGTGGCGTGGGGTCGCA
 61
645





1518011
6266
6283
1168
1185
GGCGTGGGGTCGCATGGC
 56
646





1518015
3429
3446
N/A
N/A
CATTCCCTATTTAACTCC
 89
647





1518019
6320
6337
1222
1239
GGGCGGGGACAGGGTCTC
 80
648





1518023
3283
3300
N/A
N/A
CGCATTCCTCATTCTCCC
 95
649





1518024
3842
3859
N/A
N/A
CAACTTCTAACTCCTATC
119
650





1518032
3307
3324
N/A
N/A
CCGGTTCCATCTCAGTCC
124
651





1518036
6264
6281
1166
1183
CGTGGGGTCGCATGGCTG
 81
652





1518043
6332
6349
1234
1251
GGAGGACGGCTGGGGCGG
113
653





1518045
6322
6339
1224
1241
TGGGGCGGGGACAGGGTC
 99
654





1518057
3457
3474
N/A
N/A
CAGCACATTTACCAAGCC
111
655





1518062
6324
6341
1226
1243
GCTGGGGCGGGGACAGGG
 90
656
















TABLE 11







Reduction of APOE RNA by 5-8-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 5000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





426048
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
 56
 70





688818
5680
5697
 582
 599
ACCAGGCGGCCGCACACG
 83
252





688819
5682
5699
 584
 601
GCACCAGGCGGCCGCACA
120
253





688820
5684
5701
 586
 603
CTGCACCAGGCGGCCGCA
124
254





688874
5806
5823
 708
 725
CGCTTCTGCAGGTCATCG
 83
308





688875
5821
5838
 723
 740
TGGTACACTGCCAGGCGC
117
309





689014
6255
6272
1157
1174
GCATGGCTGCAGGCTTCG
 63
169





689015
6257
6274
1159
1176
TCGCATGGCTGCAGGCTT
 49
448





689017
6260
6277
1162
1179
GGGTCGCATGGCTGCAGG
 87
449





689029
6308
6325
1210
1227
GGTCTCCCGCTGCAGGCT
 53
461





689046
6364
6381
1266
1283
GGTGAATCTTTATTAAAC
 31
478





689118
6256
6273
1158
1175
CGCATGGCTGCAGGCTTC
 11
543





693761
5667
5684
 569
 586
ACACGTCCTCCATGTCCG
 81
657





693762
5668
5685
 570
 587
CACACGTCCTCCATGTCC
 87
658





693763
5669
5686
 571
 588
GCACACGTCCTCCATGTC
104
659





693764
5670
5687
 572
 589
CGCACACGTCCTCCATGT
 74
660





693765
5671
5688
 573
 590
CCGCACACGTCCTCCATG
 89
661





693766
5672
5689
 574
 591
GCCGCACACGTCCTCCAT
 74
662





693767
5673
5690
 575
 592
GGCCGCACACGTCCTCCA
 85
663





693768
5674
5691
 576
 593
CGGCCGCACACGTCCTCC
 66
664





693769
5675
5692
 577
 594
GCGGCCGCACACGTCCTC
 66
665





693770
5676
5693
 578
 595
GGCGGCCGCACACGTCCT
 69
666





693771
5677
5694
 579
 596
AGGCGGCCGCACACGTCC
 94
667





693772
5678
5695
 580
 597
CAGGCGGCCGCACACGTC
106
668





693773
5679
5696
 581
 598
CCAGGCGGCCGCACACGT
101
669





693774
5681
5698
 583
 600
CACCAGGCGGCCGCACAC
 85
670





693775
5683
5700
 585
 602
TGCACCAGGCGGCCGCAC
137
671





693776
5805
5822
 707
 724
GCTTCTGCAGGTCATCGG
 85
672





693777
5807
5824
 709
 726
GCGCTTCTGCAGGTCATC
111
673





693778
5808
5825
 710
 727
GGCGCTTCTGCAGGTCAT
134
674





693779
5809
5826
 711
 728
AGGCGCTTCTGCAGGTCA
 86
675





693780
5810
5827
 712
 729
CAGGCGCTTCTGCAGGTC
 93
676





693781
5811
5828
 713
 730
CCAGGCGCTTCTGCAGGT
113
677





693782
5812
5829
 714
 731
GCCAGGCGCTTCTGCAGG
 88
678





693783
5813
5830
 715
 732
TGCCAGGCGCTTCTGCAG
100
679





693784
5814
5831
 716
 733
CTGCCAGGCGCTTCTGCA
105
680





693785
5815
5832
 717
 734
ACTGCCAGGCGCTTCTGC
 91
681





693786
5816
5833
 718
 735
CACTGCCAGGCGCTTCTG
 95
682





693787
5817
5834
 719
 736
ACACTGCCAGGCGCTTCT
101
683





693788
5818
5835
 720
 737
TACACTGCCAGGCGCTTC
 81
684





693789
5819
5836
 721
 738
GTACACTGCCAGGCGCTT
100
685





693790
5820
5837
 722
 739
GGTACACTGCCAGGCGCT
 81
686





693791
5822
5839
 724
 741
CTGGTACACTGCCAGGCG
107
687
















TABLE 12







Reduction of APOE RNA by 5-8-5 MOE gapmers  


with mixed PO/PS internucleoside linkages 


at a concentration of 4000 nM in Hep3B


cells plated at 5000 cells per well















SEQ 
SEQ 
SEQ 
SEQ 






ID
ID
ID
ID






No:
No:
No:
No:





Com-
5
5
6
6

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





693792
N/A
N/A
454
471
GCACGTCCTCCAT
 98
688







GTCCG







693793
N/A
N/A
455
472
CGCACGTCCTCCA
136
689







TGTCC







693794
N/A
N/A
456
473
GCGCACGTCCTCC
 99
690







ATGTC







693795
N/A
N/A
457
474
CGCGCACGTCCTC
 81
691







CATGT







693796
N/A
N/A
458
475
CCGCGCACGTCCT
112
692







CCATG







693797
N/A
N/A
459
476
GCCGCGCACGTCC
104
693







TCCAT







693798
N/A
N/A
460
477
GGCCGCGCACGTC
 77
694







CTCCA







693799
N/A
N/A
461
478
CGGCCGCGCACGT
 98
695







CCTCC







693800
N/A
N/A
462
479
GCGGCCGCGCACG
 71
696







TCCTC







693801
N/A
N/A
463
480
GGCGGCCGCGCAC
100
697







GTCCT







693802
N/A
N/A
464
481
AGGCGGCCGCGCA
136
698







CGTCC







693803
N/A
N/A
465
482
CAGGCGGCCGCGC
 74
699







ACGTC







693804
N/A
N/A
466
483
CCAGGCGGCCGCG
120
700







CACGT







693805
N/A
N/A
467
484
ACCAGGCGGCCGC
103
701







GCACG







693806
N/A
N/A
468
485
CACCAGGCGGCCG
105
702







CGCAC







693807
N/A
N/A
469
486
GCACCAGGCGGCC
 97
703







GCGCA







693808
N/A
N/A
470
487
TGCACCAGGCGGC
 78
704







CGCGC







693809
N/A
N/A
471
488
CTGCACCAGGCGG
 83
705







CCGCG







693810
 99
116
N/A
N/A
ACTTCTGCAGGTC
104
706







ATCGG







693811
100
117
N/A
N/A
CACTTCTGCAGGT
 80
707







CATCG







693812
101
118
N/A
N/A
GCACTTCTGCAGG
111
708







TCATC







693813
102
119
N/A
N/A
GGCACTTCTGCAG
112
709







GTCAT







693814
103
120
N/A
N/A
AGGCACTTCTGCA
 82
710







GGTCA







693815
104
121
N/A
N/A
CAGGCACTTCTGC
 89
711







AGGTC







693816
105
122
N/A
N/A
CCAGGCACTTCTG
102
712







CAGGT







693817
106
123
N/A
N/A
GCCAGGCACTTCT
 76
713







GCAGG







693818
107
124
N/A
N/A
TGCCAGGCACTTC
141
714







TGCAG







693819
108
125
N/A
N/A
CTGCCAGGCACTT
121
715







CTGCA







693820
109
126
N/A
N/A
ACTGCCAGGCACT
 98
716







TCTGC







693821
110
127
N/A
N/A
CACTGCCAGGCAC
 98
717







TTCTG







693822
111
128
N/A
N/A
ACACTGCCAGGCA
119
718







CTTCT







693823
112
129
N/A
N/A
TACACTGCCAGGC
 87
719







ACTTC







693824
113
130
N/A
N/A
GTACACTGCCAGG
369
720







CACTT







693825
114
131
N/A
N/A
GGTACACTGCCAG
 81
721







GCACT







693826
115
132
N/A
N/A
TGGTACACTGCCA
 86
722







GGCAC







693827
116
133
N/A
N/A
CTGGTACACTGCC
 73
723







AGGCA
















TABLE 13







Reduction of APOE RNA by 5-8-5 MOE gapmers 


with mixed PO/PS internucleoside linkages 


at a concentration of 4000 nM in Hep3B 


cells plated at 20,000 cells per well













SEQ
SEQ






ID 
ID 






No:
No:





Com-
3
3

APOE
SEQ


pound
Start
Stop
Sequence 
(%
ID


Number
Site
Site
(5′ to 3′)
UTC)
NO





688667
35
52
GGCCAGTCGGCTCCTGGG
 75
724





688668
39
56
GATTGGCCAGTCGGCTCC
100
725





688669
41
58
GTGATTGGCCAGTCGGCT
 78
726





688670
43
60
CTGTGATTGGCCAGTCGG
121
727
















TABLE 14







Reduction of APOE RNA by 5-8-5 MOE gapmers 


with mixed PO/PS internucleoside linkages 


at a concentration of 2000 nM in HepG2


cells plated at 20,000 cells per well















SEQ
SEQ
SEQ
SEQ






ID 
ID 
ID 
ID 






No:
No:
No:
No:





Com-
3
3
4
4
Sequence 
APOE 
SEQ


pound
Start
Stop
Start
Stop
(5′ to
(%
ID


Number
Site
Site
Site
Site
3′)
UTC)
NO





689110
N/A
N/A
768
785
TGCCGGCCG
 50
728







CACCCGGCC







689111
N/A
N/A
801
818
TGTAGCGGC
 53
729







TGGCCCGGC







689112
N/A
N/A
854
871
CATTTCTCTC
 84
730







CATCCGCG







689113
N/A
N/A
866
883
GGTCCCGCT
 95
731







GCCCATTTC







689114
155
172
N/A
N/A
TCTGTGGCG
 56
732







CAGCTCGGG







689115
257
274
N/A
N/A
GAGCAGCTC
 68
733







CTCTGCACT







689116
729
746
N/A
N/A
AACTTAGGG
121
734







TCCACTCCT









Example 3: Effect of 5-10-5 MOE Mixed Backbone Modified Oligonucleotides on Human APOE RNA In Vitro, Single Dose

Modified oligonucleotides complementary to human APOE nucleic acid were designed and tested for their single dose effects on APOE RNA in vitro. The modified oligonucleotides were tested in a series of experiments under the culture conditions indicated in the tables below.


The modified oligonucleotides in the tables below are 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages. The gapmers are 20 nucleosides in length, wherein the central gap segment consists often 2′-β-D-deoxynucleosides, and wherein the 5′ and 3′ wing segments each consist of five 2′-MOE modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeddddddddddeeeee; wherein ‘d’ represents a 2′-β-D-deoxyribosyl sugar, and ‘e’ represents a 2′-MOE modified sugar moiety. The internucleoside linkage motif for the gapmers is (from 5′ to 3′): sooosssssssssssooss; wherein each ‘o’ represents a phosphodiester internucleoside linkage and each ‘s’ represents a phosphorothioate internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.


“Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified oligonucleotide listed in the tables below is 100% complementary to SEQ ID NO: 1 (described herein above), to SEQ ID NO: 2 (described herein above), or to both. ‘N/A’ indicates that the modified oligonucleotide is not 100% complementary to that particular target nucleic acid sequence.


The modified oligonucleotides were tested either in cultured Hep3B cells or in primary transgenic mouse hepatocytes as indicated in the tables below. A transgenic mouse model was obtained from Taconic (model #1549). The transgenic mouse model has a C57BL/6 genetic background and expresses the human apolipoprotein E4 isoform. Primary mouse hepatocytes were isolated from transgenic mouse livers and were treated with modified oligonucleotide at a concentration of 5000 nM by free uptake at a density of 15,000 cells per well. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. In the case of the experiments carried out on cultured Hep3B cells, the cells were treated with modified oligonucleotide at a concentration of 4000 nM by electroporation at a density of 20,000 cells per well. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR.


APOE RNA levels were measured by human primer-probe set RTS3073 (described herein in Example 1). APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in the tables below as percent APOE RNA relative to untreated control cells (% UTC). Each table represents results from an individual assay plate. The values marked with an “t” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region. In Tables 15-20 below, Compound 689046 (described herein above) was included for reference.









TABLE 15







Reduction of APOE RNA by 5-10-5 MOE gapmers 


with mixed PO/PS internucleoside linkages 


at a concentration of 5000 nM in transgenic


primary mouse hepatocytes plated at 15,000 


cells per well















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






No:
No:
No:
No:





Com-
1
1
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence 
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





689046
6364
6381
1266
1283
GGTGAATCTTTA
  8
478







TTAAAC







708022
6257
6276
1159
1178
GGTCGCATGGCT
 10
 71







GCAGGCTT







708024
6371
6390
1273
1292
GTGAAACTTGGT
 16
 77







GAATCTTT







708027
6234
6253
1136
1155
CGTTCAGTGATT
 40
 69







GTCGCTGG







942333
2749
2768
   1
  20
TATAGGGCTCCC
111
735







CCTGTCCC







942339
2755
2774
   7
  26
TCCAATTATAGG
 98
736







GCTCCCCC







942345
2762
2781
  14
  33
AGACTTGTCCAA
109
737







TTATAGGG







942351
2805
2824
  57
  76
CGTCCTTCACCT
 82
738







CCGCTGGG







942357
3638
3657
 212
 231
TGTGACCAGCAA
 75
739







CGCAGCCC







942363
3644
3663
 218
 237
CAGGAATGTGAC
 70
740







CAGCAACG







942369
4806
4825
 288
 307
CGGTCTGCTGGC
 84
741







GCAGCTCG







942375
4812
4831
 294
 313
GCCACTCGGTCT
 93
742







GCTGGCGC







942381
4850
4869
 332
 351
AAAGCGACCCAG
 49†
743







TGCCAGTT







942387
4857
4876
 339
 358
AATCCCAAAAGC
 28†
744







GACCCAGT







942393
4863
4882
 345
 364
GCAGGTAATCCC
 38†
745







AAAAGCGA







942398
4869
4888
 351
 370
CCCAGCGCAGGT
 18†
746







AATCCCAA







942403
4876
4895
 358
 377
GTCTGCACCCAG
 18†
747







CGCAGGTA







942407
5562
5581
 464
 483
TTCCGATTTGTA
 79
748







GGCCTTCA







942412
5568
5587
 470
 489
CTCCAGTTCCGA
 71
749







TTTGTAGG







942418
5575
5594
 477
 496
GTTGTTCCTCCA
 76
750







GTTCCGAT







942424
5618
5637
 520
 539
TCCTTGGACAGC
120
 43







CGTGCCCG







942430
5662
5681
 564
 583
CGTCCTCCATGT
 72
751







CCGCGCCC







942436
5686
5705
 588
 607
GGTACTGCACCA
130
752







GGCGGCCG







942442
5692
5711
 594
 613
CGCCGCGGTACT
 91
753







GCACCAGG







942448
5718
5737
 620
 639
GCTCTGGCCGAG
 84
754







CATGGCCT







942454
5725
5744
 627
 646
CCTCGGTGCTCT
 77
755







GGCCGAGC







942460
5747
5766
 649
 668
GAGGCGAGGCGC
100
756







ACCCGCAG







942466
5765
5784
 667
 686
CGCAGCTTGCGC
 87
 48







AGGTGGGA







942472
5772
5791
 674
 693
CCGCTTACGCAG
 53
757







CTTGCGCA







942478
5778
5797
 680
 699
GAGGAGCCGCTT
 91
758







ACGCAGCT







942484
5784
5803
 686
 705
ATCGCGGAGGAG
 91
759







CCGCTTAC







942490
5791
5810
 693
 712
CATCGGCATCGC
 67
760







GGAGGAGC







942496
5797
5816
 699
 718
GCAGGTCATCGG
 66
761







CATCGCGG







942501
5826
5845
 728
 747
CCCGGCCTGGTA
 81
762







CACTGCCA







942507
5833
5852
 735
 754
CGCGGGCCCCGG
 83
763







CCTGGTAC







942513
5902
5921
 804
 823
GCACGCGGCCCT
 88
764







GTTCCACC







942519
5908
5927
 810
 829
CGGCCCGCACGC
 95
765







GGCCCTGT







942525
5915
5934
 817
 836
ACAGTGGCGGCC
137
766







CGCACGCG







942531
5921
5940
 823
 842
GAGCCCACAGTG
105
767







GCGGCCCG







942537
5948
5967
 850
 869
CGCTCCTGTAGC
 91
768







GGCTGGCC







942543
5978
5997
 880
 899
GCGCGCAGCCGC
 96
769







TCGCCCCA







942549
6010
6029
 912
 931
CGCGGGTCCGGC
 96
770







TGCCCATC







942555
6016
6035
 918
 937
GGCGGTCGCGGG
 86
771







TCCGGCTG







942561
6056
6075
 958
 977
TTGGCGCGCACC
 96
772







TCCGCCAC







942567
6063
6082
 965
 984
CTCCAGCTTGGC
 83
773







GCGCACCT







942573
6125
6144
1027
1046
AACCAGCTCTTG
 76
774







AGGCGGGC







942579
6131
6150
1033
1052
GGCTCGAACCAG
 90
775







CTCTTGAG







942594
6349
6368
1251
1270
TAAACTAGGGTC
 44
776







CACCCCAG







942600
2833
2852
  85
 104
GCGCTTCTCACC
101
777







GGCTCCTG







942606
2840
2859
  92
 111
CCCGACTGCGCT
114
778







TCTCACCG







942612
2846
2865
  98
 117
CGTGCCCCCGAC
100
779







TGCGCTTC







942618
2855
2874
 107
 126
GCTCATCCCCGT
 59
780







GCCCCCGA







942624
3448
3467
N/A
N/A
TTTACCAAGCCG
108
781







CCCCCAAC







942630
3454
3473
N/A
N/A
AGCACATTTACC
 78
782







AAGCCGCC







942636
3495
3514
N/A
N/A
CCTTCCAAGCCT
101
783







TGTTGCAT







942642
2926
2945
N/A
N/A
CGAGTAGCTCTC
 85
784







CTGAGACT







942648
2932
2951
N/A
N/A
CGACCCCGAGTA
 73
785







GCTCTCCT







942654
2938
2957
N/A
N/A
CAAGCCCGACCC
 79
786







CGAGTAGC







942660
3067
3086
N/A
N/A
GCTATGGCTTAC
104
787







ATCCCAGT







942666
3096
3115
N/A
N/A
TAAATGATAGTG
 75
788







ACAACTCG







942672
3171
3190
N/A
N/A
AGCTACCGTGTC
 84
789







GCTGCCCC







942678
3177
3196
N/A
N/A
ACGGCTAGCTAC
 78
790







CGTGTCGC







942684
3191
3210
N/A
N/A
AAGTTCTCCAAT
 70
791







CGACGGCT







942690
3232
3251
N/A
N/A
GCGCCGTGTTCC
108
792







ATTTATGA







942696
3306
3325
N/A
N/A
GCCGGTTCCATC
109
793







TCAGTCCC







942702
3313
3332
N/A
N/A
CCCCACCGCCGG
101
794







TTCCATCT







942708
3384
3403
N/A
N/A
TCCCCAGGTCGG
 87
795







CCTCCATA







942714
3557
3576
N/A
N/A
ACCGCCAGTGAG
 96
796







GACTCCTC







942720
3572
3591
N/A
N/A
AGAAACTGTCAA
 73
797







TCAACCGC







942726
3789
3808
N/A
N/A
TCAAATCGCTGT
121
798







TCAGAGCC







942732
4220
4239
N/A
N/A
TGCCCCGTGTCT
 88
799







GGTATTCA







942738
4290
4309
N/A
N/A
GCATGTATTGAG
111
800







TGTCCTTG







942744
4614
4633
N/A
N/A
GAGTCGGTTTAA
 80
801







TCACTTGG







942750
4700
4719
N/A
N/A
CCCCGTCCAGGC
117
802







ATCTAGTA







942756
4710
4729
N/A
N/A
GTCCTTCTGACC
 89
803







CCGTCCAG







942762
4738
4757
N/A
N/A
GTGTGGAACAAG
 81
804







TTCAAGGT







942768
4980
4999
N/A
N/A
TATAGCCGCCCA
108†
805







CCAGGAGG







942774
4986
5005
N/A
N/A
GGGAGGTATAGC
 62†
806







CGCCCACC







942780
5158
5177
N/A
N/A
CCAGGACGAGTG
113†
807







TGAGAGAC
















TABLE 16







Reduction of APOE RNA by 5-10-5 MOE gapmers  


with mixed PO/PS internucleoside linkages at 


a concentration of 5000 nM in transgenic  


primary mouse hepatocytes plated at 15,000 


cells per well















SEQ 
SEQ
SEQ
SEQ






ID
ID
ID
ID






No: 
No:
No:
No:





Com-
1
1 
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence 
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





689046
6364
6381
1266
1283
GGTGAATCTTTA
  6
478







TTAAAC







708024
6371
6390
1273
1292
GTGAAACTTGGT
 14
 77







GAATCTTT







708026
4879
4898
 361
 380
AGTGTCTGCACC
  7†
 35







CAGCGCAG







708030
4864
4883
 346
 365
CGCAGGTAATCC
 58†
 32







CAAAAGCG







942334
2750
2769
   2
  21
TTATAGGGCTCC
110
808







CCCTGTCC







942340
2756
2775
   8
  27
GTCCAATTATAG
115
809







GGCTCCCC







942346
2763
2782
  15
  34
CAGACTTGTCCA
 91
810







ATTATAGG







942352
3628
3647
 202
 221
AACGCAGCCCAC
 81
 22







AGAACCTT







942358
3639
3658
 213
 232
ATGTGACCAGCA
 52
811







ACGCAGCC







942364
4768
4787
 250
 269
ACCGCTTGCTCC
 58
812







ACCTTGGC







942370
4807
4826
 289
 308
TCGGTCTGCTGG
120
813







CGCAGCTC







942376
4813
4832
 295
 314
TGCCACTCGGTC
185
814







TGCTGGCG







942382
4851
4870
 333
 352
AAAAGCGACCCA
147†
815







GTGCCAGT







942388
4858
4877
 340
 359
TAATCCCAAAAG
 33†
816







CGACCCAG







942399
4870
4889
 352
 371
ACCCAGCGCAGG
  9†
817







TAATCCCA







942408
5563
5582
 465
 484
GTTCCGATTTGT
 64
818







AGGCCTTC







942413
5569
5588
 471
 490
CCTCCAGTTCCG
 69
819







ATTTGTAG







942419
5576
5595
 478
 497
AGTTGTTCCTCC
 77
820







AGTTCCGA







942425
5620
5639
 522
 541
GCTCCTTGGACA
 62
821







GCCGTGCC







942431
5680
5699
 582
 601
GCACCAGGCGGC
 92
822







CGCACACG







942437
5687
5706
 589
 608
CGGTACTGCACC
 80
823







AGGCGGCC







942443
5693
5712
 595
 614
TCGCCGCGGTAC
107
824







TGCACCAG







942449
5719
5738
 621
 640
TGCTCTGGCCGA
 84
825







GCATGGCC







942455
5726
5745
 628
 647
TCCTCGGTGCTC
105
826







TGGCCGAG







942461
5748
5767
 650
 669
GGAGGCGAGGCG
 83
827







CACCCGCA







942467
5766
5785
 668
 687
ACGCAGCTTGCG
 98
828







CAGGTGGG







942473
5773
5792
 675
 694
GCCGCTTACGCA
 78
829







GCTTGCGC







942479
5779
5798
 681
 700
GGAGGAGCCGCT
 75
830







TACGCAGC







942485
5785
5804
 687
 706
CATCGCGGAGGA
 79
831







GCCGCTTA







942491
5792
5811
 694
 713
TCATCGGCATCG
106
832







CGGAGGAG







942497
5798
5817
 700
 719
TGCAGGTCATCG
 51
833







GCATCGCG







942502
5828
5847
 730
 749
GCCCCGGCCTGG
 59
 53







TACACTGC







942508
5834
5853
 736
 755
TCGCGGGCCCCG
 79
834







GCCTGGTA







942514
5903
5922
 805
 824
CGCACGCGGCCC
 54
835







TGTTCCAC







942520
5910
5929
 812
 831
GGCGGCCCGCAC
 57
836







GCGGCCCT







942526
5916
5935
 818
 837
CACAGTGGCGGC
 81
837







CCGCACGC







942532
5943
5962
 845
 864
CTGTAGCGGCTG
 87
838







GCCGGCCA







942538
5949
5968
 851
 870
CCGCTCCTGTAG
 82
839







CGGCTGGC







942544
5993
6012
 895
 914
ATCTCCTCCATC
 74
840







CGCGCGCG







942550
6011
6030
 913
 932
TCGCGGGTCCGG
 82
841







CTGCCCAT







942556
6017
6036
 919
 938
AGGCGGTCGCGG
 91
842







GTCCGGCT







942562
6057
6076
 959
 978
CTTGGCGCGCAC
 86
843







CTCCGCCA







942568
6064
6083
 966
 985
CCTCCAGCTTGG
 58
844







CGCGCACC







942574
6126
6145
1028
1047
GAACCAGCTCTT
 79
845







GAGGCGGG







942580
6132
6151
1034
1053
GGGCTCGAACCA
111
846







GCTCTTGA







942585
6252
6271
1154
1173
CATGGCTGCAGG
 16
847







CTTCGGCG







942589
6301
6320
1203
1222
CCCGCTGCAGGC
 84
848







TGCGCGGA







942595
6350
6369
1252
1271
TTAAACTAGGGT
 47
849







CCACCCCA







942601
2834
2853
  86
 105
TGCGCTTCTCAC
 64
850







CGGCTCCT







942607
2841
2860
  93
 112
CCCCGACTGCGC
 75
851







TTCTCACC







942613
2847
2866
  99
 118
CCGTGCCCCCGA
 75
852







CTGCGCTT







942619
2856
2875
 108
 127
AGCTCATCCCCG
 35
853







TGCCCCCG







942625
3449
3468
N/A
N/A
ATTTACCAAGCC
 94
854







GCCCCCAA







942631
3455
3474
N/A
N/A
CAGCACATTTAC
 81
855







CAAGCCGC







942637
3497
3516
N/A
N/A
AGCCTTCCAAGC
105
856







CTTGTTGC







942643
2927
2946
N/A
N/A
CCGAGTAGCTCT
142
857







CCTGAGAC







942649
2933
2952
N/A
N/A
CCGACCCCGAGT
 56
858







AGCTCTCC







942655
3030
3049
N/A
N/A
CCCACCTTCTAG
 84
859







CGGGTCGG







942661
3071
3090
N/A
N/A
TCCTGCTATGGC
123
860







TTACATCC







942667
3149
3168
N/A
N/A
GCTCCCCAGTTA
 64
861







TGGAGATC







942673
3172
3191
N/A
N/A
TAGCTACCGTGT
 95
862







CGCTGCCC







942679
3178
3197
N/A
N/A
GACGGCTAGCTA
 67
863







CCGTGTCG







942685
3192
3211
N/A
N/A
AAAGTTCTCCAA
 74
864







TCGACGGC







942691
3248
3267
N/A
N/A
CCAACCTCACAG
 81
865







TTAAGCGC







942697
3307
3326
N/A
N/A
CGCCGGTTCCAT
 93
866







CTCAGTCC







942703
3314
3333
N/A
N/A
TCCCCACCGCCG
 60
867







GTTCCATC







942709
3385
3404
N/A
N/A
ATCCCCAGGTCG
 59
868







GCCTCCAT







942715
3558
3577
N/A
N/A
AACCGCCAGTGA
 61
869







GGACTCCT







942721
3652
3671
N/A
N/A
ATACCTGCCAGG
 87
870







AATGTGAC







942727
4198
4217
N/A
N/A
ATCTGCCTGCAA
 68
871







TGCATTAG







942733
4222
4241
N/A
N/A
GCTGCCCCGTGT
 78
872







CTGGTATT







942739
4298
4317
N/A
N/A
GCGGAAAAGCAT
 65
873







GTATTGAG







942745
4616
4635
N/A
N/A
GGGAGTCGGTTT
 71
874







AATCACTT







942751
4701
4720
N/A
N/A
ACCCCGTCCAGG
175
875







CATCTAGT







942757
4711
4730
N/A
N/A
GGTCCTTCTGAC
 79
876







CCCGTCCA







942763
4974
4993
N/A
N/A
CGCCCACCAGGA
 82†
877







GGGTCAAG







942769
4981
5000
N/A
N/A
GTATAGCCGCCC
 96†
878







ACCAGGAG







942775
5030
5049
N/A
N/A
CCCCCCAAGACT
121†
879







TAGCGACA







942781
5490
5509
N/A
N/A
TGTCGCACAGTG
 75†
880







GGAGGCGG
















TABLE 17







Reduction of APOE RNA by 5-10-5 MOE gapmers  


with mixed PO/PS internucleoside linkages at 


a concentration of 5000 nM in transgenic


primary mouse hepatocytes plated at 15,000 


cells per well















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






No:
No:
No:
No:





Com-
1
1
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





689046
6364
6381
1266
1283
GGTGAATCTTTA
 10
478







TTAAAC







708023
5799
5818
 701
 720
CTGCAGGTCATC
 86
 50







GGCATCGC







708024
6371
6390
1273
1292
GTGAAACTTGGT
 11
 77







GAATCTTT







708028
4932
4951
 414
 433
TCAGTTCCTGGG
 41†
 39







TGACCTGG







942335
2751
2770
   3
  22
ATTATAGGGCTC
 81
881







CCCCTGTC







942341
2757
2776
   9
  28
TGTCCAATTATA
 91
882







GGGCTCCC







942347
2768
2787
  20
  39
GATCCCAGACTT
 91
883







GTCCAATT







942353
3630
3649
 204
 223
GCAACGCAGCCC
 63
884







ACAGAACC







942359
3640
3659
 214
 233
AATGTGACCAGC
 55
885







AACGCAGC







942365
4769
4788
 251
 270
CACCGCTTGCTC
 88
886







CACCTTGG







942371
4808
4827
 290
 309
CTCGGTCTGCTG
101
887







GCGCAGCT







942377
4846
4865
 328
 347
CGACCCAGTGCC
 69†
888







AGTTCCCA







942383
4853
4872
 335
 354
CCAAAAGCGACC
 47†
889







CAGTGCCA







942389
4859
4878
 341
 360
GTAATCCCAAAA
 43†
890







GCGACCCA







942394
4865
4884
 347
 366
GCGCAGGTAATC
 22†
891







CCAAAAGC







942400
4871
4890
 353
 372
CACCCAGCGCAG
 24†
892







GTAATCCC







942409
5564
5583
 466
 485
AGTTCCGATTTG
 65
893







TAGGCCTT







942414
5570
5589
 472
 491
TCCTCCAGTTCC
 55
894







GATTTGTA







942420
5577
5596
 479
 498
CAGTTGTTCCTC
 54
895







CAGTTCCG







942426
5621
5640
 523
 542
AGCTCCTTGGAC
 91
896







AGCCGTGC







942432
5681
5700
 583
 602
TGCACCAGGCGG
 81
897







CCGCACAC







942438
5688
5707
 590
 609
GCGGTACTGCAC
 72
 45







CAGGCGGC







942444
5694
5713
 596
 615
CTCGCCGCGGTA
 75
898







CTGCACCA







942450
5720
5739
 622
 641
GTGCTCTGGCCG
 76
899







AGCATGGC







942456
5727
5746
 629
 648
CTCCTCGGTGCT
 64
900







CTGGCCGA







942462
5749
5768
 651
 670
GGGAGGCGAGGC
114
901







GCACCCGC







942468
5767
5786
 669
 688
TACGCAGCTTGC
 65
902







GCAGGTGG







942474
5774
5793
 676
 695
AGCCGCTTACGC
 87
903







AGCTTGCG







942480
5780
5799
 682
 701
CGGAGGAGCCGC
 64
904







TTACGCAG







942486
5786
5805
 688
 707
GCATCGCGGAGG
100
905







AGCCGCTT







942492
5793
5812
 695
 714
GTCATCGGCATC
 83
906







GCGGAGGA







942503
5829
5848
 731
 750
GGCCCCGGCCTG
 93
907







GTACACTG







942509
5857
5876
 759
 778
CGCTGAGGCCGC
 81
908







GCTCGGCG







942515
5904
5923
 806
 825
CCGCACGCGGCC
 63
909







CTGTTCCA







942521
5911
5930
 813
 832
TGGCGGCCCGCA
 80
910







CGCGGCCC







942527
5917
5936
 819
 838
CCACAGTGGCGG
 62
911







CCCGCACG







942533
5944
5963
 846
 865
CCTGTAGCGGCT
 72
912







GGCCGGCC







942539
5952
5971
 854
 873
GGCCCGCTCCT
 94
913







GTAGCGGCT







942545
5994
6013
 896
 915
CATCTCCTCCAT
 64
914







CCGCGCGC







942551
6012
6031
 914
 933
GTCGCGGGTCCG
 80
915







GCTGCCCA







942557
6018
6037
 920
 939
CAGGCGGTCGCG
 90
916







GGTCCGGC







942563
6058
6077
 960
 979
GCTTGGCGCGCA
 70
917







CCTCCGCC







942569
6065
6084
 967
 986
TCCTCCAGCTTG
 82
918







GCGCGCAC







942575
6127
6146
1029
1048
CGAACCAGCTCT
 70
 64







TGAGGCGG







942581
6230
6249
1132
1151
CAGTGATTGTCG
 89
 68







CTGGGCAC







942586
6253
6272
1155
1174
GCATGGCTGCAG
  6
919







GCTTCGGC







942590
6302
6321
1204
1223
TCCCGCTGCAGG
 54
920







CTGCGCGG







942596
6351
6370
1253
1272
ATTAAACTAGGG
 42
921







TCCACCCC







942602
2836
2855
  88
 107
ACTGCGCTTCTC
102
922







ACCGGCTC







942608
2842
2861
  94
 113
CCCCCGACTGCG
 82
923







CTTCTCAC







942614
2848
2867
 100
 119
CCCGTGCCCCCG
137
924







ACTGCGCT







942620
3421
3440
N/A
N/A
CTATTTAACTCC
 67
925







CTCCTGGT







942626
3450
3469
N/A
N/A
CATTTACCAAGC
 74
926







CGCCCCCA







942632
3456
3475
N/A
N/A
CCAGCACATTTA
108
927







CCAAGCCG







942638
3498
3517
N/A
N/A
TAGCCTTCCAAG
 74
928







CCTTGTTG







942644
2928
2947
N/A
N/A
CCCGAGTAGCTC
 95
929







TCCTGAGA







942650
2934
2953
N/A
N/A
CCCGACCCCGAG
 71
930







TAGCTCTC







942656
3031
3050
N/A
N/A
CCCCACCTTCTA
 75
931







GCGGGTCG







942662
3073
3092
N/A
N/A
AGTCCTGCTATG
 97
932







GCTTACAT







942668
3167
3186
N/A
N/A
ACCGTGTCGCTG
 86
 81







CCCCTGGC







942674
3173
3192
N/A
N/A
CTAGCTACCGTG
 93
933







TCGCTGCC







942680
3179
3198
N/A
N/A
CGACGGCTAGCT
124
934







ACCGTGTC







942686
3195
3214
N/A
N/A
TTTAAAGTTCTC
 78
935







CAATCGAC







942692
3292
3311
N/A
N/A
AGTCCCAGTCTC
 73
936







GCATTCCT







942698
3308
3327
N/A
N/A
CCGCCGGTTCCA
 74
937







TCTCAGTC







942704
3375
3394
N/A
N/A
CGGCCTCCATAG
108
938







AAAATTCC







942710
3509
3528
N/A
N/A
TCACCCCAGGTT
 85
939







AGCCTTCC







942716
3559
3578
N/A
N/A
CAACCGCCAGTG
 78
940







AGGACTCC







942722
3674
3693
N/A
N/A
GAACCGAGCAAG
 72
941







CCCCGCCC







942728
4212
4231
N/A
N/A
GTCTGGTATTCA
102
942







CTATCTGC







942734
4223
4242
N/A
N/A
AGCTGCCCCGTG
 79
943







TCTGGTAT







942740
4303
4322
N/A
N/A
GCCCAGCGGAAA
 85
944







AGCATGTA







942746
4694
4713
N/A
N/A
CCAGGCATCTAG
 99
945







TACCTAGG







942752
4702
4721
N/A
N/A
GACCCCGTCCAG
 78
946







GCATCTAG







942758
4712
4731
N/A
N/A
GGGTCCTTCTGA
121
947







CCCCGTCC







942764
4975
4994
N/A
N/A
CCGCCCACCAGG
 87†
948







AGGGTCAA







942770
4982
5001
N/A
N/A
GGTATAGCCGCC
120†
949







CACCAGGA







942776
5031
5050
N/A
N/A
GCCCCCCAAGAC
 60†
950







TTAGCGAC







942782
5491
5510
N/A
N/A
GTGTCGCACAGT
110†
951







GGGAGGCG
















TABLE 18







Reduction of APOE RNA by 5-10-5 MOE gapmers 


with mixed PO/PS internucleoside linkages at 


a concentration of 5000 nM in transgenic


primary mouse hepatocytes plated at 15,000 


cells per well















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






No:
No:
No:
No:





Com-
1
1
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence 
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





689046
6364
6381
1266
1283
GGTGAATCTTTA
  3
 478







TTAAAC







708021
6254
6273
1156
1175
CGCATGGCTGCA
  5
  70







GGCTTCGG







708024
6371
6390
1273
1292
GTGAAACTTGGT
  9
  77







GAATCTTT







708025
5565
5584
 467
 486
CAGTTCCGATTT
 70
  42







GTAGGCCT







708029
4872
4891
 354
 373
GCACCCAGCGCA
  6†
  33







GGTAATCC







942336
2752
2771
   4
  23
AATTATAGGGCT
112
 952







CCCCCTGT







942342
2759
2778
  11
  30
CTTGTCCAATTA
142
 953







TAGGGCTC







942348
2769
2788
  21
  40
GGATCCCAGACT
105
 954







TGTCCAAT







942354
3635
3654
 209
 228
GACCAGCAACGC
 51
 955







AGCCCACA







942360
3641
3660
 215
 234
GAATGTGACCAG
 65
 956







CAACGCAG







942366
4774
4793
 256
 275
GTCTCCACCGCT
114
 957







TGCTCCAC







942372
4809
4828
 291
 310
ACTCGGTCTGCT
113
 958







GGCGCAGC







942378
4847
4866
 329
 348
GCGACCCAGTGC
 61†
 959







CAGTTCCC







942384
4854
4873
 336
 355
CCCAAAAGCGAC
 17†
  30







CCAGTGCC







942390
4860
4879
 342
 361
GGTAATCCCAAA
 32†
 960







AGCGACCC







942395
4866
4885
 348
 367
AGCGCAGGTAAT
 42†
 961







CCCAAAAG







942404
5559
5578
 461
 480
CGATTTGTAGGC
136
  41







CTTCAACT







942415
5571
5590
 473
 492
TTCCTCCAGTTC
 82
 962







CGATTTGT







942421
5581
5600
 483
 502
GGGTCAGTTGTT
 78
 963







CCTCCAGT







942427
5657
5676
 559
 578
TCCATGTCCGCG
 55
 964







CCCAGCCG







942433
5683
5702
 585
 604
ACTGCACCAGGC
 56
 965







GGCCGCAC







942439
5689
5708
 591
 610
CGCGGTACTGCA
 84
 966







CCAGGCGG







942445
5695
5714
 597
 616
CCTCGCCGCGGT
 64
 967







ACTGCACC







942451
5722
5741
 624
 643
CGGTGCTCTGGC
 89
 968







CGAGCATG







942457
5738
5757
 640
 659
CGCACCCGCAGC
 63
 969







TCCTCGGT







942463
5750
5769
 652
 671
TGGGAGGCGAGG
123
 970







CGCACCCG







942469
5768
5787
 670
 689
TTACGCAGCTTG
 83
 971







CGCAGGTG







942475
5775
5794
 677
 696
GAGCCGCTTACG
100
  49







CAGCTTGC







942481
5781
5800
 683
 702
GCGGAGGAGCCG
 77
 972







CTTACGCA







942487
5787
5806
 689
 708
GGCATCGCGGAG
 83
 973







GAGCCGCT







942493
5794
5813
 696
 715
GGTCATCGGCAT
 64
 974







CGCGGAGG







942498
5800
5819
 702
 721
TCTGCAGGTCAT
 63
 975







CGGCATCG







942504
5830
5849
 732
 751
GGGCCCCGGCCT
 64
 976







GGTACACT







942510
5858
5877
 760
 779
GCGCTGAGGCCG
127
 977







CGCTCGGC







942516
5905
5924
 807
 826
CCCGCACGCGGC
100
 978







CCTGTTCC







942522
5912
5931
 814
 833
GTGGCGGCCCGC
 98
 979







ACGCGGCC







942528
5918
5937
 820
 839
CCCACAGTGGCG
 70
 980







GCCCGCAC







942534
5945
5964
 847
 866
TCCTGTAGCGGC
115
 981







TGGCCGGC







942540
5953
5972
 855
 874
GGGCCCGCTCCT
 79
 982







GTAGCGGC







942546
5995
6014
 897
 916
CCATCTCCTCCA
 55
 983







TCCGCGCG







942552
6013
6032
 915
 934
GGTCGCGGGTCC
 45
 984







GGCTGCCC







942558
6019
6038
 921
 940
CCAGGCGGTCGC
100
 985







GGGTCCGG







942564
6059
6078
 961
 980
AGCTTGGCGCGC
 50
 986







ACCTCCGC







942570
6119
6138
1021
1040
CTCTTGAGGCGG
 87
 987







GCCTGGAA







942576
6128
6147
1030
1049
TCGAACCAGCTC
 76
 988







TTGAGGCG







942582
6231
6250
1133
1152
TCAGTGATTGTC
 53
 989







GCTGGGCA







942591
6305
6324
1207
1226
GTCTCCCGCTGC
 21
 990







AGGCTGCG







942597
6353
6372
1255
1274
TTATTAAACTAG
 34
  76







GGTCCACC







942603
2837
2856
  89
 108
GACTGCGCTTCT
 86
 991







CACCGGCT







942609
2843
2862
  95
 114
GCCCCCGACTGC
 59
 992







GCTTCTCA







942615
2850
2869
 102
 121
TCCCCGTGCCCC
 65
 993







CGACTGCG







942621
3442
3461
N/A
N/A
AAGCCGCCCCCA
 55
 994







ACCCATTC







942627
3451
3470
N/A
N/A
ACATTTACCAAG
 41
 995







CCGCCCCC







942633
3474
3493
N/A
N/A
ATCTGCAACAGC
151
 996







CTAATCCC







942639
3500
3519
N/A
N/A
GTTAGCCTTCCA
 99
 997







AGCCTTGT







942645
2929
2948
N/A
N/A
CCCCGAGTAGCT
 87
 998







CTCCTGAG







942651
2935
2954
N/A
N/A
GCCCGACCCCGA
 56
 999







GTAGCTCT







942657
3032
3051
N/A
N/A
ACCCCACCTTCT
 62
1000







AGCGGGTC







942663
3075
3094
N/A
N/A
GGAGTCCTGCTA
113
1001







TGGCTTAC







942669
3168
3187
N/A
N/A
TACCGTGTCGCT
 88
1002







GCCCCTGG







942675
3174
3193
N/A
N/A
GCTAGCTACCGT
 59
1003







GTCGCTGC







942681
3180
3199
N/A
N/A
TCGACGGCTAGC
108
1004







TACCGTGT







942687
3228
3247
N/A
N/A
CGTGTTCCATTT
 79
1005







ATGAGCTA







942693
3293
3312
N/A
N/A
CAGTCCCAGTCT
101
1006







CGCATTCC







942699
3309
3328
N/A
N/A
ACCGCCGGTTCC
 58
1007







ATCTCAGT







942705
3379
3398
N/A
N/A
AGGTCGGCCTCC
 70
1008







ATAGAAAA







942711
3514
3533
N/A
N/A
CGGCCTCACCCC
 70
1009







AGGTTAGC







942717
3562
3581
N/A
N/A
AATCAACCGCCA
 73
1010







GTGAGGAC







942723
3675
3694
N/A
N/A
GGAACCGAGCAA
102
1011







GCCCCGCC







942729
4216
4235
N/A
N/A
CCGTGTCTGGTA
 83
1012







TTCACTAT







942735
4229
4248
N/A
N/A
GATCACAGCTGC
 72
1013







CCCGTGTC







942741
4305
4324
N/A
N/A
GCGCCCAGCGGA
 72
1014







AAAGCATG







942747
4696
4715
N/A
N/A
GTCCAGGCATCT
136
1015







AGTACCTA







942753
4703
4722
N/A
N/A
TGACCCCGTCCA
 73
1016







GGCATCTA







942759
4714
4733
N/A
N/A
CAGGGTCCTTCT
 67
1017







GACCCCGT







942765
4977
4996
N/A
N/A
AGCCGCCCACCA
 44†
1018







GGAGGGTC







942771
4983
5002
N/A
N/A
AGGTATAGCCGC
128†
1019







CCACCAGG







942777
5032
5051
N/A
N/A
GGCCCCCCAAGA
 61†
1020







CTTAGCGA







942783
5516
5535
N/A
N/A
GCCCTGCGGCCG
105†
1021







AGAGGGCG
















TABLE 19







Reduction of APOE RNA by 5-10-5 MOE gapmers 


with mixed PO/PS internucleoside linkages at


a concentration of 5000 nM in transgenic 


primary mouse hepatocytes plated at 15,000 


cells per well















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






No:
No:
No:
No:





Com-
1
1
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence 
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





689046
6364
6381
1266
1283
GGTGAATCTT
  6
 478







TATTAAAC







708024
6371
6390
1273
1292
GTGAAACTTG
 21
  77







GTGAATCTTT







942337
2753
2772
   5
  24
CAATTATAGG
 83
1022







GCTCCCCCTG







942343
2760
2779
  12
  31
ACTTGTCCAA
 94
1023







TTATAGGGCT







942349
2783
2802
  35
  54
TGAGTAGGAC
 99
1024







TCAAGGATCC







942355
3636
3655
 210
 229
TGACCAGCAA
123
  23







CGCAGCCCAC







942361
3642
3661
 216
 235
GGAATGTGAC
126
  24







CAGCAACGCA







942367
4804
4823
 286
 305
GTCTGCTGGC
105
1025







GCAGCTCGGG







942373
4810
4829
 292
 311
CACTCGGTCT
100
1026







GCTGGCGCAG







942379
4848
4867
 330
 349
AGCGACCCAG
 45†
1027







TGCCAGTTCC







942385
4855
4874
 337
 356
TCCCAAAAGC
 25†
1028







GACCCAGTGC







942391
4861
4880
 343
 362
AGGTAATCCC
 26†
  31







AAAAGCGACC







942396
4867
4886
 349
 368
CAGCGCAGGT
 33†
1029







AATCCCAAAA







942401
4873
4892
 355
 374
TGCACCCAGC
 22†
1030







GCAGGTAATC







942405
5560
5579
 462
 481
CCGATTTGTA
124
1031







GGCCTTCAAC







942410
5566
5585
 468
 487
CCAGTTCCGA
 85
1032







TTTGTAGGCC







942416
5572
5591
 474
 493
GTTCCTCCAG
 73
1033







TTCCGATTTG







942422
5616
5635
 518
 537
CTTGGACAGC
 97
1034







CGTGCCCGCG







942428
5660
5679
 562
 581
TCCTCCATGT
 81
1035







CCGCGCCCAG







942434
5684
5703
 586
 605
TACTGCACCA
 92
1036







GGCGGCCGCA







942440
5690
5709
 592
 611
CCGCGGTACT
 87
1037







GCACCAGGCG







942446
5696
5715
 598
 617
ACCTCGCCGC
 95
1038







GGTACTGCAC







942452
5723
5742
 625
 644
TCGGTGCTCT
 90
1039







GGCCGAGCAT







942458
5744
5763
 646
 665
GCGAGGCGCA
 77
1040







CCCGCAGCTC







942464
5759
5778
 661
 680
TTGCGCAGGT
144
1041







GGGAGGCGAG







942470
5769
5788
 671
 690
CTTACGCAGC
135
1042







TTGCGCAGGT







942476
5776
5795
 678
 697
GGAGCCGCTT
 94
1043







ACGCAGCTTG







942482
5782
5801
 684
 703
CGCGGAGGAG
 77
1044







CCGCTTACGC







942488
5789
5808
 691
 710
TCGGCATCGC
 99
1045







GGAGGAGCCG







942494
5795
5814
 697
 716
AGGTCATCGG
 90
1046







CATCGCGGAG







942499
5824
5843
 726
 745
CGGCCTGGTA
 62
1047







CACTGCCAGG







942505
5831
5850
 733
 752
CGGGCCCCGG
 89
1048







CCTGGTACAC







942511
5900
5919
 802
 821
ACGCGGCCCT
 98
1049







GTTCCACCAG







942517
5906
5925
 808
 827
GCCCGCACGC
 68
1050







GGCCCTGTTC







942523
5913
5932
 815
 834
AGTGGCGGCC
125
1051







CGCACGCGGC







942529
5919
5938
 821
 840
GCCCACAGTG
 91
  55







GCGGCCCGCA







942535
5946
5965
 848
 867
CTCCTGTAGC
 92
1052







GGCTGGCCGG







942541
5954
5973
 856
 875
TGGGCCCGCT
 82
1053







CCTGTAGCGG







942547
6008
6027
 910
 929
CGGGTCCGGC
 76
1054







TGCCCATCTC







942553
6014
6033
 916
 935
CGGTCGCGGG
 92
1055







TCCGGCTGCC







942559
6020
6039
 922
 941
TCCAGGCGGT
 87
1056







CGCGGGTCCG







942565
6060
6079
 962
 981
CAGCTTGGCG
 82
1057







CGCACCTCCG







942571
6120
6139
1022
1041
GCTCTTGAGG
110
1058







CGGGCCTGGA







942577
6129
6148
1031
1050
CTCGAACCAG
101
1059







CTCTTGAGGC







942583
6232
6251
1134
1153
TTCAGTGATT
 78
1060







GTCGCTGGGC







942587
6255
6274
1157
1176
TCGCATGGCT
 10
1061







GCAGGCTTCG







942592
6341
6360
1243
1262
GGTCCACCCC
 80
1062







AGGAGGACGG







942598
6372
6391
1274
1293
CGTGAAACTT
 15
1063







GGTGAATCTT







942604
2838
2857
  90
 109
CGACTGCGCT
 64
1064







TCTCACCGGC







942610
2844
2863
  96
 115
TGCCCCCGAC
 68
1065







TGCGCTTCTC







942616
2851
2870
 103
 122
ATCCCCGTGC
 69
1066







CCCCGACTGC







942622
3443
3462
N/A
N/A
CAAGCCGCCC
 76
1067







CCAACCCATT







942628
3452
3471
N/A
N/A
CACATTTACC
 94
1068







AAGCCGCCCC







942634
3490
3509
N/A
N/A
CAAGCCTTGT
104
1069







TGCATTATCT







942640
3501
3520
N/A
N/A
GGTTAGCCTT
 87
1070







CCAAGCCTTG







942646
2930
2949
N/A
N/A
ACCCCGAGTA
126
1071







GCTCTCCTGA







942652
2936
2955
N/A
N/A
AGCCCGACCC
 85
1072







CGAGTAGCTC







942658
3033
3052
N/A
N/A
CACCCCACCT
 92
1073







TCTAGCGGGT







942664
3076
3095
N/A
N/A
TGGAGTCCTG
 90
1074







CTATGGCTTA







942670
3169
3188
N/A
N/A
CTACCGTGTC
 64
1075







GCTGCCCCTG







942676
3175
3194
N/A
N/A
GGCTAGCTAC
 73
1076







CGTGTCGCTG







942682
3184
3203
N/A
N/A
CCAATCGACG
 97
1077







GCTAGCTACC







942688
3230
3249
N/A
N/A
GCCGTGTTCC
 69
1078







ATTTATGAGC







942694
3296
3315
N/A
N/A
TCTCAGTCCC
 89
1079







AGTCTCGCAT







942700
3310
3329
N/A
N/A
CACCGCCGGT
 76
1080







TCCATCTCAG







942706
3381
3400
N/A
N/A
CCAGGTCGGC
 68
1081







CTCCATAGAA







942712
3515
3534
N/A
N/A
CCGGCCTCAC
 87
1082







CCCAGGTTAG







942718
3564
3583
N/A
N/A
TCAATCAACC
102
1083







GCCAGTGAGG







942724
3676
3695
N/A
N/A
GGGAACCGAG
 67
1084







CAAGCCCCGC







942730
4218
4237
N/A
N/A
CCCCGTGTCT
 98
1085







GGTATTCACT







942736
4230
4249
N/A
N/A
AGATCACAGC
117
1086







TGCCCCGTGT







942742
4610
4629
N/A
N/A
CGGTTTAATC
 91
1087







ACTTGGAAAG







942748
4698
4717
N/A
N/A
CCGTCCAGGC
153
1088







ATCTAGTACC







942754
4705
4724
N/A
N/A
TCTGACCCCG
 95
1089







TCCAGGCATC







942760
4715
4734
N/A
N/A
TCAGGGTCCT
 87
1090







TCTGACCCCG







942766
4978
4997
N/A
N/A
TAGCCGCCCA
 87†
1091







CCAGGAGGGT







942772
4984
5003
N/A
N/A
GAGGTATAGC
 91†
1092







CGCCCACCAG







942778
5033
5052
N/A
N/A
AGGCCCCCCA
 65†
1093







AGACTTAGCG







942784
5517
5536
N/A
N/A
CGCCCTGCGG
 98†
1094







CCGAGAGGGC
















TABLE 20







Reduction of APOE RNA by 5-10-5 MOE gapmers 


with mixed PO/PS internucleoside linkages at 


a concentration of 5000 nM in transgenic


primary mouse hepatocytes plated at 15,000 


cells per well















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






No:
No:
No:
No:





Com-
1
1
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence 
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





689046
6364
6381
1266
1283
GGTGAATCTT
  9
 478







TATTAAAC







708024
6371
6390
1273
1292
GTGAAACTTG
 24
  77







GTGAATCTTT







942338
2754
2773
   6
  25
CCAATTATAG
 75
1095







GGCTCCCCCT







942344
2761
2780
  13
  32
GACTTGTCCA
 69
1096







ATTATAGGGC







942350
2784
2803
  36
  55
CTGAGTAGGA
 99
1097







CTCAAGGATC







942356
3637
3656
 211
 230
GTGACCAGCA
103
1098







ACGCAGCCCA







942362
3643
3662
 217
 236
AGGAATGTGA
 71
1099







CCAGCAACGC







942368
4805
4824
 287
 306
GGTCTGCTGG
 82
1100







CGCAGCTCGG







942374
4811
4830
 293
 312
CCACTCGGTC
 70
1101







TGCTGGCGCA







942380
4849
4868
 331
 350
AAGCGACCCA
 43†
1102







GTGCCAGTTC







942386
4856
4875
 338
 357
ATCCCAAAAG
 31†
1103







CGACCCAGTG







942392
4862
4881
 344
 363
CAGGTAATCC
 39†
1104







CAAAAGCGAC







942397
4868
4887
 350
 369
CCAGCGCAGG
 12†
1105







TAATCCCAAA







942402
4875
4894
 357
 376
TCTGCACCCA
 22†
  34







GCGCAGGTAA







942406
5561
5580
 463
 482
TCCGATTTGT
 81
1106







AGGCCTTCAA







942411
5567
5586
 469
 488
TCCAGTTCCG
 95
1107







ATTTGTAGGC







942417
5574
5593
 476
 495
TTGTTCCTCC
 79
1108







AGTTCCGATT







942423
5617
5636
 519
 538
CCTTGGACAG
 59
1109







CCGTGCCCGC







942429
5661
5680
 563
 582
GTCCTCCATG
 87
1110







TCCGCGCCCA







942435
5685
5704
 587
 606
GTACTGCACC
100
1111







AGGCGGCCGC







942441
5691
5710
 593
 612
GCCGCGGTAC
 79
  46







TGCACCAGGC







942447
5716
5735
 618
 637
TCTGGCCGAG
130
1112







CATGGCCTGC







942453
5724
5743
 626
 645
CTCGGTGCTC
 72
1113







TGGCCGAGCA







942459
5746
5765
 648
 667
AGGCGAGGCG
 81
1114







CACCCGCAGC







942465
5760
5779
 662
 681
CTTGCGCAGG
 86
1115







TGGGAGGCGA







942471
5771
5790
 673
 692
CGCTTACGCA
 87
1116







GCTTGCGCAG







942477
5777
5796
 679
 698
AGGAGCCGCT
 95
1117







TACGCAGCTT







942483
5783
5802
 685
 704
TCGCGGAGGA
 72
1118







GCCGCTTACG







942489
5790
5809
 692
 711
ATCGGCATCG
118
1119







CGGAGGAGCC







942495
5796
5815
 698
 717
CAGGTCATCG
 76
1120







GCATCGCGGA







942500
5825
5844
 727
 746
CCGGCCTGGT
 97
  52







ACACTGCCAG







942506
5832
5851
 734
 753
GCGGGCCCCG
 87
  54







GCCTGGTACA







942512
5901
5920
 803
 822
CACGCGGCCC
 54
1121







TGTTCCACCA







942518
5907
5926
 809
 828
GGCCCGCACG
 87
1122







CGGCCCTGTT







942524
5914
5933
 816
 835
CAGTGGCGGC
 81
1123







CCGCACGCGG







942530
5920
5939
 822
 841
AGCCCACAGT
122
1124







GGCGGCCCGC







942536
5947
5966
 849
 868
GCTCCTGTAG
 83
1125







CGGCTGGCCG







942542
5955
5974
 857
 876
CTGGGCCCGC
 65
1126







TCCTGTAGCG







942548
6009
6028
 911
 930
GCGGGTCCGG
 73
  60







CTGCCCATCT







942554
6015
6034
 917
 936
GCGGTCGCGG
 83
1127







GTCCGGCTGC







942560
6021
6040
 923
 942
GTCCAGGCGG
 69
1128







TCGCGGGTCC







942566
6062
6081
 964
 983
TCCAGCTTGG
 68
  61







CGCGCACCTC







942572
6124
6143
1026
1045
ACCAGCTCTT
 82
1129







GAGGCGGGCC







942578
6130
6149
1032
1051
GCTCGAACCA
 97
1130







GCTCTTGAGG







942584
6233
6252
1135
1154
GTTCAGTGAT
 71
1131







TGTCGCTGGG







942588
6256
6275
1158
1177
GTCGCATGGC
  9
1132







TGCAGGCTTC







942593
6347
6366
1249
1268
AACTAGGGTC
 52
  75







CACCCCAGGA







942599
2832
2851
  84
 103
CGCTTCTCAC
 80
1133







CGGCTCCTGG







942605
2839
2858
  91
 110
CCGACTGCGC
103
1134







TTCTCACCGG







942611
2845
2864
  97
 116
GTGCCCCCGA
 86
1135







CTGCGCTTCT







942617
2853
2872
 105
 124
TCATCCCCGT
 52
1136







GCCCCCGACT







942623
3447
3466
N/A
N/A
TTACCAAGCC
 96
1137







GCCCCCAACC







942629
3453
3472
N/A
N/A
GCACATTTAC
 65
1138







CAAGCCGCCC







942635
3491
3510
N/A
N/A
CCAAGCCTTG
 76
1139







TTGCATTATC







942641
2923
2942
N/A
N/A
GTAGCTCTCC
117
1140







TGAGACTACC







942647
2931
2950
N/A
N/A
GACCCCGAGT
 98
1141







AGCTCTCCTG







942653
2937
2956
N/A
N/A
AAGCCCGACC
 75
1142







CCGAGTAGCT







942659
3065
3084
N/A
N/A
TATGGCTTAC
 96
1143







ATCCCAGTCC







942665
3078
3097
N/A
N/A
CGTGGAGTCC
 66
1144







TGCTATGGCT







942671
3170
3189
N/A
N/A
GCTACCGTGT
 73
1145







CGCTGCCCCT







942677
3176
3195
N/A
N/A
CGGCTAGCTA
 99
1146







CCGTGTCGCT







942683
3187
3206
N/A
N/A
TCTCCAATCG
108
1147







ACGGCTAGCT







942689
3231
3250
N/A
N/A
CGCCGTGTTC
 68
1148







CATTTATGAG







942695
3305
3324
N/A
N/A
CCGGTTCCAT
 79
1149







CTCAGTCCCA







942701
3311
3330
N/A
N/A
CCACCGCCGG
 81
1150







TTCCATCTCA







942707
3383
3402
N/A
N/A
CCCCAGGTCG
 78
1151







GCCTCCATAG







942713
3556
3575
N/A
N/A
CCGCCAGTGA
 77
1152







GGACTCCTCC







942719
3567
3586
N/A
N/A
CTGTCAATCA
 88
1153







ACCGCCAGTG







942725
3785
3804
N/A
N/A
ATCGCTGTTC
 92
1154







AGAGCCAGGA







942731
4219
4238
N/A
N/A
GCCCCGTGTC
 73
1155







TGGTATTCAC







942737
4233
4252
N/A
N/A
TAAAGATCAC
 82
1156







AGCTGCCCCG







942743
4612
4631
N/A
N/A
GTCGGTTTAA
 73
1157







TCACTTGGAA







942749
4699
4718
N/A
N/A
CCCGTCCAGG
 74
1158







CATCTAGTAC







942755
4706
4725
N/A
N/A
TTCTGACCCC
108
1159







GTCCAGGCAT







942761
4733
4752
N/A
N/A
GAACAAGTTC
 98
1160







AAGGTGGGTC







942767
4979
4998
N/A
N/A
ATAGCCGCCC
 75†
1161







ACCAGGAGGG







942773
4985
5004
N/A
N/A
GGAGGTATAG
 87†
1162







CCGCCCACCA







942779
5152
5171
N/A
N/A
CGAGTGTGAG
 87†
1163







AGACTGAGTC







942785
5518
5537
N/A
N/A
GCGCCCTGCG
 75†
1164







GCCGAGAGGG
















TABLE 21







Reduction of APOE RNA by 5-10-5 MOE gapmers 


with mixed PO/PS internucleoside linkages at 


a concentration of 4000 nM in Hep3B cells  


plated at 20,000 cells per well















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






No:
No:
No: 
No:





Com-
1
1
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence 
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





 942584
6233
6252
1135
1154
GTTCAGTGAT
 43
1131







TGTCGCTGGG







 942586
6253
6272
1155
1174
GCATGGCTGC
 14
 919







AGGCTTCGGC







 942597
6353
6372
1255
1274
TTATTAAACT
 48
  76







AGGGTCCACC







1517142
3368
3387
N/A
N/A
CATAGAAAAT
 76
1165







TCCATCTTCC







1517148
3219
3238
N/A
N/A
TTTATGAGCT
 60
1166







AATTCAGTCC







1517167
4819
4838
 301
 320
CCGCTCTGCC
 63
1167







ACTCGGTCTG







1517173
4210
4229
N/A
N/A
CTGGTATTCA
 82
1168







CTATCTGCCT







1517183
3446
3465
N/A
N/A
TACCAAGCCG
 62
1169







CCCCCAACCC







1517210
3005
3024
N/A
N/A
CTCTGCTGCC
 89
1170







CAGCCCTTCC







1517234
4782
4801
 264
 283
CCGGCTCTGT
 59
1171







CTCCACCGCT







1517246
3062
3081
N/A
N/A
GGCTTACATC
 68
1172







CCAGTCCAGC







1517253
5044
5063
N/A
N/A
AGCAGAGACC
 76†
1173







CAGGCCCCCC







1517272
3850
3869
N/A
N/A
AACAACAAAA
 81
1174







CAACTTCTAA







1517280
6173
6192
1075
1094
TCCACCAGCC
 82
1175







CGGCCCACTG







1517287
3629
3648
 203
 222
CAACGCAGCC
 62
1176







CACAGAACCT







1517293
3398
3417
N/A
N/A
CTCTTATCTC
 67
1177







CCCATCCCCA







1517308
3295
3314
N/A
N/A
CTCAGTCCCA
 62
1178







GTCTCGCATT







1517316
4613
4632
N/A
N/A
AGTCGGTTTA
 73
1179







ATCACTTGGA







1517317
3434
3453
N/A
N/A
CCCAACCCAT
 79
1180







TCCCTATTTA







1517318
3254
3273
N/A
N/A
TAAGCTCCAA
 68
1181







CCTCACAGTT







1517322
4594
4613
N/A
N/A
AAAGCATTAT
 92
1182







GTATTTATAA







1517333
6213
6232
1115
1134
CACAGGGGCG
 88
1183







GCGCTGGTGC







1517341
4766
4785
 248
 267
CGCTTGCTCC
106
1184







ACCTTGGCCT







1517343
3466
3485
N/A
N/A
CAGCCTAATC
 79
1185







CCAGCACATT







1517345
4887
4906
 369
 388
GCTCAGACAG
 38†
1186







TGTCTGCACC







1517347
3527
3546
N/A
N/A
CCCGGCCCCA
110
1187







ACCCGGCCTC







1517356
3266
3285
N/A
N/A
CCCTTCACAT
 84
1188







TCTAAGCTCC







1517365
3617
3636
 191
 210
CAGAACCTTC
 52
1189







ATCTTCCTGC







1517378
3410
3429
N/A
N/A
CCTCCTGGTC
 68
1190







TTCTCTTATC







1517392
3341
3360
N/A
N/A
GGGTTCAAAT
 72
1191







TCCATCCCCC







1517396
6333
6352
1235
1254
CCAGGAGGAC
 77
1192







GGCTGGGGCG







1517427
6363
6382
1265
1284
TGGTGAATCT
 18
1193







TTATTAAACT







1517441
5009
5028
N/A
N/A
GGGCAGAATG
 85†
1194







AAACCTGGAC







1517447
3513
3532
N/A
N/A
GGCCTCACCC
 84
1195







CAGGTTAGCC







1517456
3319
3338
N/A
N/A
CCCCCTCCCC
 67
1196







ACCGCCGGTT







1517459
3424
3443
N/A
N/A
TCCCTATTTA
 90
1197







ACTCCCTCCT







1517464
3667
3686
N/A
N/A
GCAAGCCCCG
 71
1198







CCCCCATACC







1517483
3105
3124
N/A
N/A
GGTGCTCGAT
 82
1199







AAATGATAGT







1517492
4540
4559
N/A
N/A
AGCGGCCTGA
 94
1200







ACATGGTTCA







1517493
3768
3787
N/A
N/A
GGAAGCAGCA
 65
1201







CAGAAGCCTC







1517510
3571
3590
N/A
N/A
GAAACTGTCA
 80
1202







ATCAACCGCC







1517512
2881
2900
 133
 152
TCCCAGCTCT
 84
1203







TTCTAGAGGC







1517531
4707
4726
N/A
N/A
CTTCTGACCC
 81
1204







CGTCCAGGCA







1517535
6263
6282
1165
1184
GCGTGGGGTC
 23
1205







GCATGGCTGC







1517548
3206
3225
N/A
N/A
TCAGTCCTCA
 81
1206







TTTTAAAGTT







1517555
6303
6322
1205
1224
CTCCCGCTGC
 33
1207







AGGCTGCGCG







1517556
3551
3570
N/A
N/A
AGTGAGGACT
 76
1208







CCTCCCACCC







1517558
6153
6172
1055
1074
GCGCTGCATG
 55
  66







TCTTCCACCA







1517560
6273
6292
1175
1194
GCACGGGGTG
 59
1209







GCGTGGGGTC







1517561
3050
3069
N/A
N/A
AGTCCAGCTG
 69
1210







CTCTCCCCAC







1517581
5056
5075
N/A
N/A
GAAGCTAGAA
 82†
1211







CCAGCAGAGA







1517601
2864
2883
 116
 135
GGCCCCTGAG
 82
1212







CTCATCCCCG







1517603
2988
3007
N/A
N/A
TCCCAGGTCC
 91
1213







AGTCCCCTGC







1517612
3193
3212
N/A
N/A
TAAAGTTCTC
 65
1214







CAATCGACGG







1517617
6133
6152
1035
1054
GGGGCTCGAA
 81
1215







CCAGCTCTTG







1517646
2962
2981
N/A
N/A
CCTCACCCCC
117
1216







GCTCCTCCTC







1517648
6243
6262
1145
1164
AGGCTTCGGC
 63
1217







GTTCAGTGAT







1517660
3380
3399
N/A
N/A
CAGGTCGGCC
 83
1218







TCCATAGAAA







1517677
3283
3302
N/A
N/A
CTCGCATTCC
 52
1219







TCATTCTCCC







1517688
6193
6212
1095
1114
CCACGGCAGC
 64
1220







CTGCACCTTC







1517714
4194
4213
N/A
N/A
GCCTGCAATG
 78
1221







CATTAGAAAC







1517743
4242
4261
N/A
N/A
GATGGAGAAT
 81
1222







AAAGATCACA







1517751
3494
3513
N/A
N/A
CTTCCAAGCC
 85
1223







TTGTTGCATT







1517755
6313
6332
1215
1234
GGGACAGGGT
 46
1224







CTCCCGCTGC







1517766
6343
6362
1245
1264
AGGGTCCACC
 87
  74







CCAGGAGGAC







1517773
3840
3859
N/A
N/A
CAACTTCTAA
 91
1225







CTCCTATCTC







1517790
6283
6302
1185
1204
GAGGCAGGAG
 86
1226







GCACGGGGTG







1517796
3658
3677
N/A
N/A
GCCCCCATAC
 91
1227







CTGCCAGGAA







1517814
4909
4928
 391
 410
CTGAGCAGCT
 44†
1228







CCTCCTGCAC







1517817
6293
6312
1195
1214
AGGCTGCGCG
 45
1229







GAGGCAGGAG







1517834
2972
2991
N/A
N/A
CTGCTGCTTG
 76
1230







CCTCACCCCC







1517849
6374
6393
1276
1295
TGCGTGAAAC
 19
1231







TTGGTGAATC







1517853
6364
6383
1266
1285
TTGGTGAATC
 22
1232







TTTATTAAAC







1517860
2948
2967
N/A
N/A
CTCCTCTCCC
 79
1233







CAAGCCCGAC







1517894
6323
6342
1225
1244
GGCTGGGGCG
116
1234







GGGACAGGGT







1517897
2919
2938
N/A
N/A
CTCTCCTGAG
 63
1235







ACTACCTGGA







1517902
4184
4203
N/A
N/A
CATTAGAAAC
104
1236







CTCTAACTCC







1517905
3477
3496
N/A
N/A
ATTATCTGCA
 75
1237







ACAGCCTAAT
















TABLE 22







Reduction of APOE RNA by 5-10-5 MOE gapmers 


with mixed PO/PS internucleoside linkages at 


a concentration of 4000 nM in Hep3B cells  


plated at 20,000 cells per well















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






No:
No:
No:
No:





Com-
1
1
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence 
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





 942582
6231
6250
1133
1152
TCAGTGATTG
 61
 989







TCGCTGGGCA







 942585
6252
6271
1154
1173
CATGGCTGCA
 36
 847







GGCTTCGGCG







 942590
6302
6321
1204
1223
TCCCGCTGCA
 83
 920







GGCTGCGCGG







1517150
3409
3428
N/A
N/A
CTCCTGGTCT
 71
1238







TCTCTTATCT







1517180
6312
6331
1214
1233
GGACAGGGTC
 26
1239







TCCCGCTGCA







1517187
4193
4212
N/A
N/A
CCTGCAATGC
 78
1240







ATTAGAAACC







1517192
4208
4227
N/A
N/A
GGTATTCACT
 77
1241







ATCTGCCTGC







1517199
3253
3272
N/A
N/A
AAGCTCCAAC
 82
1242







CTCACAGTTA







1517200
3340
3359
N/A
N/A
GGTTCAAATT
 75
1243







CCATCCCCCC







1517201
3004
3023
N/A
N/A
TCTGCTGCCC
 78
1244







AGCCCTTCCC







1517227
3205
3224
N/A
N/A
CAGTCCTCAT
 74
1245







TTTAAAGTTC







1517232
5008
5027
N/A
N/A
GGCAGAATGA
 72†
1246







AACCTGGACC







1517235
4697
4716
N/A
N/A
CGTCCAGGCA
 67
1247







TCTAGTACCT







1517236
3422
3441
N/A
N/A
CCTATTTAAC
 74
1248







TCCCTCCTGG







1517245
3378
3397
N/A
N/A
GGTCGGCCTC
 50
1249







CATAGAAAAT







1517252
3190
3209
N/A
N/A
AGTTCTCCAA
 91
1250







TCGACGGCTA







1517289
2961
2980
N/A
N/A
CTCACCCCCG
103
1251







CTCCTCCTCT







1517290
6151
6170
1053
1072
GCTGCATGTC
 71
1252







TTCCACCAGG







1517294
6272
6291
1174
1193
CACGGGGTGG
 84
1253







CGTGGGGTCG







1517328
3061
3080
N/A
N/A
GCTTACATCC
 72
1254







CAGTCCAGCT







1517370
N/A
N/A
 232
 251
GCCTGGCATC
 88
1255







CTGCCAGGAA







1517371
2971
2990
N/A
N/A
TGCTGCTTGC
 86
1256







CTCACCCCCG







1517412
4240
4259
N/A
N/A
TGGAGAATAA
 71
1257







AGATCACAGC







1517426
4183
4202
N/A
N/A
ATTAGAAACC
 90
1258







TCTAACTCCC







1517427
6363
6382
1265
1284
TGGTGAATCT
 14
1193







TTATTAAACT







1517428
4765
4784
 247
 266
GCTTGCTCCA
164
1259







CCTTGGCCTG







1517430
3849
3868
N/A
N/A
ACAACAAAAC
 76
1260







AACTTCTAAC







1517438
3616
3635
 190
 209
AGAACCTTCA
 85
1261







TCTTCCTGCC







1517450
3282
3301
N/A
N/A
TCGCATTCCT
 69
1262







CATTCTCCCT







1517460
3627
3646
 201
 220
ACGCAGCCCA
 61
1263







CAGAACCTTC







1517461
3666
3685
N/A
N/A
CAAGCCCCGC
 66
1264







CCCCATACCT







1517477
6262
6281
1164
1183
CGTGGGGTCG
 32
1265







CATGGCTGCA







1517485
3218
3237
N/A
N/A
TTATGAGCTA
 63
1266







ATTCAGTCCT







1517487
3839
3858
N/A
N/A
AACTTCTAAC
 85
1267







TCCTATCTCA







1517494
5042
5061
N/A
N/A
CAGAGACCCA
 82†
1268







GGCCCCCCAA







1517498
6292
6311
1194
1213
GGCTGCGCGG
 39
1269







AGGCAGGAGG







1517504
4593
4612
N/A
N/A
AAGCATTATG
 84
1270







TATTTATAAA







1517506
6282
6301
1184
1203
AGGCAGGAGG
 81
1271







CACGGGGTGG







1517522
4611
4630
N/A
N/A
TCGGTTTAAT
108
1272







CACTTGGAAA







1517542
3476
3495
N/A
N/A
TTATCTGCAA
 76
1273







CAGCCTAATC







1517554
5055
5074
N/A
N/A
AAGCTAGAAC
 93†
1274







CAGCAGAGAC







1517557
4539
4558
N/A
N/A
GCGGCCTGAA
 79
1275







CATGGTTCAC







1517559
6342
6361
1244
1263
GGGTCCACCC
 69
1276







CAGGAGGACG







1517569
3294
3313
N/A
N/A
TCAGTCCCAG
 88
1277







TCTCGCATTC







1517583
2916
2935
N/A
N/A
TCCTGAGACT
 86
1278







ACCTGGAGGC







1517586
3526
3545
N/A
N/A
CCGGCCCCAA
100
1279







CCCGGCCTCA







1517600
3512
3531
N/A
N/A
GCCTCACCCC
 95
1280







AGGTTAGCCT







1517605
3465
3484
N/A
N/A
AGCCTAATCC
 81
1281







CAGCACATTT







1517606
3570
3589
N/A
N/A
AAACTGTCAA
101
1282







TCAACCGCCA







1517614
3264
3283
N/A
N/A
CTTCACATTC
 74
1283







TAAGCTCCAA







1517620
5102
5121
N/A
N/A
GAGAGAATTC
 84†
1284







CAGAGAGCTA







1517626
6211
6230
1113
1132
CAGGGGCGGC
 88
1285







GCTGGTGCCC







1517631
6322
6341
1224
1243
GCTGGGGCGG
 89
1286







GGACAGGGTC







1517679
3367
3386
N/A
N/A
ATAGAAAATT
 78
1287







CCATCTTCCT







1517697
6352
6371
1254
1273
TATTAAACTA
 49
1288







GGGTCCACCC







1517698
6191
6210
1093
1112
ACGGCAGCCT
 70
1289







GCACCTTCTC







1517700
2947
2966
N/A
N/A
TCCTCTCCCC
 76
1290







AAGCCCGACC







1517710
3048
3067
N/A
N/A
TCCAGCTGCT
 75
1291







CTCCCCACCC







1517711
4908
4927
 390
 409
TGAGCAGCTC
 41†
1292







CTCCTGCACC







1517716
2863
2882
 115
 134
GCCCCTGAGC
 93
1293







TCATCCCCGT







1517717
3550
3569
N/A
N/A
GTGAGGACTC
 75
1294







CTCCCACCCC







1517728
3493
3512
N/A
N/A
TTCCAAGCCT
 78
1295







TGTTGCATTA







1517738
3433
3452
N/A
N/A
CCAACCCATT
 87
1296







CCCTATTTAA







1517752
3103
3122
N/A
N/A
TGCTCGATAA
 73
1297







ATGATAGTGA







1517754
4781
4800
 263
 282
CGGCTCTGTC
 61
1298







TCCACCGCTT







1517756
2987
3006
N/A
N/A
CCCAGGTCCA
 78
1299







GTCCCCTGCT







1517770
6362
6381
1264
1283
GGTGAATCTT
  8
1300







TATTAAACTA







1517785
3318
3337
N/A
N/A
CCCCTCCCCA
 80
1301







CCGCCGGTTC







1517801
6171
6190
1073
1092
CACCAGCCCG
 89
1302







GCCCACTGGC







1517807
4881
4900
 363
 382
ACAGTGTCTG
 19†
1303







CACCCAGCGC







1517831
3767
3786
N/A
N/A
GAAGCAGCAC
 90
1304







AGAAGCCTCA







1517837
6373
6392
1275
1294
GCGTGAAACT
 25
1305







TGGTGAATCT







1517856
3397
3416
N/A
N/A
TCTTATCTCC
 69
1306







CCATCCCCAG







1517865
4818
4837
 300
 319
CGCTCTGCCA
107
1307







CTCGGTCTGC







1517866
3445
3464
N/A
N/A
ACCAAGCCGC
 77
1308







CCCCAACCCA







1517869
6332
6351
1234
1253
CAGGAGGACG
 90
1309







GCTGGGGCGG







1517870
2880
2899
 132
 151
CCCAGCTCTT
 77
1310







TCTAGAGGCC







1517882
6242
6261
1144
1163
GGCTTCGGCG
 56
1311







TTCAGTGATT
















TABLE 23







Reduction of APOE RNA by 5-10-5 MOE gapmers 


with mixed PO/PS internucleoside linkages  


at a concentration of 4000 nM in Hep3B 


cells plated at 20,000 cells per well















SEQ
SEQ
SEQ
SEQ






ID
ID
ID
ID






No:
No:
No:
No:





Com-
1
1
2
2

APOE
SEQ


pound
Start
Stop
Start
Stop
Sequence 
(%
ID


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
NO





 942589
6301
6320
1203
1222
CCCGCTGCAG
 51
 848







GCTGCGCGGA







 942592
6341
6360
1243
1262
GGTCCACCCC
 74
1062







AGGAGGACGG







 942596
6351
6370
1253
1272
ATTAAACTAG
 54
 921







GGTCCACCCC







 942598
6372
6391
1274
1293
CGTGAAACTT
 30
1063







GGTGAATCTT







1517149
6241
6260
1143
1162
GCTTCGGCGT
 70
1312







TCAGTGATTG







1517168
3444
3463
N/A
N/A
CCAAGCCGCC
 87
1313







CCCAACCCAT







1517169
3102
3121
N/A
N/A
GCTCGATAAA
 91
1314







TGATAGTGAC







1517170
6281
6300
1183
1202
GGCAGGAGGC
 49
1315







ACGGGGTGGC







1517178
3204
3223
N/A
N/A
AGTCCTCATT
 78
1316







TTAAAGTTCT







1517191
6251
6270
1153
1172
ATGGCTGCAG
 49
1317







GCTTCGGCGT







1517194
2985
3004
N/A
N/A
CAGGTCCAGT
 89
1318







CCCCTGCTGC







1517197
6149
6168
1051
1070
TGCATGTCTT
 78
1319







CCACCAGGGG







1517226
3281
3300
N/A
N/A
CGCATTCCTC
 63
1320







ATTCTCCCTT







1517229
5040
5059
N/A
N/A
GAGACCCAGG
 98†
1321







CCCCCCAAGA







1517276
3408
3427
N/A
N/A
TCCTGGTCTT
 84
1322







CTCTTATCTC







1517291
3525
3544
N/A
N/A
CGGCCCCAAC
107
1323







CCGGCCTCAC







1517304
4608
4627
N/A
N/A
GTTTAATCAC
 77
1324







TTGGAAAGCA







1517306
3549
3568
N/A
N/A
TGAGGACTCC
 80
1325







TCCCACCCCC







1517309
6331
6350
1233
1252
AGGAGGACGG
 90
1326







CTGGGGCGGG







1517311
4880
4899
 362
381
CAGTGTCTGC
 36†
1327







ACCCAGCGCA







1517336
3464
3483
N/A
N/A
GCCTAATCCC
 86
1328







AGCACATTTA







1517337
3047
3066
N/A
N/A
CCAGCTGCTC
 74
1329







TCCCCACCCC







1517379
3252
3271
N/A
N/A
AGCTCCAACC
 73
1330







TCACAGTTAA







1517388
6321
6340
1223
1242
CTGGGGCGGG
 94
1331







GACAGGGTCT







1517401
3366
3385
N/A
N/A
TAGAAAATTC
 96
1332







CATCTTCCTC







1517406
6169
6188
1071
1090
CCAGCCCGGC
 79
1333







CCACTGGCGC







1517427
6363
6382
1265
1284
TGGTGAATCT
 25
1193







TTATTAAACT







1517448
4192
4211
N/A
N/A
CTGCAATGCA
 89
1334







TTAGAAACCT







1517454
3420
3439
N/A
N/A
TATTTAACTC
 91
1335







CCTCCTGGTC







1517455
3003
3022
N/A
N/A
CTGCTGCCCA
 74
1336







GCCCTTCCCA







1517458
3838
3857
N/A
N/A
ACTTCTAACT
 79
1337







CCTATCTCAA







1517463
4665
4684
N/A
N/A
AAGGTGCTCC
 92
1338







ACAAATGCTT







1517472
3848
3867
N/A
N/A
CAACAAAACA
 86
1339







ACTTCTAACT







1517474
3487
3506
N/A
N/A
GCCTTGTTGC
 96
1340







ATTATCTGCA







1517486
4779
4798
 261
 280
GCTCTGTCTC
 84
1341







CACCGCTTGC







1517489
3263
3282
N/A
N/A
TTCACATTCT
 70
1342







AAGCTCCAAC







1517491
3291
3310
N/A
N/A
GTCCCAGTCT
 71
1343







CGCATTCCTC







1517495
4239
4258
N/A
N/A
GGAGAATAAA
 63
1344







GATCACAGCT







1517511
3339
3358
N/A
N/A
GTTCAAATTC
 75
1345







CATCCCCCCA







1517523
3626
3645
 200
 219
CGCAGCCCAC
 80
1346







AGAACCTTCA







1517528
4817
4836
 299
 318
GCTCTGCCAC
106
1347







TCGGTCTGCT







1517538
2861
2880
 113
 132
CCCTGAGCTC
 80
1348







ATCCCCGTGC







1517546
4591
4610
N/A
N/A
GCATTATGTA
 92
1349







TTTATAAACA







1517566
3217
3236
N/A
N/A
TATGAGCTAA
 87
1350







TTCAGTCCTC







1517587
6189
6208
1091
1110
GGCAGCCTGC
 67
1351







ACCTTCTCCA







1517619
2960
2979
N/A
N/A
TCACCCCCGC
 78
1352







TCCTCCTCTC







1517628
3511
3530
N/A
N/A
CCTCACCCCA
 92
1353







GGTTAGCCTT







1517629
3317
3336
N/A
N/A
CCCTCCCCAC
 99
1354







CGCCGGTTCC







1517632
6261
6280
1163
1182
GTGGGGTCGC
 41
1355







ATGGCTGCAG







1517636
6291
6310
1193
1212
GCTGCGCGGA
 32
1356







GGCAGGAGGC







1517653
2946
2965
N/A
N/A
CCTCTCCCCA
 91
1357







AGCCCGACCC







1517657
4182
4201
N/A
N/A
TTAGAAACCT
 83
1358







CTAACTCCCA







1517672
5007
5026
N/A
N/A
GCAGAATGAA
 73†
1359







ACCTGGACCT







1517673
3396
3415
N/A
N/A
CTTATCTCCC
 90
1360







CATCCCCAGG







1517682
3764
3783
N/A
N/A
GCAGCACAGA
 66
1361







AGCCTCAGAA







1517683
6229
6248
1131
1150
AGTGATTGTC
 57
1362







GCTGGGCACA







1517712
3377
3396
N/A
N/A
GTCGGCCTCC
 93
1363







ATAGAAAATT







1517713
6271
6290
1173
1192
ACGGGGTGGC
 67
1364







GTGGGGTCGC







1517721
4763
4782
 245
 264
TTGCTCCACC
 96
1365







TTGGCCTGGC







1517725
3569
3588
N/A
N/A
AACTGTCAAT
 84
1366







CAACCGCCAG







1517746
4907
4926
 389
 408
GAGCAGCTCC
 28†
1367







TCCTGCACCT







1517765
3615
3634
 189
 208
GAACCTTCAT
 74
1368







CTTCCTGCCT







1517767
3475
3494
N/A
N/A
TATCTGCAAC
104
1369







AGCCTAATCC







1517802
3059
3078
N/A
N/A
TTACATCCCA
 73
1370







GTCCAGCTGC







1517804
3665
3684
N/A
N/A
AAGCCCCGCC
 82
1371







CCCATACCTG







1517819
2879
2898
 131
 150
CCAGCTCTTT
 75
1372







CTAGAGGCCC







1517823
6311
6330
1213
1232
GACAGGGTCT
 32
1373







CCCGCTGCAG







1517828
4534
4553
N/A
N/A
CTGAACATGG
 75
1374







TTCACTGCAA







1517852
5054
5073
N/A
N/A
AGCTAGAACC
 74†
1375







AGCAGAGACC







1517862
2970
2989
N/A
N/A
GCTGCTTGCC
 79
1376







TCACCCCCGC







1517884
2915
2934
N/A
N/A
CCTGAGACTA
 87
1377







CCTGGAGGCC







1517885
6361
6380
1263
1282
GTGAATCTTT
 24
1378







ATTAAACTAG







1517887
6209
6228
1111
1130
GGGGCGGCGC
 89
1379







TGGTGCCCAC







1517893
3657
3676
N/A
N/A
CCCCCATACC
 78
1380







TGCCAGGAAT







1517898
5097
5116
N/A
N/A
AATTCCAGAG
 80†
1381







AGCTAAAGCC







1517903
3432
3451
N/A
N/A
CAACCCATTC
 85
1382







CCTATTTAAC







1517904
3165
3184
N/A
N/A
CGTGTCGCTG
 84
1383







CCCCTGGCTC







1517910
4207
4226
N/A
N/A
GTATTCACTA
 78
1384







TCTGCCTGCA
















TABLE 24







Reduction of APOE RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside


linkages at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells


per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





 708024
6371
6390
1273
1292
GTGAAACTTGGTGAATCTTT
 25
  77





 942595
6350
6369
1252
1271
TTAAACTAGGGTCCACCCCA
 50
 849





1517155
4206
4225
N/A
N/A
TATTCACTATCTGCCTGCAA
 73
1385





1517157
6300
6319
1202
1221
CCGCTGCAGGCTGCGCGGAG
 89
1386





1517158
6270
6289
1172
1191
CGGGGTGGCGTGGGGTCGCA
 49
1387





1517160
6147
6166
1049
1068
CATGTCTTCCACCAGGGGCT
 85
1388





1517162
4800
4819
 282
 301
GCTGGCGCAGCTCGGGCTCC
 85
1389





1517166
3613
3632
 187
 206
ACCTTCATCTTCCTGCCTGT
 61
1390





1517171
3473
3492
N/A
N/A
TCTGCAACAGCCTAATCCCA
 71
1391





1517172
3216
3235
N/A
N/A
ATGAGCTAATTCAGTCCTCA
 75
1392





1517175
6280
6299
1182
1201
GCAGGAGGCACGGGGTGGCG
 49
1393





1517212
5096
5115
N/A
N/A
ATTCCAGAGAGCTAAAGCCA
 72†
1394





1517230
6207
6226
1109
1128
GGCGGCGCTGGTGCCCACGG
 67
1395





1517255
4762
4781
 244
 263
TGCTCCACCTTGGCCTGGCA
 96
1396





1517257
3847
3866
N/A
N/A
AACAAAACAACTTCTAACTC
102
1397





1517263
4606
4625
N/A
N/A
TTAATCACTTGGAAAGCATT
 64
1398





1517270
3164
3183
N/A
N/A
GTGTCGCTGCCCCTGGCTCC
 71
1399





1517312
4191
4210
N/A
N/A
TGCAATGCATTAGAAACCTC
 62
1400





1517315
4976
4995
N/A
N/A
GCCGCCCACCAGGAGGGTCA
 83†
  85





1517323
3376
3395
N/A
N/A
TCGGCCTCCATAGAAAATTC
 76
1401





1517325
3365
3384
N/A
N/A
AGAAAATTCCATCTTCCTCT
 77
1402





1517348
2959
2978
N/A
N/A
CACCCCCGCTCCTCCTCTCC
 80
1403





1517358
3290
3309
N/A
N/A
TCCCAGTCTCGCATTCCTCA
 70
1404





1517363
3441
3460
N/A
N/A
AGCCGCCCCCAACCCATTCC
 69
1405





1517367
6260
6279
1162
1181
TGGGGTCGCATGGCTGCAGG
 35
1406





1517372
3203
3222
N/A
N/A
GTCCTCATTTTAAAGTTCTC
 77
1407





1517375
3431
3450
N/A
N/A
AACCCATTCCCTATTTAACT
 87
1408





1517383
6360
6379
1262
1281
TGAATCTTTATTAAACTAGG
 16
1409





1517390
2984
3003
N/A
N /A
AGGTCCAGTCCCCTGCTGCT
 75
1410





1517404
3250
3269
N/A
N/A
CTCCAACCTCACAGTTAAGC
 79
1411





1517410
3664
3683
N/A
N/A
AGCCCCGCCCCCATACCTGC
 91
1412





1517424
6240
6259
1142
1161
CTTCGGCGTTCAGTGATTGT
 54
1413





1517427
6363
6382
1265
1284
TGGTGAATCTTTATTAAACT
 28
1193





1517432
6330
6349
1232
1251
GGAGGACGGCTGGGGCGGGG
 76
1414





1517434
6227
6246
1129
1148
TGATTGTCGCTGGGCACAGG
 67
1415





1517440
N/A
N/A
 231
 250
CCTGGCATCCTGCCAGGAAT
 90
1416





1517443
3568
3587
N/A
N/A
ACTGTCAATCAACCGCCAGT
 98
1417





1517468
3507
3526
N/A
N/A
ACCCCAGGTTAGCCTTCCAA
 85
1418





1517473
3101
3120
N/A
N/A
CTCGATAAATGATAGTGACA
 53
1419





1517497
3625
3644
 199
 218
GCAGCCCACAGAACCTTCAT
 58
  21





1517513
3548
3567
N/A
N/A
GAGGACTCCTCCCACCCCCA
103
1420





1517529
4902
4921
 384
 403
GCTCCTCCTGCACCTGCTCA
 14†
1421





1517536
2945
2964
N/A
N/A
CTCTCCCCAAGCCCGACCCC
 87
1422





1517539
3058
3077
N/A
N/A
TACATCCCAGTCCAGCTGCT
 87
1423





1517549
6187
6206
1089
1108
CAGCCTGCACCTTCTCCACC
 66
1424





1517574
6310
6329
1212
1231
ACAGGGTCTCCCGCTGCAGG
 24
1425





1517577
3837
3856
N/A
N/A
CTTCTAACTCCTATCTCAAG
 83
1426





1517592
3463
3482
N/A
N/A
CCTAATCCCAGCACATTTAC
 89
1427





1517607
4590
4609
N/A
N/A
CATTATGTATTTATAAACAG
 72
1428





1517616
3395
3414
N/A
N/A
TTATCTCCCCATCCCCAGGT
 72
1429





1517621
5039
5058
N/A
N/A
AGACCCAGGCCCCCCAAGAC
 78†
1430





1517645
2999
3018
N/A
N/A
TGCCCAGCCCTTCCCAGGTC
 90
1431





1517649
3407
3426
N/A
N/A
CCTGGTCTTCTCTTATCTCC
 96
1432





1517654
2878
2897
 130
 149
CAGCTCTTTCTAGAGGCCCC
 65
1433





1517684
3042
3061
N/A
N/A
TGCTCTCCCCACCCCACCTT
 77
1434





1517693
2914
2933
N/A
N/A
CTGAGACTACCTGGAGGCCA
 81
1435





1517702
4181
4200
N/A
N/A
TAGAAACCTCTAACTCCCAG
 96
1436





1517705
3338
3357
N/A
N/A
TTCAAATTCCATCCCCCCAC
 75
1437





1517706
6340
6359
1242
1261
GTCCACCCCAGGAGGACGGC
 86
  73





1517720
4237
4256
N/A
N/A
AGAATAAAGATCACAGCTGC
 67
1438





1517730
4778
4797
 260
 279
CTCTGTCTCCACCGCTTGCT
 89
1439





1517736
4874
4893
 356
 375
CTGCACCCAGCGCAGGTAAT
 28†
1440





1517740
6250
6269
1152
1171
TGGCTGCAGGCTTCGGCGTT
 49
1441





1517744
6320
6339
1222
1241
TGGGGCGGGGACAGGGTCTC
 77
1442





1517749
3316
3335
N/A
N/A
CCTCCCCACCGCCGGTTCCA
 71
1443





1517750
6290
6309
1192
1211
CTGCGCGGAGGCAGGAGGCA
 61
1444





1517762
3486
3505
N/A
N/A
CCTTGTTGCATTATCTGCAA
 92
1445





1517763
2860
2879
 112
 131
CCTGAGCTCATCCCCGTGCC
 65
1446





1517772
2969
2988
N/A
N/A
CTGCTTGCCTCACCCCCGCT
 74
1447





1517775
3419
3438
N/A
N/A
ATTTAACTCCCTCCTGGTCT
 73
1448





1517789
5053
5072
N/A
N/A
GCTAGAACCAGCAGAGACCC
 69†
1449





1517803
3274
3293
N/A
N/A
CTCATTCTCCCTTCACATTC
 78
1450





1517840
3262
3281
N/A
N/A
TCACATTCTAAGCTCCAACC
 86
1451





1517844
6167
6186
1069
1088
AGCCCGGCCCACTGGCGCTG
 70
1452





1517851
4664
4683
N/A
N/A
AGGTGCTCCACAAATGCTTC
 67
1453





1517883
4307
4326
N/A
N/A
CCGCGCCCAGCGGAAAAGCA
 73
1454





1517900
3759
3778
N/A
N/A
ACAGAAGCCTCAGAAGAGGG
 77
1455





1517909
3523
3542
N/A
N/A
GCCCCAACCCGGCCTCACCC
 91
1456
















TABLE 25







Reduction of APOE RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside


linkages at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells


per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





 942594
6349
6368
1251
1270
TAAACTAGGGTCCACCCCAG
 79
 776





1517154
3202
3221
N/A
N/A
TCCTCATTTTAAAGTTCTCC
 80
1457





1517156
5052
5071
N/A
N/A
CTAGAACCAGCAGAGACCCA
 76†
1458





1517164
6319
6338
1221
1240
GGGGCGGGGACAGGGTCTCC
124
1459





1517182
6299
6318
1201
1220
CGCTGCAGGCTGCGCGGAGG
 52
1460





1517208
6269
6288
1171
1190
GGGGTGGCGTGGGGTCGCAT
 26
1461





1517238
3430
3449
N/A
N/A
ACCCATTCCCTATTTAACTC
103
1462





1517249
3505
3524
N/A
N/A
CCCAGGTTAGCCTTCCAAGC
 81
1463





1517250
3057
3076
N/A
N/A
ACATCCCAGTCCAGCTGCTC
 90
1464





1517261
3289
3308
N/A
N/A
CCCAGTCTCGCATTCCTCAT
 80
1465





1517274
6279
6298
1181
1200
CAGGAGGCACGGGGTGGCGT
 59
1466





1517275
6289
6308
1191
1210
TGCGCGGAGGCAGGAGGCAC
 76
1467





1517277
2859
2878
 111
 130
CTGAGCTCATCCCCGTGCCC
113
1468





1517281
6309
6328
1211
1230
CAGGGTCTCCCGCTGCAGGC
 30
1469





1517288
3163
3182
N/A
N/A
TGTCGCTGCCCCTGGCTCCC
 89
1470





1517301
3836
3855
N/A
N/A
TTCTAACTCCTATCTCAAGG
108
1471





1517307
4777
4796
 259
 278
TCTGTCTCCACCGCTTGCTC
115
1472





1517329
3394
3413
N/A
N/A
TATCTCCCCATCCCCAGGTC
106
1473





1517338
4944
4963
N/A
N/A
GGGACACTCACCTCAGTTCC
 98†
1474





1517339
3663
3682
N/A
N/A
GCCCCGCCCCCATACCTGCC
105
1475





1517344
3374
3393
N/A
N/A
GGCCTCCATAGAAAATTCCA
110
1476





1517346
3337
3356
N/A
N/A
TCAAATTCCATCCCCCCACC
 94
1477





1517349
4302
4321
N/A
N/A
CCCAGCGGAAAAGCATGTAT
108
1478





1517368
3846
3865
N/A
N/A
ACAAAACAACTTCTAACTCC
123
1479





1517382
3418
3437
N/A
N/A
TTTAACTCCCTCCTGGTCTT
 99
1480





1517386
3485
3504
N/A
N/A
CTTGTTGCATTATCTGCAAC
111
1481





1517408
3566
3585
N/A
N/A
TGTCAATCAACCGCCAGTGA
106
1482





1517411
2955
2974
N/A
N/A
CCCGCTCCTCCTCTCCCCAA
111
1483





1517417
2968
2987
N/A
N/A
TGCTTGCCTCACCCCCGCTC
110
1484





1517425
3611
3630
 185
 204
CTTCATCTTCCTGCCTGTGA
 78
1485





1517427
6363
6382
1265
1284
TGGTGAATCTTTATTAAACT
 18
1193





1517436
6145
6164
1047
1066
TGTCTTCCACCAGGGGCTCG
104
1486





1517449
5038
5057
N/A
N/A
GACCCAGGCCCCCCAAGACT
103†
1487





1517452
4796
4815
 278
 297
GCGCAGCTCGGGCTCCGGCT
126
1488





1517462
3249
3268
N/A
N/A
TCCAACCTCACAGTTAAGCG
 83
1489





1517471
2943
2962
N/A
N/A
CTCCCCAAGCCCGACCCCGA
 92
1490





1517478
6165
6184
1067
1086
CCCGGCCCACTGGCGCTGCA
 91
1491





1517503
3522
3541
N/A
N/A
CCCCAACCCGGCCTCACCCC
101
1492





1517508
6359
6378
1261
1280
GAATCTTTATTAAACTAGGG
 18
1493





1517518
3462
3481
N/A
N/A
CTAATCCCAGCACATTTACC
 83
1494





1517550
4180
4199
N/A
N/A
AGAAACCTCTAACTCCCAGC
 77
1495





1517552
N/A
N/A
 226
 245
CATCCTGCCAGGAATGTGAC
102
  26





1517564
4663
4682
N/A
N/A
GGTGCTCCACAAATGCTTCT
107
1496





1517568
4236
4255
N/A
N/A
GAATAAAGATCACAGCTGCC
 93
1497





1517570
6185
6204
1087
1106
GCCTGCACCTTCTCCACCAG
 79
1498





1517585
3406
3425
N/A
N/A
CTGGTCTTCTCTTATCTCCC
 99
1499





1517591
3472
3491
N/A
N/A
CTGCAACAGCCTAATCCCAG
102
1500





1517611
2998
3017
N/A
N/A
GCCCAGCCCTTCCCAGGTCC
101
1501





1517624
2891
2910
 143
 162
GTTCCCAGGGTCCCAGCTCT
112
1502





1517638
3213
3232
N/A
N/A
AGCTAATTCAGTCCTCATTT
 88
1503





1517640
2983
3002
N/A
N/A
GGTCCAGTCCCCTGCTGCTT
102
1504





1517671
5093
5112
N/A
N/A
CCAGAGAGCTAAAGCCAGGA
 93†
1505





1517708
3542
3561
N/A
N/A
TCCTCCCACCCCCAGCCCGG
110
1506





1517729
6249
6268
1151
1170
GGCTGCAGGCTTCGGCGTTC
 31
1507





1517739
6339
6358
1241
1260
TCCACCCCAGGAGGACGGCT
 99
1508





1517742
3364
3383
N/A
N/A
GAAAATTCCATCTTCCTCTC
 77
1509





1517747
6205
6224
1107
1126
CGGCGCTGGTGCCCACGGCA
 91
1510





1517764
3312
3331
N/A
N/A
CCCACCGCCGGTTCCATCTC
105
1511





1517768
6239
6258
1141
1160
TTCGGCGTTCAGTGATTGTC
 65
1512





1517769
4601
4620
N/A
N/A
CACTTGGAAAGCATTATGTA
 91
1513





1517777
3623
3642
 197
 216
AGCCCACAGAACCTTCATCT
 72
1514





1517778
3673
3692
N/A
N/A
AACCGAGCAAGCCCCGCCCC
104
1515





1517795
6329
6348
1231
1250
GAGGACGGCTGGGGCGGGGA
109
1516





1517799
2872
2891
 124
 143
TTTCTAGAGGCCCCTGAGCT
101
1517





1517810
3037
3056
N/A
N/A
TCCCCACCCCACCTTCTAGC
101
1518





1517818
6225
6244
1127
1146
ATTGTCGCTGGGCACAGGGG
 87
1519





1517833
3440
3459
N/A
N/A
GCCGCCCCCAACCCATTCCC
108
1520





1517838
3261
3280
N/A
N/A
CACATTCTAAGCTCCAACCT
 87
1521





1517839
4190
4209
N/A
N/A
GCAATGCATTAGAAACCTCT
 87
1522





1517843
4205
4224
N/A
N/A
ATTCACTATCTGCCTGCAAT
 97
1523





1517850
3273
3292
N/A
N/A
TCATTCTCCCTTCACATTCT
 90
1524





1517863
4900
4919
 382
 401
TCCTCCTGCACCTGCTCAGA
 17†
1525





1517874
6370
6389
1272
1291
TGAAACTTGGTGAATCTTTA
 23
1526





1517877
6259
6278
1161
1180
GGGGTCGCATGGCTGCAGGC
 64
1527





1517889
4842
4861
 324
 343
CCAGTGCCAGTTCCCAGCGC
135†
1528





1517896
4760
4779
 242
 261
CTCCACCTTGGCCTGGCATC
120
1529





1517899
4587
4606
N/A
N/A
TATGTATTTATAAACAGGGT
110
1530





1517907
3077
3096
N/A
N/A
GTGGAGTCCTGCTATGGCTT
100
1531
















TABLE 26







Reduction of APOE RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





1517176
4586
4605
N/A
N/A
ATGTATTTATAAACAGGGTC
 94
1532





1517184
3260
3279
N/A
N/A
ACATTCTAAGCTCCAACCTC
 98
1533





1517185
4235
4254
N/A
N/A
AATAAAGATCACAGCTGCCC
 81
1534





1517186
6278
6297
1180
1199
AGGAGGCACGGGGTGGCGTG
104
1535





1517215
3504
3523
N/A
N/A
CCAGGTTAGCCTTCCAAGCC
 91
1536





1517221
4600
4619
N/A
N/A
ACTTGGAAAGCATTATGTAT
 97
1537





1517240
6223
6242
1125
1144
TGTCGCTGGGCACAGGGGCG
103
1538





1517259
3200
3219
N/A
N/A
CTCATTTTAAAGTTCTCCAA
 89
1539





1517279
6298
6317
1200
1219
GCTGCAGGCTGCGCGGAGGC
 52
1540





1517282
6258
6277
1160
1179
GGGTCGCATGGCTGCAGGCT
 72
1541





1517299
6143
6162
1045
1064
TCTTCCACCAGGGGCTCGAA
107
1542





1517314
3212
3231
N/A
N/A
GCTAATTCAGTCCTCATTTT
 99
1543





1517330
3672
3691
N/A
N/A
ACCGAGCAAGCCCCGCCCCC
 75
1544





1517332
3373
3392
N/A
N/A
GCCTCCATAGAAAATTCCAT
107
1545





1517334
3835
3854
N/A
N/A
TCTAACTCCTATCTCAAGGA
 93
1546





1517384
2858
2877
 110
 129
TGAGCTCATCCCCGTGCCCC
111
1547





1517387
5037
5056
N/A
N/A
ACCCAGGCCCCCCAAGACTT
 99†
1548





1517400
6348
6367
1250
1269
AAACTAGGGTCCACCCCAGG
 90
1549





1517403
3610
3629
 184
 203
TTCATCTTCCTGCCTGTGAT
 85
1550





1517413
2997
3016
N/A
N/A
CCCAGCCCTTCCCAGGTCCA
111
1551





1517415
3302
3321
N/A
N/A
GTTCCATCTCAGTCCCAGTC
 95
1552





1517416
3393
3412
N/A
N/A
ATCTCCCCATCCCCAGGTCG
 94
1553





1517427
6363
6382
1265
1284
TGGTGAATCTTTATTAAACT
 44
1193





1517431
4826
4845
 308
 327
GCGCTGGCCGCTCTGCCACT
166
1554





1517433
6203
6222
1105
1124
GCGCTGGTGCCCACGGCAGC
100
1555





1517437
4899
4918
 381
 400
CCTCCTGCACCTGCTCAGAC
 20†
1556





1517439
4662
4681
N/A
N/A
GTGCTCCACAAATGCTTCTT
113
1557





1517457
2954
2973
N/A
N/A
CCGCTCCTCCTCTCCCCAAG
114
1558





1517475
2871
2890
 123
 142
TTCTAGAGGCCCCTGAGCTC
101
1559





1517490
3461
3480
N/A
N/A
TAATCCCAGCACATTTACCA
 90
1560





1517496
3288
3307
N/A
N/A
CCAGTCTCGCATTCCTCATT
117
1561





1517507
6238
6257
1140
1159
TCGGCGTTCAGTGATTGTCG
 92
1562





1517517
3158
3177
N/A
N/A
CTGCCCCTGGCTCCCCAGTT
102
1563





1517519
6369
6388
1271
1290
GAAACTTGGTGAATCTTTAT
 30
1564





1517540
3417
3436
N/A
N/A
TTAACTCCCTCCTGGTCTTC
111
1565





1517541
3845
3864
N/A
N/A
CAAAACAACTTCTAACTCCT
 92
1566





1517553
3336
3355
N/A
N/A
CAAATTCCATCCCCCCACCC
 98
1567





1517580
4179
4198
N/A
N/A
GAAACCTCTAACTCCCAGCC
 93
1568





1517593
6163
6182
1065
1084
CGGCCCACTGGCGCTGCATG
 94
1569





1517602
3363
3382
N/A
N/A
AAAATTCCATCTTCCTCTCC
 91
1570





1517608
6288
6307
1190
1209
GCGCGGAGGCAGGAGGCACG
 70
1571





1517622
6308
6327
1210
1229
AGGGTCTCCCGCTGCAGGCT
 52
1572





1517623
4201
4220
N/A
N/A
ACTATCTGCCTGCAATGCAT
 84
1573





1517627
4776
4795
 258
 277
CTGTCTCCACCGCTTGCTCC
121
1574





1517647
2941
2960
N/A
N/A
CCCCAAGCCCGACCCCGAGT
 96
1575





1517652
6358
6377
1260
1279
AATCTTTATTAAACTAGGGT
 41
1576





1517658
4790
4809
 272
 291
CTCGGGCTCCGGCTCTGTCT
119
1577





1517668
3429
3448
N/A
N/A
CCCATTCCCTATTTAACTCC
 94
1578





1517676
6183
6202
1085
1104
CTGCACCTTCTCCACCAGCC
 86
1579





1517689
3560
3579
N/A
N/A
TCAACCGCCAGTGAGGACTC
100
1580





1517703
3056
3075
N/A
N/A
CATCCCAGTCCAGCTGCTCT
100
1581





1517707
3036
3055
N/A
N/A
CCCCACCCCACCTTCTAGCG
 77
1582





1517709
2980
2999
N/A
N/A
CCAGTCCCCTGCTGCTTGCC
 99
1583





1517715
6338
6357
1240
1259
CCACCCCAGGAGGACGGCTG
 91
1584





1517723
3229
3248
N/A
N/A
CCGTGTTCCATTTATGAGCT
 83
1585





1517727
3405
3424
N/A
N/A
TGGTCTTCTCTTATCTCCCC
101
1586





1517748
4189
4208
N/A
N/A
CAATGCATTAGAAACCTCTA
 86
1587





1517784
2967
2986
N/A
N/A
GCTTGCCTCACCCCCGCTCC
 95
1588





1517788
2889
2908
 141
 160
TCCCAGGGTCCCAGCTCTTT
114
1589





1517793
6248
6267
1150
1169
GCTGCAGGCTTCGGCGTTCA
 53
1590





1517805
4754
4773
N/A
N/A
CTTGGCCTGGCATCCTGTGT
 98
1591





1517808
3662
3681
N/A
N/A
CCCCGCCCCCATACCTGCCA
113
1592





1517815
3622
3641
 196
 215
GCCCACAGAACCTTCATCTT
 88
1593





1517822
3534
3553
N/A
N/A
CCCCCAGCCCGGCCCCAACC
145
1594





1517835
3484
3503
N/A
N/A
TTGTTGCATTATCTGCAACA
 99
1595





1517836
3521
3540
N/A
N/A
CCCAACCCGGCCTCACCCCA
 89
1596





1517847
5049
5068
N/A
N/A
GAACCAGCAGAGACCCAGGC
102†
1597





1517854
3072
3091
N/A
N/A
GTCCTGCTATGGCTTACATC
101
1598





1517858
4301
4320
N/A
N/A
CCAGCGGAAAAGCATGTATT
100
1599





1517861
6268
6287
1170
1189
GGGTGGCGTGGGGTCGCATG
 77
1600





1517867
3471
3490
N/A
N/A
TGCAACAGCCTAATCCCAGC
108
1601





1517875
3651
3670
N/A
N/A
TACCTGCCAGGAATGTGACC
107
1602





1517878
6318
6337
1220
1239
GGGCGGGGACAGGGTCTCCC
 67
1603





1517886
4943
4962
N/A
N/A
GGACACTCACCTCAGTTCCT
125†
1604





1517890
3272
3291
N/A
N/A
CATTCTCCCTTCACATTCTA
110
1605





1517892
3439
3458
N/A
N/A
CCGCCCCCAACCCATTCCCT
133
1606





1517901
6328
6347
1230
1249
AGGACGGCTGGGGCGGGGAC
150
1607





1517911
5091
5110
N/A
N/A
AGAGAGCTAAAGCCAGGAGT
115†
1608
















TABLE 27







Reduction of APOE RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





 708022
6257
6276
1159
1178
GGTCGCATGGCTGCAGGCTT
 36
  71





 942593
6347
6366
1249
1268
AACTAGGGTCCACCCCAGGA
 45
  75





1517144
4200
4219
N/A
N/A
CTATCTGCCTGCAATGCATT
 75
1609





1517147
2940
2959
N/A
N/A
CCCAAGCCCGACCCCGAGTA
108
1610





1517193
6267
6286
1169
1188
GGTGGCGTGGGGTCGCATGG
 54
1611





1517203
2888
2907
 140
 159
CCCAGGGTCCCAGCTCTTTC
 65
  78





1517206
4272
4291
N/A
N/A
TGTGTGCCCCAGGCAGGGCT
112
  83





1517217
3519
3538
N/A
N/A
CAACCCGGCCTCACCCCAGG
103
1612





1517218
2953
2972
N/A
N/A
CGCTCCTCCTCTCCCCAAGC
 92
1613





1517223
3391
3410
N/A
N/A
CTCCCCATCCCCAGGTCGGC
 82
1614





1517224
3259
3278
N/A
N/A
CATTCTAAGCTCCAACCTCA
 80
1615





1517243
N/A
N/A
 225
 244
ATCCTGCCAGGAATGTGACC
 97
1616





1517265
3362
3381
N/A
N/A
AAATTCCATCTTCCTCTCCC
 95
1617





1517267
2996
3015
N/A
N/A
CCAGCCCTTCCCAGGTCCAG
 83
1618





1517268
5090
5109
N/A
N/A
GAGAGCTAAAGCCAGGAGTC
 83†
1619





1517269
4898
4917
 380
 399
CTCCTGCACCTGCTCAGACA
 15†
1620





1517271
4234
4253
N/A
N/A
ATAAAGATCACAGCTGCCCC
 90
1621





1517283
3301
3320
N/A
N/A
TTCCATCTCAGTCCCAGTCT
 74
1622





1517302
2857
2876
 109
 128
GAGCTCATCCCCGTGCCCCC
 79
1623





1517303
4941
4960
N/A
N/A
ACACTCACCTCAGTTCCTGG
 94†
1624





1517319
5048
5067
N/A
N/A
AACCAGCAGAGACCCAGGCC
101†
1625





1517340
4789
4808
 271
 290
TCGGGCTCCGGCTCTGTCTC
 91
1626





1517359
6247
6266
1149
1168
CTGCAGGCTTCGGCGTTCAG
 63
1627





1517364
6287
6306
1189
1208
CGCGGAGGCAGGAGGCACGG
 61
1628





1517374
3671
3690
N/A
N/A
CCGAGCAAGCCCCGCCCCCA
 77
1629





1517381
3211
3230
N/A
N/A
CTAATTCAGTCCTCATTTTA
 85
1630





1517389
4717
4736
N/A
N/A
GGTCAGGGTCCTTCTGACCC
104
1631





1517394
3482
3501
N/A
N/A
GTTGCATTATCTGCAACAGC
 86
1632





1517407
6237
6256
1139
1158
CGGCGTTCAGTGATTGTCGC
 66
1633





1517409
2870
2889
 122
 141
TCTAGAGGCCCCTGAGCTCA
102
1634





1517427
6363
6382
1265
1284
TGGTGAATCTTTATTAAACT
 20
1193





1517429
3225
3244
N/A
N/A
GTTCCATTTATGAGCTAATT
 78
1635





1517444
4824
4843
 306
 325
GCTGGCCGCTCTGCCACTCG
 96
1636





1517451
4188
4207
N/A
N/A
AATGCATTAGAAACCTCTAA
 92
1637





1517453
3199
3218
N/A
N/A
TCATTTTAAAGTTCTCCAAT
 77
1638





1517480
3428
3447
N/A
N/A
CCATTCCCTATTTAACTCCC
 82
1639





1517499
3503
3522
N/A
N/A
CAGGTTAGCCTTCCAAGCCT
 84
1640





1517502
3035
3054
N/A
N/A
CCCACCCCACCTTCTAGCGG
 77
1641





1517520
3834
3853
N/A
N/A
CTAACTCCTATCTCAAGGAT
 94
1642





1517534
3844
3863
N/A
N/A
AAAACAACTTCTAACTCCTA
 81
1643





1517547
3460
3479
N/A
N/A
AATCCCAGCACATTTACCAA
 89
1644





1517551
6141
6160
1043
1062
TTCCACCAGGGGCTCGAACC
 95
1645





1517567
4599
4618
N/A
N/A
CTTGGAAAGCATTATGTATT
 87
1646





1517575
4775
4794
 257
 276
TGTCTCCACCGCTTGCTCCA
109
1647





1517576
3157
3176
N/A
N/A
TGCCCCTGGCTCCCCAGTTA
103
1648





1517590
3287
3306
N/A
N/A
CAGTCTCGCATTCCTCATTC
 86
1649





1517596
6337
6356
1239
1258
CACCCCAGGAGGACGGCTGG
105
1650





1517597
4585
4604
N/A
N/A
TGTATTTATAAACAGGGTCT
 83
1651





1517599
3438
3457
N/A
N/A
CGCCCCCAACCCATTCCCTA
 85
1652





1517604
6307
6326
1209
1228
GGGTCTCCCGCTGCAGGCTG
 29
1653





1517610
6201
6220
1103
1122
GCTGGTGCCCACGGCAGCCT
 94
1654





1517639
3532
3551
N/A
N/A
CCCAGCCCGGCCCCAACCCG
 85
1655





1517641
4661
4680
N/A
N/A
TGCTCCACAAATGCTTCTTT
 86
1656





1517643
3416
3435
N/A
N/A
TAACTCCCTCCTGGTCTTCT
 91
1657





1517650
3555
3574
N/A
N/A
CGCCAGTGAGGACTCCTCCC
 97
1658





1517651
3621
3640
 195
 214
CCCACAGAACCTTCATCTTC
 37
1659





1517656
6327
6346
1229
1248
GGACGGCTGGGGCGGGGACA
 97
1660





1517661
3271
3290
N/A
N/A
ATTCTCCCTTCACATTCTAA
 86
1661





1517663
3372
3391
N/A
N/A
CCTCCATAGAAAATTCCATC
 59
1662





1517674
3055
3074
N/A
N/A
ATCCCAGTCCAGCTGCTCTC
 90
1663





1517680
4178
4197
N/A
N/A
AAACCTCTAACTCCCAGCCA
 81
1664





1517690
6317
6336
1219
1238
GGCGGGGACAGGGTCTCCCG
 64
1665





1517692
6221
6240
1123
1142
TCGCTGGGCACAGGGGCGGC
 82
1666





1517699
2966
2985
N/A
N/A
CTTGCCTCACCCCCGCTCCT
 88
1667





1517726
6161
6180
1063
1082
GCCCACTGGCGCTGCATGTC
 56
1668





1517732
3070
3089
N/A
N/A
CCTGCTATGGCTTACATCCC
 84
1669





1517753
5036
5055
N/A
N/A
CCCAGGCCCCCCAAGACTTA
 99†
1670





1517776
3470
3489
N/A
N/A
GCAACAGCCTAATCCCAGCA
 82
1671





1517780
N/A
N/A
 236
 255
CTTGGCCTGGCATCCTGCCA
103
1672





1517791
3609
3628
 183
 202
TCATCTTCCTGCCTGTGATT
 78
1673





1517812
6297
6316
1199
1218
CTGCAGGCTGCGCGGAGGCA
 41
1674





1517821
6277
6296
1179
1198
GGAGGCACGGGGTGGCGTGG
 92
1675





1517826
6181
6200
1083
1102
GCACCTTCTCCACCAGCCCG
 93
1676





1517832
3332
3351
N/A
N/A
TTCCATCCCCCCACCCCCTC
 85
1677





1517841
6357
6376
1259
1278
ATCTTTATTAAACTAGGGTC
 24
1678





1517842
6368
6387
1270
1289
AAACTTGGTGAATCTTTATT
 32
1679





1517846
2979
2998
N/A
N/A
CAGTCCCCTGCTGCTTGCCT
 89
1680





1517857
3404
3423
N/A
N/A
GGTCTTCTCTTATCTCCCCA
 92
1681
















TABLE 28







Reduction of APOE RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





 942588
6256
6275
1158
1177
GTCGCATGGCTGCAGGCTTC
 23
1132





1517141
4939
4958
N/A
N/A
ACTCACCTCAGTTCCTGGGT
 92†
1682





1517146
6236
6255
1138
1157
GGCGTTCAGTGATTGTCGCT
 73
1683





1517153
3286
3305
N/A
N/A
AGTCTCGCATTCCTCATTCT
 79
1684





1517159
4598
4617
N/A
N/A
TTGGAAAGCATTATGTATTT
115
1685





1517181
3481
3500
N/A
N/A
TTGCATTATCTGCAACAGCC
 80
1686





1517189
3403
3422
N/A
N/A
GTCTTCTCTTATCTCCCCAT
 87
1687





1517190
2965
2984
N/A
N/A
TTGCCTCACCCCCGCTCCTC
102
1688





1517198
3620
3639
 194
 213
CCACAGAACCTTCATCTTCC
 65
1689





1517202
6286
6305
1188
1207
GCGGAGGCAGGAGGCACGGG
 73
1690





1517204
3661
3680
N/A
N/A
CCCGCCCCCATACCTGCCAG
104
1691





1517205
3518
3537
N/A
N/A
AACCCGGCCTCACCCCAGGT
 87
1692





1517213
6199
6218
1101
1120
TGGTGCCCACGGCAGCCTGC
 99
1693





1517216
3069
3088
N/A
N/A
CTGCTATGGCTTACATCCCA
 82
1694





1517220
6367
6386
1269
1288
AACTTGGTGAATCTTTATTA
 23
1695





1517225
3502
3521
N/A
N/A
AGGTTAGCCTTCCAAGCCTT
 93
1696





1517228
4187
4206
N/A
N/A
ATGCATTAGAAACCTCTAAC
 92
1697





1517231
3198
3217
N/A
N/A
CATTTTAAAGTTCTCCAATC
 78
1698





1517237
5079
5098
N/A
N/A
CCAGGAGTCAGAAATGGGAA
 74†
1699





1517241
3650
3669
N/A
N/A
ACCTGCCAGGAATGTGACCA
 83
1700





1517254
6356
6375
1258
1277
TCTTTATTAAACTAGGGTCC
 31
1701





1517256
4822
4841
 304
 323
TGGCCGCTCTGCCACTCGGT
 72
1702





1517273
2978
2997
N/A
N/A
AGTCCCCTGCTGCTTGCCTC
 92
1703





1517285
4177
4196
N/A
N/A
AACCTCTAACTCCCAGCCAG
 78
1704





1517292
3269
3288
N/A
N/A
TCTCCCTTCACATTCTAAGC
102
1705





1517296
5035
5054
N/A
N/A
CCAGGCCCCCCAAGACTTAG
 91†
1706





1517320
2887
2906
 139
 158
CCAGGGTCCCAGCTCTTTCT
 95
1707





1517326
4894
4913
 376
 395
TGCACCTGCTCAGACAGTGT
 49†
1708





1517331
4786
4805
 268
 287
GGCTCCGGCTCTGTCTCCAC
 67
1709





1517351
2993
3012
N/A
N/A
GCCCTTCCCAGGTCCAGTCC
 79
1710





1517355
3210
3229
N/A
N/A
TAATTCAGTCCTCATTTTAA
 88
1711





1517360
5047
5066
N/A
N/A
ACCAGCAGAGACCCAGGCCC
100†
1712





1517377
6296
6315
1198
1217
TGCAGGCTGCGCGGAGGCAG
 35
1713





1517397
3554
3573
N/A
N/A
GCCAGTGAGGACTCCTCCCA
 98
1714





1517419
6139
6158
1041
1060
CCACCAGGGGCTCGAACCAG
 84
1715





1517420
4584
4603
N/A
N/A
GTATTTATAAACAGGGTCTT
 87
1716





1517427
6363
6382
1265
1284
TGGTGAATCTTTATTAAACT
 20
1193





1517465
6326
6345
1228
1247
GACGGCTGGGGCGGGGACAG
 89
1717





1517466
3414
3433
N/A
N/A
ACTCCCTCCTGGTCTTCTCT
106
1718





1517470
3670
3689
N/A
N/A
CGAGCAAGCCCCGCCCCCAT
113
1719





1517476
6159
6178
1061
1080
CCACTGGCGCTGCATGTCTT
 69
1720





1517509
4245
4264
N/A
N/A
GGTGATGGAGAATAAAGATC
 93
1721





1517515
6219
6238
1121
1140
GCTGGGCACAGGGGCGGCGC
100
1722





1517527
3053
3072
N/A
N/A
CCCAGTCCAGCTGCTCTCCC
 97
1723





1517530
3459
3478
N/A
N/A
ATCCCAGCACATTTACCAAG
 90
1724





1517544
3361
3380
N/A
N/A
AATTCCATCTTCCTCTCCCG
 98
1725





1517565
6276
6295
1178
1197
GAGGCACGGGGTGGCGTGGG
 57
1726





1517572
3258
3277
N/A
N/A
ATTCTAAGCTCCAACCTCAC
 84
1727





1517579
4716
4735
N/A
N/A
GTCAGGGTCCTTCTGACCCC
117
1728





1517589
3322
3341
N/A
N/A
CCACCCCCTCCCCACCGCCG
 95
1729





1517594
3778
3797
N/A
N/A
TTCAGAGCCAGGAAGCAGCA
100
1730





1517633
6246
6265
1148
1167
TGCAGGCTTCGGCGTTCAGT
 67
1731





1517634
6316
6335
1218
1237
GCGGGGACAGGGTCTCCCGC
105
1732





1517664
4228
4247
N/A
N/A
ATCACAGCTGCCCCGTGTCT
 99
1733





1517681
3605
3624
 179
 198
CTTCCTGCCTGTGATTGGCC
 79
1734





1517686
6346
6365
1248
1267
ACTAGGGTCCACCCCAGGAG
 60
1735





1517694
2854
2873
 106
 125
CTCATCCCCGTGCCCCCGAC
 84
1736





1517695
3390
3409
N/A
N/A
TCCCCATCCCCAGGTCGGCC
100
1737





1517704
2925
2944
N/A
N/A
GAGTAGCTCTCCTGAGACTA
 89
1738





1517735
3156
3175
N/A
N/A
GCCCCTGGCTCCCCAGTTAT
 91
1739





1517741
2869
2888
 121
 140
CTAGAGGCCCCTGAGCTCAT
 84
1740





1517781
3530
3549
N/A
N/A
CAGCCCGGCCCCAACCCGGC
108
1741





1517792
4197
4216
N/A
N/A
TCTGCCTGCAATGCATTAGA
 94
1742





1517794
4772
4791
 254
 273
CTCCACCGCTTGCTCCACCT
 75
1743





1517797
6266
6285
1168
1187
GTGGCGTGGGGTCGCATGGC
 47
1744





1517800
4656
4675
N/A
N/A
CACAAATGCTTCTTTGGAGC
 96
1745





1517806
6306
6325
1208
1227
GGTCTCCCGCTGCAGGCTGC
 41
1746





1517809
3300
3319
N/A
N/A
TCCATCTCAGTCCCAGTCTC
 99
1747





1517824
3371
3390
N/A
N/A
CTCCATAGAAAATTCCATCT
 75
1748





1517830
3843
3862
N/A
N/A
AAACAACTTCTAACTCCTAT
 94
1749





1517845
3224
3243
N/A
N/A
TTCCATTTATGAGCTAATTC
 91
1750





1517855
3034
3053
N/A
N/A
CCACCCCACCTTCTAGCGGG
 88
1751





1517864
3437
3456
N/A
N/A
GCCCCCAACCCATTCCCTAT
 91
1752





1517868
3427
3446
N/A
N/A
CATTCCCTATTTAACTCCCT
 98
1753





1517876
2952
2971
N/A
N/A
GCTCCTCCTCTCCCCAAGCC
 65
1754





1517880
6336
6355
1238
1257
ACCCCAGGAGGACGGCTGGG
 94
  72





1517888
3469
3488
N/A
N/A
CAACAGCCTAATCCCAGCAC
 84
1755





1517895
6179
6198
1081
1100
ACCTTCTCCACCAGCCCGGC
 78
1756
















TABLE 29







Reduction of APOE RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





 942587
6255
6274
1157
1176
TCGCATGGCTGCAGGCTTCG
 30
1061





 942591
6305
6324
1207
1226
GTCTCCCGCTGCAGGCTGCG
 48
 990





1517143
6335
6354
1237
1256
CCCCAGGAGGACGGCTGGGG
 87
1757





1517161
4196
4215
N/A
N/A
CTGCCTGCAATGCATTAGAA
 81
1758





1517163
2867
2886
 119
 138
AGAGGCCCCTGAGCTCATCC
 97
1759





1517177
6235
6254
1137
1156
GCGTTCAGTGATTGTCGCTG
 63
1760





1517196
3553
3572
N/A
N/A
CCAGTGAGGACTCCTCCCAC
 83
1761





1517214
4244
4263
N/A
N/A
GTGATGGAGAATAAAGATCA
 81
1762





1517219
3257
3276
N/A
N/A
TTCTAAGCTCCAACCTCACA
 87
1763





1517233
4186
4205
N/A
N/A
TGCATTAGAAACCTCTAACT
 85
1764





1517239
2974
2993
N/A
N/A
CCCTGCTGCTTGCCTCACCC
 81
1765





1517242
3052
3071
N/A
N/A
CCAGTCCAGCTGCTCTCCCC
 85
1766





1517244
2950
2969
N/A
N/A
TCCTCCTCTCCCCAAGCCCG
 99
1767





1517247
3529
3548
N/A
N/A
AGCCCGGCCCCAACCCGGCC
101
1768





1517251
3660
3679
N/A
N/A
CCGCCCCCATACCTGCCAGG
 92
1769





1517258
3632
3651
 206
 225
CAGCAACGCAGCCCACAGAA
 86
1770





1517262
3436
3455
N/A
N/A
CCCCCAACCCATTCCCTATT
124
1771





1517266
2849
2868
 101
 120
CCCCGTGCCCCCGACTGCGC
 96
1772





1517305
3426
3445
N/A
N/A
ATTCCCTATTTAACTCCCTC
 86
1773





1517310
4597
4616
N/A
N/A
TGGAAAGCATTATGTATTTA
 85
1774





1517321
3669
3688
N/A
N/A
GAGCAAGCCCCGCCCCCATA
 79
1775





1517324
3499
3518
N/A
N/A
TTAGCCTTCCAAGCCTTGTT
 87
1776





1517335
4911
4930
 393
 412
AGCTGAGCAGCTCCTCCTGC
 30†
1777





1517342
4175
4194
N/A
N/A
CCTCTAACTCCCAGCCAGGT
103
1778





1517352
4713
4732
N/A
N/A
AGGGTCCTTCTGACCCCGTC
 90
1779





1517354
6325
6344
1227
1246
ACGGCTGGGGCGGGGACAGG
108
1780





1517357
3298
3317
N/A
N/A
CATCTCAGTCCCAGTCTCGC
 82
1781





1517366
3468
3487
N/A
N/A
AACAGCCTAATCCCAGCACA
 78
1782





1517373
3517
3536
N/A
N/A
ACCCGGCCTCACCCCAGGTT
 97
1783





1517380
6345
6364
1247
1266
CTAGGGTCCACCCCAGGAGG
 71
1784





1517395
4655
4674
N/A
N/A
ACAAATGCTTCTTTGGAGCC
 93
1785





1517399
2924
2943
N/A
N/A
AGTAGCTCTCCTGAGACTAC
106
1786





1517402
3360
3379
N/A
N/A
ATTCCATCTTCCTCTCCCGG
 74
1787





1517405
3480
3499
N/A
N/A
TGCATTATCTGCAACAGCCT
 80
1788





1517418
3321
3340
N/A
N/A
CACCCCCTCCCCACCGCCGG
130
1789





1517422
2964
2983
N/A
N/A
TGCCTCACCCCCGCTCCTCC
110
1790





1517427
6363
6382
1265
1284
TGGTGAATCTTTATTAAACT
 26
1193





1517442
5060
5079
N/A
N/A
AGAGGAAGCTAGAACCAGCA
 81†
1791





1517445
6355
6374
1257
1276
CTTTATTAAACTAGGGTCCA
 30
1792





1517446
6137
6156
1039
1058
ACCAGGGGCTCGAACCAGCT
 76
1793





1517469
3008
3027
N/A
N/A
CGTCTCTGCTGCCCAGCCCT
 95
1794





1517484
5034
5053
N/A
N/A
CAGGCCCCCCAAGACTTAGC
102†
1795





1517505
4785
4804
 267
 286
GCTCCGGCTCTGTCTCCACC
 66
1796





1517516
6197
6216
1099
1118
GTGCCCACGGCAGCCTGCAC
 78
  67





1517526
4821
4840
 303
 322
GGCCGCTCTGCCACTCGGTC
102
1797





1517532
6265
6284
1167
1186
TGGCGTGGGGTCGCATGGCT
 27
1798





1517562
3153
3172
N/A
N/A
CCTGGCTCCCCAGTTATGGA
107
1799





1517563
6315
6334
1217
1236
CGGGGACAGGGTCTCCCGCT
 92
1800





1517571
3066
3085
N/A
N/A
CTATGGCTTACATCCCAGTC
 77
1801





1517582
3285
3304
N/A
N/A
GTCTCGCATTCCTCATTCTC
 80
1802





1517598
4542
4561
N/A
N/A
GCAGCGGCCTGAACATGGTT
107
1803





1517615
6157
6176
1059
1078
ACTGGCGCTGCATGTCTTCC
 74
1804





1517630
3370
3389
N/A
N/A
TCCATAGAAAATTCCATCTT
 77
1805





1517635
3402
3421
N/A
N/A
TCTTCTCTTATCTCCCCATC
 86
1806





1517642
3777
3796
N/A
N/A
TCAGAGCCAGGAAGCAGCAC
111
1807





1517644
3223
3242
N/A
N/A
TCCATTTATGAGCTAATTCA
 69
1808





1517655
5046
5065
N/A
N/A
CCAGCAGAGACCCAGGCCCC
87†
1809





1517662
3619
3638
 193
 212
CACAGAACCTTCATCTTCCT
 74
1810





1517665
6275
6294
1177
1196
AGGCACGGGGTGGCGTGGGG
 77
1811





1517666
2886
2905
 138
 157
CAGGGTCCCAGCTCTTTCTA
 82
1812





1517669
6177
6196
1079
1098
CTTCTCCACCAGCCCGGCCC
 92
1813





1517670
3209
3228
N/A
N/A
AATTCAGTCCTCATTTTAAA
 89
1814





1517718
3268
3287
N/A
N/A
CTCCCTTCACATTCTAAGCT
 93
1815





1517733
3196
3215
N/A
N/A
TTTTAAAGTTCTCCAATCGA
 71
1816





1517734
3842
3861
N/A
N/A
AACAACTTCTAACTCCTATC
 73
1817





1517757
3412
3431
N/A
N/A
TCCCTCCTGGTCTTCTCTTA
 82
1818





1517774
4214
4233
N/A
N/A
GTGTCTGGTATTCACTATCT
 96
1819





1517786
3604
3623
 178
 197
TTCCTGCCTGTGATTGGCCA
 73
1820





1517787
4893
4912
 375
 394
GCACCTGCTCAGACAGTGTC
 52†
  37





1517813
6285
6304
1187
1206
CGGAGGCAGGAGGCACGGGG
 95
1821





1517825
6217
6236
1119
1138
TGGGCACAGGGGCGGCGCTG
 91
1822





1517827
4771
4790
 253
 272
TCCACCGCTTGCTCCACCTT
 86
1823





1517848
6245
6264
1147
1166
GCAGGCTTCGGCGTTCAGTG
 50
1824





1517871
6295
6314
1197
1216
GCAGGCTGCGCGGAGGCAGG
 45
1825





1517873
3389
3408
N/A
N/A
CCCCATCCCCAGGTCGGCCT
 95
1826





1517891
6366
6385
1268
1287
ACTTGGTGAATCTTTATTAA
 32
1827





1517906
2992
3011
N/A
N/A
CCCTTCCCAGGTCCAGTCCC
 96
1828





1517908
3458
3477
N/A
N/A
TCCCAGCACATTTACCAAGC
 87
1829
















TABLE 30







Reduction of APOE RNA by 5-10-5 MOE gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





 708021
6254
6273
1156
1175
CGCATGGCTGCAGGCTTCGG
 19
  70





 708027
6234
6253
1136
1155
CGTTCAGTGATTGTCGCTGG
 58
  69





1517151
3479
3498
N/A
N/A
GCATTATCTGCAACAGCCTA
 90
1830





1517152
3388
3407
N/A
N/A
CCCATCCCCAGGTCGGCCTC
109
1831





1517165
3284
3303
N/A
N/A
TCTCGCATTCCTCATTCTCC
 78
1832





1517174
2963
2982
N/A
N/A
GCCTCACCCCCGCTCCTCCT
 90
1833





1517179
5058
5077
N/A
N/A
AGGAAGCTAGAACCAGCAGA
 98†
1834





1517188
6344
6363
1246
1265
TAGGGTCCACCCCAGGAGGA
 93
1835





1517195
4195
4214
N/A
N/A
TGCCTGCAATGCATTAGAAA
 96
1836





1517209
6195
6214
1097
1116
GCCCACGGCAGCCTGCACCT
104
1837





1517211
4820
4839
 302
 321
GCCGCTCTGCCACTCGGTCT
 93
1838





1517222
3064
3083
N/A
N/A
ATGGCTTACATCCCAGTCCA
 93
1839





1517248
4767
4786
 249
 268
CCGCTTGCTCCACCTTGGCC
 88
1840





1517264
3552
3571
N/A
N/A
CAGTGAGGACTCCTCCCACC
100
1841





1517278
2866
2885
 118
 137
GAGGCCCCTGAGCTCATCCC
 93
1842





1517286
3359
3378
N/A
N/A
TTCCATCTTCCTCTCCCGGG
 80
1843





1517295
6244
6263
1146
1165
CAGGCTTCGGCGTTCAGTGA
 62
1844





1517297
2884
2903
 136
 155
GGGTCCCAGCTCTTTCTAGA
109
1845





1517298
4708
4727
N/A
N/A
CCTTCTGACCCCGTCCAGGC
 92
1846





1517300
3399
3418
N/A
N/A
TCTCTTATCTCCCCATCCCC
 85
1847





1517327
3496
3515
N/A
N/A
GCCTTCCAAGCCTTGTTGCA
 89
1848





1517350
3841
3860
N/A
N/A
ACAACTTCTAACTCCTATCT
 87
1849





1517353
3411
3430
N/A
N/A
CCCTCCTGGTCTTCTCTTAT
 94
1850





1517361
6294
6313
1196
1215
CAGGCTGCGCGGAGGCAGGA
 54
1851





1517362
4783
4802
 265
 284
TCCGGCTCTGTCTCCACCGC
 81
1852





1517369
3320
3339
N/A
N/A
ACCCCCTCCCCACCGCCGGT
 89
1853





1517385
4910
4929
 392
 411
GCTGAGCAGCTCCTCCTGCA
 37†
1854





1517391
3207
3226
N/A
N/A
TTCAGTCCTCATTTTAAAGT
 82
1855





1517393
6274
6293
1176
1195
GGCACGGGGTGGCGTGGGGT
 73
1856





1517414
6175
6194
1077
1096
TCTCCACCAGCCCGGCCCAC
116
1857





1517423
3194
3213
N/A
N/A
TTAAAGTTCTCCAATCGACG
 77
1858





1517427
6363
6382
1265
1284
TGGTGAATCTTTATTAAACT
 24
1193





1517435
3267
3286
N/A
N/A
TCCCTTCACATTCTAAGCTC
 99
1859





1517479
3425
3444
N/A
N/A
TTCCCTATTTAACTCCCTCC
 86
1860





1517481
2949
2968
N/A
N/A
CCTCCTCTCCCCAAGCCCGA
 87
1861





1517514
3770
3789
N/A
N/A
CAGGAAGCAGCACAGAAGCC
 86
1862





1517521
2835
2854
  87
 106
CTGCGCTTCTCACCGGCTCC
109
1863





1517524
3668
3687
N/A
N/A
AGCAAGCCCCGCCCCCATAC
 86
1864





1517525
3255
3274
N/A
N/A
CTAAGCTCCAACCTCACAGT
101
1865





1517533
4892
4911
 374
 393
CACCTGCTCAGACAGTGTCT
 49†
1866





1517543
3631
3650
 205
 224
AGCAACGCAGCCCACAGAAC
 79
1867





1517545
6324
6343
1226
1245
CGGCTGGGGCGGGGACAGGG
 86
1868





1517573
4185
4204
N/A
N/A
GCATTAGAAACCTCTAACTC
 93
1869





1517578
6365
6384
1267
1286
CTTGGTGAATCTTTATTAAA
 28
1870





1517584
5028
5047
N/A
N/A
CCCCAAGACTTAGCGACAGG
 85†
1871





1517588
3435
3454
N/A
N/A
CCCCAACCCATTCCCTATTT
 88
1872





1517595
6135
6154
1037
1056
CAGGGGCTCGAACCAGCTCT
 96
1873





1517609
3220
3239
N/A
N/A
ATTTATGAGCTAATTCAGTC
103
1874





1517613
3051
3070
N/A
N/A
CAGTCCAGCTGCTCTCCCCA
 86
1875





1517625
6314
6333
1216
1235
GGGGACAGGGTCTCCCGCTG
 79
1876





1517637
4595
4614
N/A
N/A
GAAAGCATTATGTATTTATA
 88
1877





1517659
3006
3025
N/A
N/A
TCTCTGCTGCCCAGCCCTTC
100
1878





1517667
6304
6323
1206
1225
TCTCCCGCTGCAGGCTGCGC
 52
1879





1517675
2991
3010
N/A
N/A
CCTTCCCAGGTCCAGTCCCC
 92
1880





1517685
3659
3678
N/A
N/A
CGCCCCCATACCTGCCAGGA
 99
1881





1517691
4173
4192
N/A
N/A
TCTAACTCCCAGCCAGGTGC
 90
1882





1517696
6334
6353
1236
1255
CCCAGGAGGACGGCTGGGGC
105
1883





1517719
2973
2992
N/A
N/A
CCTGCTGCTTGCCTCACCCC
 75
1884





1517722
6264
6283
1166
1185
GGCGTGGGGTCGCATGGCTG
 41
1885





1517724
6354
6373
1256
1275
TTTATTAAACTAGGGTCCAC
 56
1886





1517731
3574
3593
N/A
N/A
GGAGAAACTGTCAATCAACC
 90
1887





1517737
6155
6174
1057
1076
TGGCGCTGCATGTCTTCCAC
 68
1888





1517758
3457
3476
N/A
N/A
CCCAGCACATTTACCAAGCC
 80
1889





1517759
3528
3547
N/A
N/A
GCCCGGCCCCAACCCGGCCT
 96
1890





1517761
4541
4560
N/A
N/A
CAGCGGCCTGAACATGGTTC
 92
1891





1517771
4653
4672
N/A
N/A
AAATGCTTCTTTGGAGCCAT
 88
1892





1517779
2922
2941
N/A
N/A
TAGCTCTCCTGAGACTACCT
 89
1893





1517782
6215
6234
1117
1136
GGCACAGGGGCGGCGCTGGT
 93
1894





1517783
3369
3388
N/A
N/A
CCATAGAAAATTCCATCTTC
 92
1895





1517798
3516
3535
N/A
N/A
CCCGGCCTCACCCCAGGTTA
118
1896





1517811
3297
3316
N/A
N/A
ATCTCAGTCCCAGTCTCGCA
 82
1897





1517816
3150
3169
N/A
N/A
GGCTCCCCAGTTATGGAGAT
 93
1898





1517820
4211
4230
N/A
N/A
TCTGGTATTCACTATCTGCC
 79
1899





1517829
6284
6303
1186
1205
GGAGGCAGGAGGCACGGGGT
 81
1900





1517859
5045
5064
N/A
N/A
CAGCAGAGACCCAGGCCCCC
100†
1901





1517872
3467
3486
N/A
N/A
ACAGCCTAATCCCAGCACAT
 83
1902





1517879
3618
3637
 192
 211
ACAGAACCTTCATCTTCCTG
 84
1903





1517881
4243
4262
N/A
N/A
TGATGGAGAATAAAGATCAC
100
1904









Example 4: Effect of 3-10-3 cEt Mixed Backbone Modified Oligonucleotides on Human APOE RNA In Vitro, Single Dose

Modified oligonucleotides complementary to human APOE nucleic acid were designed and tested for their single dose effects on APOE RNA in vitro. The modified oligonucleotides were tested in a series of experiments that had the same culture conditions.


The modified oligonucleotides in the tables below are 3-10-3 cEt gapmers with mixed PO/PS internucleoside linkages. The gapmers are 16 nucleosides in length, wherein the central gap segment consists often 2′-β-D-deoxynucleosides, and wherein the 5′ and 3′ wing segments each consist of three cEt modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): kkkddddddddddkkk; wherein each ‘d’ represents a 2′-β-D-deoxyribosyl sugar moiety, and each ‘k’ represents a cEt sugar moiety. The internucleoside linkage motif for the gapmers is (from 5′ to 3′): soossssssssssos; wherein each ‘o’ represents a phosphodiester internucleoside linkage and each ‘s’ represents a phosphorothioate internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.


“Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified oligonucleotide listed in the tables below is 100% complementary to SEQ ID NO: 1 (described herein above), to SEQ ID NO: 2 (described herein above), or to both. ‘N/A’ indicates that the modified oligonucleotide is not 100% complementary to that particular target nucleic acid sequence.


Cultured Hep3B cells were treated with modified oligonucleotide at a concentration of 4000 nM by electroporation at a density of 20,000 cells per well. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. APOE RNA levels were measured by human primer-probe set RTS3073 (described herein in Example 1). APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in the tables below as percent APOE RNA relative to untreated control cells (% UTC). Each table represents results from an individual assay plate. The values marked with an “†” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.









TABLE 31







Reduction of APOE RNA by 3-10-3 cEt gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO


1335585
4190
4205
N/A
N/A
TGCATTAGAAACCTCT
76
1905





1335661
6353
6368
1255
1270
TAAACTAGGGTCCACC
 13
1906





1516543
6329
6344
1231
1246
ACGGCTGGGGCGGGGA
 70
1907





1516550
5064
5079
N/A
N/A
AGAGGAAGCTAGAACC
 89†
1908





1516555
6265
6280
1167
1182
GTGGGGTCGCATGGCT
 15
1909





1516556
6132
6147
1034
1049
TCGAACCAGCTCTTGA
 72
1910





1516597
3340
3355
N/A
N/A
CAAATTCCATCCCCCC
 60
1911





1516600
5910
5925
 812
 827
GCCCGCACGCGGCCCT
 63
1912





1516604
2853
2868
 105
 120
CCCCGTGCCCCCGACT
106
1913





1516614
6313
6328
1215
1230
CAGGGTCTCCCGCTGC
 37
1914





1516625
6249
6264
1151
1166
GCAGGCTTCGGCGTTC
 33
1915





1516649
6289
6304
1191
1206
CGGAGGCAGGAGGCAC
 74
1916





1516653
3656
3671
N/A
N/A
ATACCTGCCAGGAATG
104
1917





1516654
5036
5051
N/A
N/A
GGCCCCCCAAGACTTA
102†
1918





1516660
2939
2954
N/A
N/A
GCCCGACCCCGAGTAG
143
1919





1516663
2915
2930
N/A
N/A
AGACTACCTGGAGGCC
 81
1920





1516672
6361
6376
1263
1278
ATCTTTATTAAACTAG
 13
1921





1516678
5718
5733
 620
 635
TGGCCGAGCATGGCCT
 98
1922





1516687
4616
4631
N/A
N/A
GTCGGTTTAATCACTT
 71
1923





1516693
2874
2889
 126
 141
TCTAGAGGCCCCTGAG
104
1924





1516728
4706
4721
N/A
N/A
GACCCCGTCCAGGCAT
 85
1925





1516731
3253
3268
N/A
N/A
TCCAACCTCACAGTTA
 79
1926





1516735
5770
5785
 672
 687
ACGCAGCTTGCGCAGG
 57
1927





1516740
6378
6393
1280
1295
TGCGTGAAACTTGGTG
 24
1928





1516747
3505
3520
N/A
N/A
GGTTAGCCTTCCAAGC
 71
1929





1516781
3431
3446
N/A
N/A
CATTCCCTATTTAACT
 86
1930





1516800
5857
5872
 759
 774
GAGGCCGCGCTCGGCG
 88
1931





1516806
4540
4555
N/A
N/A
GCCTGAACATGGTTCA
 83
1932





1516808
6273
6288
1175
1190
GGGGTGGCGTGGGGTC
 66
1933





1516818
3452
3467
N/A
N/A
TTTACCAAGCCGCCCC
 95
1934





1516825
3833
3848
N/A
N/A
TCCTATCTCAAGGATG
 97
1935





1516836
4231
4246
N/A
N/A
TCACAGCTGCCCCGTG
 82
1936





1516838
5195
5210
N/A
N/A
ATATAAAAGAGCTAGG
 87†
1937





1516862
6257
6272
1159
1174
GCATGGCTGCAGGCTT
 10
1938





1516863
2931
2946
N/A
N/A
CCGAGTAGCTCTCCTG
 90
1939





1516864
5785
5800
 687
 702
GCGGAGGAGCCGCTTA
 86
1940





1516873
5957
5972
 859
 874
GGGCCCGCTCCTGTAG
 89
1941





1516893
3573
3588
N/A
N/A
AACTGTCAATCAACCG
 84
1942





1516899
3522
3537
N/A
N/A
AACCCGGCCTCACCCC
 94
1943





1516902
3073
3088
N/A
N/A
CTGCTATGGCTTACAT
 71
1944





1516903
3153
3168
N/A
N/A
GCTCCCCAGTTATGGA
106
1945





1516911
6345
6360
1247
1262
GGTCCACCCCAGGAGG
 61
1946





1516912
3419
3434
N/A
N/A
AACTCCCTCCTGGTCT
 81
1947





1516914
3311
3326
N/A
N/A
CGCCGGTTCCATCTCA
 82
1948





1516923
2948
2963
N/A
N/A
TCTCCCCAAGCCCGAC
107
1949





1516932
6370
6385
1272
1287
ACTTGGTGAATCTTTA
 23
1950





1516933
3791
3806
N/A
N/A
AAATCGCTGTTCAGAG
 85
1951





1516943
6321
6336
1223
1238
GGCGGGGACAGGGTCT
 42
1952





1516952
3463
3478
N/A
N/A
ATCCCAGCACATTTAC
 57
1953





1516960
6281
6296
1183
1198
GGAGGCACGGGGTGGC
 48
1954





1516973
6305
6320
1207
1222
CCCGCTGCAGGCTGCG
 31
1955





1516975
3485
3500
N/A
N/A
TTGCATTATCTGCAAC
 87
1956





1516976
4800
4815
 282
 297
GCGCAGCTCGGGCTCC
132
1957





1516979
4987
5002
N/A
N/A
AGGTATAGCCGCCCAC
 87†
1958





1516988
3063
3078
N/A
N/A
TTACATCCCAGTCCAG
 70
1959





1516990
4126
4141
N/A
N/A
GGAGATCGAAACGGGC
 85
1960





1517001
5645
5660
 547
 562
GCCGGGCCTGCGCCGC
 57
1961





1517009
5987
6002
 889
 904
TCCGCGCGCGCAGCCG
 63
1962





1517015
3634
3649
 208
 223
GCAACGCAGCCCACAG
 59
1963





1517017
5692
5707
 594
 609
GCGGTACTGCACCAGG
 75
1964





1517020
4978
4993
N/A
N/A
CGCCCACCAGGAGGGT
 87†
1965





1517029
6233
6248
1135
1150
AGTGATTGTCGCTGGG
 22
1966





1517037
4856
4871
 338
 353
CAAAAGCGACCCAGTG
 62†
1967





1517052
6110
6125
1012
1027
CCTGGAAGGCCTCGGC
 70
1968





1517066
5012
5027
N/A
N/A
GGCAGAATGAAACCTG
 92†
1969





1517068
3444
3459
N/A
N/A
GCCGCCCCCAACCCAT
 89
1970





1517074
5832
5847
 734
 749
GCCCCGGCCTGGTACA
100
1971





1517075
5570
5585
 472
 487
CCAGTTCCGATTTGTA
 58
1972





1517078
3226
3241
N/A
N/A
CCATTTATGAGCTAAT
 70
1973





1517079
3184
3199
N/A
N/A
TCGACGGCTAGCTACC
 71
1974





1517081
4864
4879
 346
 361
GGTAATCCCAAAAGCG
 58†
1975





1517101
3532
3547
N/A
N/A
GCCCGGCCCCAACCCG
 84
1976





1517104
3668
3683
N/A
N/A
AGCCCCGCCCCCATAC
 94
1977





1517105
6337
6352
1239
1254
CCAGGAGGACGGCTGG
 78
1978





1517110
3197
3212
N/A
N/A
TAAAGTTCTCCAATCG
 70
1979





1517119
6241
6256
1143
1158
CGGCGTTCAGTGATTG
 39
1980





1517123
6297
6312
1199
1214
AGGCTGCGCGGAGGCA
 15
1981





1517130
6365
6380
1267
1282
GTGAATCTTTATTAAA
 20
1982
















TABLE 32







Reduction of APOE RNA by 3-10-3 cEt gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





1335562
3196
3211
N/A
N/A
AAAGTTCTCCAATCGA
 65
1983





1335576
3428
3443
N/A
N/A
TCCCTATTTAACTCCC
 96
1984





1335671
5011
5026
N/A
N/A
GCAGAATGAAACCTGG
 80†
1985





1335675
4189
4204
N/A
N/A
GCATTAGAAACCTCTA
 83
1986





1335681
3846
3861
N/A
N/A
AACAACTTCTAACTCC
 69
1987





1516527
4225
4240
N/A
N/A
CTGCCCCGTGTCTGGT
 88
1988





1516528
4977
4992
N/A
N/A
GCCCACCAGGAGGGTC
 92†
1989





1516532
6288
6303
1190
1205
GGAGGCAGGAGGCACG
 60
1990





1516539
6256
6271
1158
1173
CATGGCTGCAGGCTTC
 14
1991





1516548
4855
4870
 337
 352
AAAAGCGACCCAGTGC
 61†
1992





1516558
3310
3325
N/A
N/A
GCCGGTTCCATCTCAG
 76
1993





1516573
4986
5001
N/A
N/A
GGTATAGCCGCCCACC
 81†
1994





1516578
3462
3477
N/A
N/A
TCCCAGCACATTTACC
 82
1995





1516589
6320
6335
1222
1237
GCGGGGACAGGGTCTC
 28
1996





1516607
6240
6255
1142
1157
GGCGTTCAGTGATTGT
 14
1997





1516609
3790
3805
N/A
N/A
AATCGCTGTTCAGAGC
 74
1998





1516621
5747
5762
 649
 664
CGAGGCGCACCCGCAG
 84
1999





1516624
5782
5797
 684
 699
GAGGAGCCGCTTACGC
 72
2000





1516627
5943
5958
 845
 860
AGCGGCTGGCCGGCCA
 80
2001





1516655
5061
5076
N/A
N/A
GGAAGCTAGAACCAGC
 67†
2002





1516673
4310
4325
N/A
N/A
CGCGCCCAGCGGAAAA
 94
2003





1516697
6344
6359
1246
1261
GTCCACCCCAGGAGGA
 84
2004





1516700
3521
3536
N/A
N/A
ACCCGGCCTCACCCCA
107
2005





1516723
3037
3052
N/A
N/A
CACCCCACCTTCTAGC
101
2006





1516734
2930
2945
N/A
N/A
CGAGTAGCTCTCCTGA
 82
2007





1516745
2914
2929
N/A
N/A
GACTACCTGGAGGCCA
 76
2008





1516748
3443
3458
N/A
N/A
CCGCCCCCAACCCATT
 96
2009





1516765
5559
5574
 461
 476
TTGTAGGCCTTCAACT
 66
2010





1516772
6108
6123
1010
1025
TGGAAGGCCTCGGCCT
 86
2011





1516778
6360
6375
1262
1277
TCTTTATTAAACTAGG
  4
2012





1516779
5831
5846
 733
 748
CCCCGGCCTGGTACAC
 84
2013





1516791
3451
3466
N/A
N/A
TTACCAAGCCGCCCCC
 96
2014





1516796
6194
6209
1096
1111
CGGCAGCCTGCACCTT
 66
2015





1516824
3655
3670
N/A
N/A
TACCTGCCAGGAATGT
 79
2016





1516841
2849
2864
 101
 116
GTGCCCCCGACTGCGC
 99
2017





1516847
3531
3546
N/A
N/A
CCCGGCCCCAACCCGG
 96
2018





1516848
3183
3198
N/A
N/A
CGACGGCTAGCTACCG
 65
2019





1516854
5841
5856
 743
 758
CCCTCGCGGGCCCCGG
 84
2020





1516858
3664
3679
N/A
N/A
CCGCCCCCATACCTGC
 95
2021





1516867
3152
3167
N/A
N/A
CTCCCCAGTTATGGAG
 89
2022





1516876
3832
3847
N/A
N/A
CCTATCTCAAGGATGG
 85
2023





1516881
6264
6279
1166
1181
TGGGGTCGCATGGCTG
 21
2024





1516886
6296
6311
1198
1213
GGCTGCGCGGAGGCAG
 18
2025





1516890
6312
6327
1214
1229
AGGGTCTCCCGCTGCA
 13
2026





1516892
3072
3087
N/A
N/A
TGCTATGGCTTACATC
 78
2027





1516896
3570
3585
N/A
N/A
TGTCAATCAACCGCCA
 77
2028





1516915
3502
3517
N/A
N/A
TAGCCTTCCAAGCCTT
 85
2029





1516917
3481
3496
N/A
N/A
ATTATCTGCAACAGCC
 67
2030





1516922
4863
4878
 345
 360
GTAATCCCAAAAGCGA
 40†
2031





1516925
5986
6001
 888
 903
CCGCGCGCGCAGCCGC
 56
2032





1516929
3633
3648
 207
 222
CAACGCAGCCCACAGA
 57
2033





1516930
5194
5209
N/A
N/A
TATAAAAGAGCTAGGG
 74†
2034





1516934
6131
6146
1033
1048
CGAACCAGCTCTTGAG
 53
2035





1516939
2938
2953
N/A
N/A
CCCGACCCCGAGTAGC
 72
2036





1516947
5637
5652
 539
 554
TGCGCCGCCTGCAGCT
 84
2037





1516962
5909
5924
 811
 826
CCCGCACGCGGCCCTG
 68
2038





1516968
6248
6263
1150
1165
CAGGCTTCGGCGTTCA
 41
2039





1516972
3319
3334
N/A
N/A
CTCCCCACCGCCGGTT
 88
2040





1516992
6328
6343
1230
1245
CGGCTGGGGCGGGGAC
 89
2041





1516994
5717
5732
 619
 634
GGCCGAGCATGGCCTG
 98
2042





1517000
3393
3408
N/A
N/A
CCCCATCCCCAGGTCG
 98
2043





1517010
4776
4791
 258
 273
CTCCACCGCTTGCTCC
145
2044





1517016
6336
6351
1238
1253
CAGGAGGACGGCTGGG
 40
2045





1517024
6377
6392
1279
1294
GCGTGAAACTTGGTGA
 21
2046





1517027
2947
2962
N/A
N/A
CTCCCCAAGCCCGACC
104
2047





1517040
6272
6287
1174
1189
GGGTGGCGTGGGGTCG
 32
2048





1517050
6304
6319
1206
1221
CCGCTGCAGGCTGCGC
 46
2049





1517059
3252
3267
N/A
N/A
CCAACCTCACAGTTAA
 70
2050





1517063
6369
6384
1271
1286
CTTGGTGAATCTTTAT
 24
2051





1517073
2873
2888
 125
 140
CTAGAGGCCCCTGAGC
 82
2052





1517083
5035
5050
N/A
N/A
GCCCCCCAAGACTTAG
101†
2053





1517088
5691
5706
 593
 608
CGGTACTGCACCAGGC
 74
2054





1517100
6280
6295
1182
1197
GAGGCACGGGGTGGCG
 41
2055





1517116
4615
4630
N/A
N/A
TCGGTTTAATCACTTG
 63
2056





1517126
4705
4720
N/A
N/A
ACCCCGTCCAGGCATC
106
2057





1517129
3222
3237
N/A
N/A
TTATGAGCTAATTCAG
 63
2058





1517130
6365
6380
1267
1282
GTGAATCTTTATTAAA
 17
1982





1517131
6352
6367
1254
1269
AAACTAGGGTCCACCC
 18
2059
















TABLE 33







Reduction of APOE RNA by 3-10-3 cEt gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





1335568
4214
4229
N/A
N/A
CTGGTATTCACTATCT
 71
2060





1335581
4614
4629
N/A
N/A
CGGTTTAATCACTTGG
 58
2061





1516525
5779
5794
 681
 696
GAGCCGCTTACGCAGC
 90
2062





1516534
3530
3545
N/A
N/A
CCGGCCCCAACCCGGC
 95
2063





1516536
4704
4719
N/A
N/A
CCCCGTCCAGGCATCT
105
2064





1516552
6351
6366
1253
1268
AACTAGGGTCCACCCC
 37
2065





1516559
6255
6270
1157
1172
ATGGCTGCAGGCTTCG
 23
2066





1516561
6319
6334
1221
1236
CGGGGACAGGGTCTCC
 63
2067





1516576
3317
3332
N/A
N/A
CCCCACCGCCGGTTCC
103
2068





1516593
2937
2952
N/A
N/A
CCGACCCCGAGTAGCT
105
2069





1516594
3190
3205
N/A
N/A
CTCCAATCGACGGCTA
 72
2070





1516602
5908
5923
 810
 825
CCGCACGCGGCCCTGT
 81
2071





1516638
2867
2882
 119
 134
GCCCCTGAGCTCATCC
 78
2072





1516641
3501
3516
N/A
N/A
AGCCTTCCAAGCCTTG
 70
2073





1516658
6359
6374
1261
1276
CTTTATTAAACTAGGG
  6
2074





1516668
6327
6342
1229
1244
GGCTGGGGCGGGGACA
 77
2075





1516670
3842
3857
N/A
N/A
ACTTCTAACTCCTATC
 74
2076





1516674
4985
5000
N/A
N/A
GTATAGCCGCCCACCA
 88†
2077





1516675
6106
6121
1008
1023
GAAGGCCTCGGCCTGC
 90
2078





1516677
5984
5999
 886
 901
GCGCGCGCAGCCGCTC
 82
2079





1516684
3035
3050
N/A
N/A
CCCCACCTTCTAGCGG
 84
2080





1516686
5009
5024
N/A
N/A
AGAATGAAACCTGGAC
 90†
2081





1516703
4187
4202
N/A
N/A
ATTAGAAACCTCTAAC
 81
2082





1516707
6343
6358
1245
1260
TCCACCCCAGGAGGAC
 86
2083





1516708
4774
4789
 256
 271
CCACCGCTTGCTCCAC
 89
2084





1516710
5165
5180
N/A
N/A
GAGCCAGGACGAGTGT
 98†
2085





1516713
3142
3157
N/A
N/A
ATGGAGATCTGAGGAC
 83
2086





1516718
4975
4990
N/A
N/A
CCACCAGGAGGGTCAA
 82†
2087





1516726
6376
6391
1278
1293
CGTGAAACTTGGTGAA
 33
2088





1516755
3427
3442
N/A
N/A
CCCTATTTAACTCCCT
 82
2089





1516763
4854
4869
 336
 351
AAAGCGACCCAGTGCC
 32†
2090





1516775
3831
3846
N/A
N/A
CTATCTCAAGGATGGG
 77
2091





1516782
6303
6318
1205
1220
CGCTGCAGGCTGCGCG
 81
2092





1516788
4862
4877
 344
 359
TAATCCCAAAAGCGAC
 55†
2093





1516792
6279
6294
1181
1196
AGGCACGGGGTGGCGT
 56
2094





1516794
6239
6254
1141
1156
GCGTTCAGTGATTGTC
 19
2095





1516797
5829
5844
 731
 746
CCGGCCTGGTACACTG
 95
2096





1516803
3251
3266
N/A
N/A
CAACCTCACAGTTAAG
 80
2097





1516809
6247
6262
1149
1164
AGGCTTCGGCGTTCAG
 38
2098





1516814
4309
4324
N/A
N/A
GCGCCCAGCGGAAAAG
 97
2099





1516815
6287
6302
1189
1204
GAGGCAGGAGGCACGG
 80
2100





1516837
3569
3584
N/A
N/A
GTCAATCAACCGCCAG
 79
2101





1516850
3071
3086
N/A
N/A
GCTATGGCTTACATCC
 87
2102





1516860
3680
3695
N/A
N/A
GGGAACCGAGCAAGCC
 99
2103





1516865
5556
5571
 458
 473
TAGGCCTTCAACTCCT
 88
2104





1516884
6172
6187
1074
1089
CAGCCCGGCCCACTGG
 81
2105





1516900
3480
3495
N/A
N/A
TTATCTGCAACAGCCT
 79
2106





1516907
5716
5731
 618
 633
GCCGAGCATGGCCTGC
 86
2107





1516908
5840
5855
 742
 757
CCTCGCGGGCCCCGGC
100
2108





1516935
3182
3197
N/A
N/A
GACGGCTAGCTACCGT
 88
2109





1516936
6311
6326
1213
1228
GGGTCTCCCGCTGCAG
 26
2110





1516938
5688
5703
 590
 605
TACTGCACCAGGCGGC
 66
2111





1516948
6271
6286
1173
1188
GGTGGCGTGGGGTCGC
 34
2112





1516951
3645
3660
 219
 234
GAATGTGACCAGCAAC
 54
2113





1516955
5746
5761
 648
 663
GAGGCGCACCCGCAGC
 99
2114





1516961
5636
5651
 538
 553
GCGCCGCCTGCAGCTC
 75
2115





1516963
3450
3465
N/A
N/A
TACCAAGCCGCCCCCA
 90
2116





1516964
2913
2928
N/A
N/A
ACTACCTGGAGGCCAG
 99
2117





1516974
6368
6383
1270
1285
TTGGTGAATCTTTATT
 25
2118





1516977
5059
5074
N/A
N/A
AAGCTAGAACCAGCAG
 81†
2119





1516978
5934
5949
 836
 851
CCGGCCAGGGAGCCCA
 85
2120





1516981
3515
3530
N/A
N/A
CCTCACCCCAGGTTAG
 83
2121





1516987
6130
6145
1032
1047
GAACCAGCTCTTGAGG
 59
2122





1516991
3221
3236
N/A
N/A
TATGAGCTAATTCAGT
 71
2123





1517005
3309
3324
N/A
N/A
CCGGTTCCATCTCAGT
 82
2124





1517014
6295
6310
1197
1212
GCTGCGCGGAGGCAGG
 76
2125





1517021
2848
2863
 100
 115
TGCCCCCGACTGCGCT
 92
2126





1517031
6263
6278
1165
1180
GGGGTCGCATGGCTGC
 59
2127





1517033
3458
3473
N/A
N/A
AGCACATTTACCAAGC
 87
2128





1517036
2929
2944
N/A
N/A
GAGTAGCTCTCCTGAG
 79
2129





1517038
6335
6350
1237
1252
AGGAGGACGGCTGGGG
 87
2130





1517046
5034
5049
N/A
N/A
CCCCCCAAGACTTAGC
 83†
2131





1517054
3663
3678
N/A
N/A
CGCCCCCATACCTGCC
 85
2132





1517057
3442
3457
N/A
N/A
CGCCCCCAACCCATTC
 86
2133





1517065
2946
2961
N/A
N/A
TCCCCAAGCCCGACCC
 79
2134





1517069
3632
3647
 206
 221
AACGCAGCCCACAGAA
 67
2135





1517109
3391
3406
N/A
N/A
CCATCCCCAGGTCGGC
 97
2136





1517130
6365
6380
1267
1282
GTGAATCTTTATTAAA
 29
1982
















TABLE 34







Reduction of APOE RNA by 3-10-3 cEt gapmers with mixed PO/PS internucleoside linkages


at a concentration of 4000 nM in Hep3B cells plated at 20,000 cells per well















SEQ ID
SEQ ID
SEQ ID
SEQ ID






No: 1
No: 1
No: 2
No: 2

APOE



Compound
Start
Stop
Start
Stop

(%
SEQ ID


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
UTC)
NO





1516551
2847
2862
  99
 114
GCCCCCGACTGCGCTT
 92
2137





1516560
2864
2879
 116
 131
CCTGAGCTCATCCCCG
 99
2138





1516563
3640
3655
 214
 229
TGACCAGCAACGCAGC
 50
2139





1516575
6318
6333
1220
1235
GGGGACAGGGTCTCCC
 75
2140





1516579
3476
3491
N/A
N/A
CTGCAACAGCCTAATC
 89
2141





1516581
5686
5701
 588
 603
CTGCACCAGGCGGCCG
126
2142





1516588
2944
2959
N/A
N/A
CCCAAGCCCGACCCCG
 92
2143





1516595
5704
5719
 606
 621
CTGCACCTCGCCGCGG
 94
2144





1516596
4185
4200
N/A
N/A
TAGAAACCTCTAACTC
 88
2145





1516606
3189
3204
N/A
N/A
TCCAATCGACGGCTAG
 77
2146





1516616
5778
5793
 680
 695
AGCCGCTTACGCAGCT
 99
2147





1516618
4613
4628
N/A
N/A
GGTTTAATCACTTGGA
 74
2148





1516623
4896
4911
 378
 393
CACCTGCTCAGACAGT
 24†
2149





1516632
5057
5072
N/A
N/A
GCTAGAACCAGCAGAG
 88†
2150





1516644
6171
6186
1073
1088
AGCCCGGCCCACTGGC
 87
2151





1516645
3631
3646
 205
 220
ACGCAGCCCACAGAAC
 74
2152





1516646
6238
6253
1140
1155
CGTTCAGTGATTGTCG
 21
2153





1516656
6254
6269
1156
1171
TGGCTGCAGGCTTCGG
 17
2154





1516662
4984
4999
N/A
N/A
TATAGCCGCCCACCAG
 90†
2155





1516667
5008
5023
N/A
N/A
GAATGAAACCTGGACC
100†
2156





1516680
3294
3309
N/A
N/A
TCCCAGTCTCGCATTC
 85
2157





1516681
6367
6382
1269
1284
TGGTGAATCTTTATTA
 26
2158





1516682
5033
5048
N/A
N/A
CCCCCAAGACTTAGCG
100†
2159





1516688
6278
6293
1180
1195
GGCACGGGGTGGCGTG
 38
2160





1516696
6105
6120
1007
1022
AAGGCCTCGGCCTGCA
 84
2161





1516704
3457
3472
N/A
N/A
GCACATTTACCAAGCC
 89
2162





1516706
3426
3441
N/A
N/A
CCTATTTAACTCCCTC
 75
2163





1516709
4861
4876
 343
 358
AATCCCAAAAGCGACC
 25†
2164





1516716
3437
3452
N/A
N/A
CCAACCCATTCCCTAT
112
2165





1516730
5824
5839
 726
 741
CTGGTACACTGCCAGG
 89
2166





1516736
6294
6309
1196
1211
CTGCGCGGAGGCAGGA
 64
2167





1516742
3498
3513
N/A
N/A
CTTCCAAGCCTTGTTG
 94
2168





1516743
6375
6390
1277
1292
GTGAAACTTGGTGAAT
 35
2169





1516744
4853
4868
 335
 350
AAGCGACCCAGTGCCA
 33†
2170





1516746
6326
6341
1228
1243
GCTGGGGCGGGGACAG
 84
2171





1516749
3567
3582
N/A
N/A
CAATCAACCGCCAGTG
 98
2172





1516756
3529
3544
N/A
N/A
CGGCCCCAACCCGGCC
 83
2173





1516761
3679
3694
N/A
N/A
GGAACCGAGCAAGCCC
 86
2174





1516762
6334
6349
1236
1251
GGAGGACGGCTGGGGC
 82
2175





1516774
6286
6301
1188
1203
AGGCAGGAGGCACGGG
 29
2176





1516783
3809
3824
N/A
N/A
CGAGGCCCAGAGAGCG
 79
2177





1516785
5547
5562
 449
 464
AACTCCTTCATGGTCT
 51
2178





1516790
3316
3331
N/A
N/A
CCCACCGCCGGTTCCA
 84
2179





1516805
5983
5998
 885
 900
CGCGCGCAGCCGCTCG
 75
2180





1516807
6342
6357
1244
1259
CCACCCCAGGAGGACG
 64
2181





1516812
3250
3265
N/A
N/A
AACCTCACAGTTAAGC
 76
2182





1516822
3514
3529
N/A
N/A
CTCACCCCAGGTTAGC
 85
2183





1516827
6129
6144
1031
1046
AACCAGCTCTTGAGGC
 73
2184





1516869
2879
2894
 131
 146
CTCTTTCTAGAGGCCC
 74
2185





1516888
3839
3854
N/A
N/A
TCTAACTCCTATCTCA
 79
2186





1516913
5624
5639
 526
 541
GCTCCTTGGACAGCCG
 87
2187





1516924
3662
3677
N/A
N/A
GCCCCCATACCTGCCA
 93
2188





1516928
3449
3464
N/A
N/A
ACCAAGCCGCCCCCAA
 91
2189





1516950
6270
6285
1172
1187
GTGGCGTGGGGTCGCA
 29
2190





1516953
5933
5948
 835
 850
CGGCCAGGGAGCCCAC
 75
2191





1516956
5745
5760
 647
 662
AGGCGCACCCGCAGCT
 76
2192





1516957
2995
3010
N/A
N/A
CCTTCCCAGGTCCAGT
 91
2193





1516958
3220
3235
N/A
N/A
ATGAGCTAATTCAGTC
 61
2194





1516965
6302
6317
1204
1219
GCTGCAGGCTGCGCGG
 43
2195





1516966
5839
5854
 741
 756
CTCGCGGGCCCCGGCC
 70
2196





1516969
3069
3084
N/A
N/A
TATGGCTTACATCCCA
 80
2197





1516984
3181
3196
N/A
N/A
ACGGCTAGCTACCGTG
 91
2198





1516996
3137
3152
N/A
N/A
GATCTGAGGACACTGG
 86
2199





1517006
6350
6365
1252
1267
ACTAGGGTCCACCCCA
 49
2200





1517019
4213
4228
N/A
N/A
TGGTATTCACTATCTG
 69
2201





1517025
3389
3404
N/A
N/A
ATCCCCAGGTCGGCCT
 86
2202





1517042
4741
4756
N/A
N/A
TGTGGAACAAGTTCAA
 87
2203





1517056
5907
5922
 809
 824
CGCACGCGGCCCTGTT
 64
2204





1517061
4305
4320
N/A
N/A
CCAGCGGAAAAGCATG
101
2205





1517062
6246
6261
1148
1163
GGCTTCGGCGTTCAGT
 34
2206





1517077
2923
2938
N/A
N/A
CTCTCCTGAGACTACC
 84
2207





1517082
6358
6373
1260
1275
TTTATTAAACTAGGGT
 10
2208





1517085
6262
6277
1164
1179
GGGTCGCATGGCTGCA
 18
2209





1517099
2936
2951
N/A
N/A
CGACCCCGAGTAGCTC
 79
2210





1517107
6310
6325
1212
1227
GGTCTCCCGCTGCAGG
 31
2211





1517124
5102
5117
N/A
N/A
GAATTCCAGAGAGCTA
 90†
2212





1517130
6365
6380
1267
1282
GTGAATCTTTATTAAA
 32
1982





1517135
4700
4715
N/A
N/A
GTCCAGGCATCTAGTA
 75
2213
















TABLE 35







Reduction of APOE RNA by 3-10-3 cEt gapmers


with mixed PO/PS internucleoside linkages at a


concentration of 4000 nM in Hep3B cells


plated at 20,000 cells per well















SEQ
SEQ
SEQ
SEQ






ID No:
ID No:
ID No:
ID No:






1
1
2
2

APOE



Compound
Start
Stop
Start
Stop
Sequence
(%
SEQ


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
ID NO





1335571
3068
3083
N/A
N/A
ATGGCTTACATCCCAG
 99
2214





1335663
4184
4199
N/A
N/A
AGAAACCTCTAACTCC
 50
2215





1335673
3678
3693
N/A
N/A
GAACCGAGCAAGCCCC
 86
2216





1335678
3425
3440
N/A
N/A
CTATTTAACTCCCTCC
 82
2217





1335679
3105
3120
N/A
N/A
CTCGATAAATGATAGT
 75
2218





1516529
4696
4711
N/A
N/A
AGGCATCTAGTACCTA
 78
2219





1516537
4860
4875
 342
 357
ATCCCAAAAGCGACCC
 15†
2220





1516538
5545
5560
 447
 462
CTCCTTCATGGTCTCG
 47
2221





1516545
5837
5852
 739
 754
CGCGGGCCCCGGCCTG
 75
2222





1516553
6357
6372
1259
1274
TTATTAAACTAGGGTC
 16
2223





1516567
6055
6070
 957
 972
GCGCACCTCCGCCACC
 66
2224





1516568
6116
6131
1018
1033
GGCGGGCCTGGAAGGC
 74
2225





1516570
6253
6268
1155
1170
GGCTGCAGGCTTCGGC
 18
2226





1516571
5006
5021
N/A
N/A
ATGAAACCTGGACCTG
 88†
2227





1516591
3639
3654
 213
 228
GACCAGCAACGCAGCC
 67
2228





1516598
3626
3641
 200
 215
GCCCACAGAACCTTCA
 68
2229





1516603
6277
6292
1179
1194
GCACGGGGTGGCGTGG
 39
2230





1516611
3513
3528
N/A
N/A
TCACCCCAGGTTAGCC
111
2231





1516613
6366
6381
1268
1283
GGTGAATCTTTATTAA
  6
2232





1516615
3456
3471
N/A
N/A
CACATTTACCAAGCCG
 65
2233





1516629
2921
2936
N/A
N/A
CTCCTGAGACTACCTG
 77
2234





1516630
5623
5638
 525
 540
CTCCTTGGACAGCCGT
 44
2235





1516633
4211
4226
N/A
N/A
GTATTCACTATCTGCC
 85
2236





1516657
5777
5792
 679
 694
GCCGCTTACGCAGCTT
 91
2237





1516661
3475
3490
N/A
N/A
TGCAACAGCCTAATCC
 80
2238





1516666
4869
4884
 351
 366
GCGCAGGTAATCCCAA
 29†
2239





1516692
4852
4867
 334
 349
AGCGACCCAGTGCCAG
 30†
2240





1516750
6237
6252
1139
1154
GTTCAGTGATTGTCGC
 20
2241





1516757
3180
3195
N/A
N/A
CGGCTAGCTACCGTGT
 70
2242





1516769
2878
2893
 130
 145
TCTTTCTAGAGGCCCC
 85
2243





1516770
5925
5940
 827
 842
GAGCCCACAGTGGCGG
 96
2244





1516777
3838
3853
N/A
N/A
CTAACTCCTATCTCAA
 65
2245





1516780
5055
5070
N/A
N/A
TAGAACCAGCAGAGAC
 95†
2246





1516784
6309
6324
1211
1226
GTCTCCCGCTGCAGGC
 31
2247





1516793
3377
3392
N/A
N/A
GCCTCCATAGAAAATT
109
2248





1516799
4983
4998
N/A
N/A
ATAGCCGCCCACCAGG
 82†
2249





1516802
6349
6364
1251
1266
CTAGGGTCCACCCCAG
 60
2250





1516810
3315
3330
N/A
N/A
CCACCGCCGGTTCCAT
 96
2251





1516811
6170
6185
1072
1087
GCCCGGCCCACTGGCG
 44
2252





1516819
6317
6332
1219
1234
GGGACAGGGTCTCCCG
 72
2253





1516828
6269
6284
1171
1186
TGGCGTGGGGTCGCAT
 28
2254





1516834
6374
6389
1276
1291
TGAAACTTGGTGAATC
 22
2255





1516842
5032
5047
N/A
N/A
CCCCAAGACTTAGCGA
 91†
2256





1516844
6341
6356
1243
1258
CACCCCAGGAGGACGG
 70
2257





1516845
3248
3263
N/A
N/A
CCTCACAGTTAAGCGC
 69
2258





1516866
6261
6276
1163
1178
GGTCGCATGGCTGCAG
 11
2259





1516875
2845
2860
  97
 112
CCCCGACTGCGCTTCT
 87
2260





1516882
3188
3203
N/A
N/A
CCAATCGACGGCTAGC
 96
2261





1516885
2935
2950
N/A
N/A
GACCCCGAGTAGCTCT
 79
2262





1516904
3436
3451
N/A
N/A
CAACCCATTCCCTATT
 72
2263





1516906
5097
5112
N/A
N/A
CCAGAGAGCTAAAGCC
 77†
2264





1516940
6285
6300
1187
1202
GGCAGGAGGCACGGGG
 46
2265





1516946
3263
3278
N/A
N/A
CATTCTAAGCTCCAAC
 74
2266





1516949
6333
6348
1235
1250
GAGGACGGCTGGGGCG
 50
2267





1516954
3526
3541
N/A
N/A
CCCCAACCCGGCCTCA
 84
2268





1516959
3795
3810
N/A
N/A
CGTCAAATCGCTGTTC
 71
2269





1516982
5823
5838
 725
 740
TGGTACACTGCCAGGC
 46
2270





1516983
5906
5921
 808
 823
GCACGCGGCCCTGTTC
 56
2271





1516985
6245
6260
1147
1162
GCTTCGGCGTTCAGTG
 32
2272





1516993
5743
5758
 645
 660
GCGCACCCGCAGCTCC
 90
2273





1517002
4548
4563
N/A
N/A
GTGCAGCGGCCTGAAC
 93
2274





1517022
4304
4319
N/A
N/A
CAGCGGAAAAGCATGT
 97
2275





1517034
6325
6340
1227
1242
CTGGGGCGGGGACAGG
 93
2276





1517043
4739
4754
N/A
N/A
TGGAACAAGTTCAAGG
103
2277





1517044
3566
3581
N/A
N/A
AATCAACCGCCAGTGA
 80
2278





1517047
5697
5712
 599
 614
TCGCCGCGGTACTGCA
 94
2279





1517053
2994
3009
N/A
N/A
CTTCCCAGGTCCAGTC
 70
2280





1517060
6293
6308
1195
1210
TGCGCGGAGGCAGGAG
 38
2281





1517084
2859
2874
 111
 126
GCTCATCCCCGTGCCC
 65
2282





1517094
3448
3463
N/A
N/A
CCAAGCCGCCCCCAAC
 77
2283





1517095
6301
6316
1203
1218
CTGCAGGCTGCGCGGA
 63
2284





1517106
3660
3675
N/A
N/A
CCCCATACCTGCCAGG
 93
2285





1517112
2943
2958
N/A
N/A
CCAAGCCCGACCCCGA
 88
2286





1517118
3497
3512
N/A
N/A
TTCCAAGCCTTGTTGC
 80
2287





1517130
6365
6380
1267
1282
GTGAATCTTTATTAAA
 19
1982





1517134
3218
3233
N/A
N/A
GAGCTAATTCAGTCCT
 68
2288





1517137
5685
5700
 587
 602
TGCACCAGGCGGCCGC
 96
2289





1517138
5982
5997
 884
 899
GCGCGCAGCCGCTCGC
 84
2290
















TABLE 36







Reduction of APOE RNA by 3-10-3 cEt gapmers


with mixed PO/PS internucleoside linkages at a


concentration of 4000 nM in Hep3B cells plated


at 20,000 cells per well















SEQ
SEQ
SEQ
SEQ






ID No:
ID No:
ID No:
ID No:






1
1
2
2

APOE



Compound
Start
Stop
Start
Stop
Sequence
(%
SEQ


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
ID NO





1335572
3474
3489
N/A
N/A
GCAACAGCCTAATCCC
 65
2291





1335676
3455
3470
N/A
N/A
ACATTTACCAAGCCGC
 74
2292





1516531
2942
2957
N/A
N/A
CAAGCCCGACCCCGAG
 93
2293





1516535
3447
3462
N/A
N/A
CAAGCCGCCCCCAACC
 79
2294





1516540
6340
6355
1242
1257
ACCCCAGGAGGACGGC
 65
2295





1516541
5522
5537
N/A
N/A
GCGCCCTGCGGCCGAG
102†
2296





1516542
3837
3852
N/A
N/A
TAACTCCTATCTCAAG
129
2297





1516547
5662
5677
 564
 579
CTCCATGTCCGCGCCC
 46
2298





1516564
3565
3580
N/A
N/A
ATCAACCGCCAGTGAG
 89
2299





1516569
4694
4709
N/A
N/A
GCATCTAGTACCTAGG
 72
2300





1516574
4738
4753
N/A
N/A
GGAACAAGTTCAAGGT
 94
2301





1516587
5835
5850
 737
 752
CGGGCCCCGGCCTGGT
 91
2302





1516592
3578
3593
N/A
N/A
GGAGAAACTGTCAATC
101
2303





1516620
6356
6371
1258
1273
TATTAAACTAGGGTCC
 28
2304





1516642
5742
5757
 644
 659
CGCACCCGCAGCTCCT
 62
2305





1516659
3659
3674
N/A
N/A
CCCATACCTGCCAGGA
 95
2306





1516671
5914
5929
 816
 831
GGCGGCCCGCACGCGG
105
2307





1516679
3314
3329
N/A
N/A
CACCGCCGGTTCCATC
 83
2308





1516690
2877
2892
 129
 144
CTTTCTAGAGGCCCCT
 87
2309





1516691
3217
3232
N/A
N/A
AGCTAATTCAGTCCTC
 73
2310





1516694
3677
3692
N/A
N/A
AACCGAGCAAGCCCCG
100
2311





1516695
6114
6129
1016
1031
CGGGCCTGGAAGGCCT
 94
2312





1516712
6292
6307
1194
1209
GCGCGGAGGCAGGAGG
 74
2313





1516715
6236
6251
1138
1153
TTCAGTGATTGTCGCT
 28
2314





1516717
3512
3527
N/A
N/A
CACCCCAGGTTAGCCT
 93
2315





1516721
5980
5995
 882
 897
GCGCAGCCGCTCGCCC
 76
2316





1516732
4982
4997
N/A
N/A
TAGCCGCCCACCAGGA
 86†
2317





1516737
6252
6267
1154
1169
GCTGCAGGCTTCGGCG
 66
2318





1516741
3376
3391
N/A
N/A
CCTCCATAGAAAATTC
 90
2319





1516753
5094
5109
N/A
N/A
GAGAGCTAAAGCCAGG
 81†
2320





1516758
6373
6388
1275
1290
GAAACTTGGTGAATCT
 20
2321





1516760
5005
5020
N/A
N/A
TGAAACCTGGACCTGG
 79†
2322





1516768
5776
5791
 678
 693
CCGCTTACGCAGCTTG
 64
2323





1516771
6260
6275
1162
1177
GTCGCATGGCTGCAGG
 20
2324





1516787
3496
3511
N/A
N/A
TCCAAGCCTTGTTGCA
 80
2325





1516789
4194
4209
N/A
N/A
GCAATGCATTAGAAAC
 75
2326





1516817
3525
3540
N/A
N/A
CCCAACCCGGCCTCAC
126
2327





1516823
5905
5920
 807
 822
CACGCGGCCCTGTTCC
 77
2328





1516829
2992
3007
N/A
N/A
TCCCAGGTCCAGTCCC
104
2329





1516830
6015
6030
 917
 932
TCGCGGGTCCGGCTGC
 79
2330





1516832
6284
6299
1186
1201
GCAGGAGGCACGGGGT
 29
2331





1516840
2919
2934
N/A
N/A
CCTGAGACTACCTGGA
 77
2332





1516843
3067
3082
N/A
N/A
TGGCTTACATCCCAGT
 83
2333





1516846
4545
4560
N/A
N/A
CAGCGGCCTGAACATG
 92
2334





1516851
6332
6347
1234
1249
AGGACGGCTGGGGCGG
 39
2335





1516857
2856
2871
 108
 123
CATCCCCGTGCCCCCG
 84
2336





1516861
2844
2859
  96
 111
CCCGACTGCGCTTCTC
 91
2337





1516871
4859
4874
 341
 356
TCCCAAAAGCGACCCA
 14†
2338





1516880
5695
5710
 597
 612
GCCGCGGTACTGCACC
 60
2339





1516887
6316
6331
1218
1233
GGACAGGGTCTCCCGC
 43
2340





1516909
5031
5046
N/A
N/A
CCCAAGACTTAGCGAC
 80†
2341





1516916
3422
3437
N/A
N/A
TTTAACTCCCTCCTGG
 66
2342





1516921
6364
6379
1266
1281
TGAATCTTTATTAAAC
 38
2343





1516931
6308
6323
1210
1225
TCTCCCGCTGCAGGCT
 17
2344





1516937
4868
4883
 350
 365
CGCAGGTAATCCCAAA
  9†
2345





1516942
3104
3119
N/A
N/A
TCGATAAATGATAGTG
 80
2346





1516970
3637
3652
 211
 226
CCAGCAACGCAGCCCA
 58
2347





1516986
6300
6315
1202
1217
TGCAGGCTGCGCGGAG
 31
2348





1517018
3794
3809
N/A
N/A
GTCAAATCGCTGTTCA
 78
2349





1517030
5799
5814
 701
 716
AGGTCATCGGCATCGC
 47
2350





1517049
6244
6259
1146
1161
CTTCGGCGTTCAGTGA
 43
2351





1517058
6324
6339
1226
1241
TGGGGCGGGGACAGGG
 48
2352





1517064
5053
5068
N/A
N/A
GAACCAGCAGAGACCC
 48†
2353





1517072
3187
3202
N/A
N/A
CAATCGACGGCTAGCT
 76
2354





1517080
4302
4317
N/A
N/A
GCGGAAAAGCATGTAT
 82
2355





1517098
3236
3251
N/A
N/A
GCGCCGTGTTCCATTT
 90
2356





1517102
3179
3194
N/A
N/A
GGCTAGCTACCGTGTC
 86
2357





1517108
6268
6283
1170
1185
GGCGTGGGGTCGCATG
 32
2358





1517113
5619
5634
 521
 536
TTGGACAGCCGTGCCC
 80
2359





1517117
3262
3277
N/A
N/A
ATTCTAAGCTCCAACC
 71
2360





1517120
6348
6363
1250
1265
TAGGGTCCACCCCAGG
 35
2361





1517121
6276
6291
1178
1193
CACGGGGTGGCGTGGG
 47
2362





1517122
2934
2949
N/A
N/A
ACCCCGAGTAGCTCTC
 65
2363





1517128
4177
4192
N/A
N/A
TCTAACTCCCAGCCAG
109
2364





1517130
6365
6380
1267
1282
GTGAATCTTTATTAAA
 20
1982





1517132
6169
6184
1071
1086
CCCGGCCCACTGGCGC
 98
2365





1517136
4851
4866
 333
 348
GCGACCCAGTGCCAGT
 27†
2366





1517140
3435
3450
N/A
N/A
AACCCATTCCCTATTT
108
2367
















TABLE 37







Reduction of APOE RNA by 3-10-3 cEt gapmers


with mixed PO/PS internucleoside linkages at a


concentration of 4000 nM in Hep3B cells plated


at 20,000 cells per well















SEQ
SEQ
SEQ
SEQ






ID No:
ID No:
ID No:
ID No:






1
1
2
2

APOE



Compound
Start
Stop
Start
Stop
Sequence
(%
SEQ


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
ID NO





1335667
3575
3590
N/A
N/A
GAAACTGTCAATCAAC
113
2368





1335670
3793
3808
N/A
N/A
TCAAATCGCTGTTCAG
 91
2369





1335672
6355
6370
1257
1272
ATTAAACTAGGGTCCA
 24
2370





1516524
4737
4752
N/A
N/A
GAACAAGTTCAAGGTG
 77
2371





1516544
3313
3328
N/A
N/A
ACCGCCGGTTCCATCT
 53
2372





1516562
5775
5790
 677
 692
CGCTTACGCAGCTTGC
 93
2373





1516572
5834
5849
 736
 751
GGGCCCCGGCCTGGTA
107
2374





1516577
3216
3231
N/A
N/A
GCTAATTCAGTCCTCA
 74
2375





1516583
5091
5106
N/A
N/A
AGCTAAAGCCAGGAGT
 90†
2376





1516590
2933
2948
N/A
N/A
CCCCGAGTAGCTCTCC
 94
2377





1516601
6275
6290
1177
1192
ACGGGGTGGCGTGGGG
 79
2378





1516608
5798
5813
 700
 715
GGTCATCGGCATCGCG
 50
2379





1516617
6363
6378
1265
1280
GAATCTTTATTAAACT
 12
2380





1516619
2831
2846
  83
  98
CTCACCGGCTCCTGGG
 86
2381





1516622
3564
3579
N/A
N/A
TCAACCGCCAGTGAGG
 93
2382





1516631
3473
3488
N/A
N/A
CAACAGCCTAATCCCA
 83
2383





1516634
5992
6007
 894
 909
CTCCATCCGCGCGCGC
 94
2384





1516635
4866
4881
 348
 363
CAGGTAATCCCAAAAG
 63†
2385





1516636
5977
5992
 879
 894
CAGCCGCTCGCCCCAG
102
2386





1516637
6134
6149
1036
1051
GCTCGAACCAGCTCTT
 66
2387





1516639
5740
5755
 642
 657
CACCCGCAGCTCCTCG
 89
2388





1516640
6331
6346
1233
1248
GGACGGCTGGGGCGGG
 78
2389





1516643
5656
5671
 558
 573
GTCCGCGCCCAGCCGG
 80
2390





1516650
3454
3469
N/A
N/A
CATTTACCAAGCCGCC
 80
2391





1516651
3658
3673
N/A
N/A
CCATACCTGCCAGGAA
 80
2392





1516652
6307
6322
1209
1224
CTCCCGCTGCAGGCTG
 26
2393





1516664
3494
3509
N/A
N/A
CAAGCCTTGTTGCATT
 79
2394





1516683
3177
3192
N/A
N/A
CTAGCTACCGTGTCGC
 92
2395





1516685
6323
6338
1225
1240
GGGGCGGGGACAGGGT
114
2396





1516689
3360
3375
N/A
N/A
CATCTTCCTCTCCCGG
 86
2397





1516698
2855
2870
 107
 122
ATCCCCGTGCCCCCGA
108
2398





1516711
2965
2980
N/A
N/A
CTCACCCCCGCTCCTC
 89
2399





1516719
3421
3436
N/A
N/A
TTAACTCCCTCCTGGT
111
2400





1516720
3186
3201
N/A
N/A
AATCGACGGCTAGCTA
 88
2401





1516722
3836
3851
N/A
N/A
AACTCCTATCTCAAGG
 96
2402





1516724
6283
6298
1185
1200
CAGGAGGCACGGGGTG
 65
2403





1516725
3228
3243
N/A
N/A
TTCCATTTATGAGCTA
 70
2404





1516727
5913
5928
 815
 830
GCGGCCCGCACGCGGC
102
2405





1516733
5617
5632
 519
 534
GGACAGCCGTGCCCGC
 80
2406





1516739
5694
5709
 596
 611
CCGCGGTACTGCACCA
105
2407





1516752
5904
5919
 806
 821
ACGCGGCCCTGTTCCA
 93
2408





1516766
3524
3539
N/A
N/A
CCAACCCGGCCTCACC
 92
2409





1516776
3676
3691
N/A
N/A
ACCGAGCAAGCCCCGC
132
2410





1516798
3434
3449
N/A
N/A
ACCCATTCCCTATTTA
117
2411





1516801
3103
3118
N/A
N/A
CGATAAATGATAGTGA
 77
2412





1516816
4858
4873
 340
 355
CCCAAAAGCGACCCAG
 14†
2413





1516820
4301
4316
N/A
N/A
CGGAAAAGCATGTATT
 88
2414





1516821
5515
5530
N/A
N/A
GCGGCCGAGAGGGCGG
109†
2415





1516833
4193
4208
N/A
N/A
CAATGCATTAGAAACC
 88
2416





1516839
6259
6274
1161
1176
TCGCATGGCTGCAGGC
 10
2417





1516849
3446
3461
N/A
N/A
AAGCCGCCCCCAACCC
 96
2418





1516852
3065
3080
N/A
N/A
GCTTACATCCCAGTCC
128
2419





1516853
6291
6306
1193
1208
CGCGGAGGCAGGAGGC
 53
2420





1516855
4980
4995
N/A
N/A
GCCGCCCACCAGGAGG
 98†
2421





1516856
4989
5004
N/A
N/A
GGAGGTATAGCCGCCC
 97†
2422





1516859
2917
2932
N/A
N/A
TGAGACTACCTGGAGG
 95
2423





1516872
5029
5044
N/A
N/A
CAAGACTTAGCGACAG
 71†
2424





1516878
3636
3651
 210
 225
CAGCAACGCAGCCCAC
 68
2425





1516894
6339
6354
1241
1256
CCCCAGGAGGACGGCT
 92
2426





1516910
3508
3523
N/A
N/A
CCAGGTTAGCCTTCCA
 92
2427





1516918
6235
6250
1137
1152
TCAGTGATTGTCGCTG
 70
2428





1516919
6347
6362
1249
1264
AGGGTCCACCCCAGGA
 82
2429





1516920
2941
2956
N/A
N/A
AAGCCCGACCCCGAGT
110
2430





1516927
6112
6127
1014
1029
GGCCTGGAAGGCCTCG
 92
2431





1516944
6315
6330
1217
1232
GACAGGGTCTCCCGCT
 28
2432





1516971
6251
6266
1153
1168
CTGCAGGCTTCGGCGT
 78
2433





1516995
5038
5053
N/A
N/A
CAGGCCCCCCAAGACT
104†
2434





1516999
4543
4558
N/A
N/A
GCGGCCTGAACATGGT
 94
2435





1517003
6372
6387
1274
1289
AAACTTGGTGAATCTT
 26
2436





1517004
3261
3276
N/A
N/A
TTCTAAGCTCCAACCT
 89
2437





1517011
6299
6314
1201
1216
GCAGGCTGCGCGGAGG
 38
2438





1517013
4175
4190
N/A
N/A
TAACTCCCAGCCAGGT
121
2439





1517026
6267
6282
1169
1184
GCGTGGGGTCGCATGG
 15
2440





1517041
4693
4708
N/A
N/A
CATCTAGTACCTAGGG
 88
2441





1517097
6243
6258
1145
1160
TTCGGCGTTCAGTGAT
 57
2442





1517115
4850
4865
 332
 347
CGACCCAGTGCCAGTT
 98†
2443





1517125
2876
2891
 128
 143
TTTCTAGAGGCCCCTG
 75
2444





1517130
6365
6380
1267
1282
GTGAATCTTTATTAAA
 34
1982
















TABLE 38







Reduction of APOE RNA by 3-10-3 cEt gapmers


with mixed PO/PS internucleoside linkages at a


concentration of 4000 nM in Hep3B cells plated


at 20,000 cells per well















SEQ
SEQ
SEQ
SEQ






ID No:
ID No:
ID No:
ID No:






1
1
2
2

APOE



Compound
Start
Stop
Start
Stop
Sequence
(%
SEQ


Number
Site
Site
Site
Site
(5′ to 3′)
UTC)
ID NO





1335665
5028
5043
N/A
N/A
AAGACTTAGCGACAGG
 89†
2445





1335683
4191
4206
N/A
N/A
ATGCATTAGAAACCTC
 95
2446





1516526
6322
6337
1224
1239
GGGCGGGGACAGGGTC
 61
2447





1516530
3492
3507
N/A
N/A
AGCCTTGTTGCATTAT
 95
2448





1516533
6371
6386
1273
1288
AACTTGGTGAATCTTT
 45
2449





1516546
4673
4688
N/A
N/A
ACAGAAGGTGCTCCAC
110
2450





1516549
6362
6377
1264
1279
AATCTTTATTAAACTA
 43
2451





1516554
3258
3273
N/A
N/A
TAAGCTCCAACCTCAC
 76
2452





1516557
5572
5587
 474
 489
CTCCAGTTCCGATTTG
 70
2453





1516565
5976
5991
 878
 893
AGCCGCTCGCCCCAGG
118
2454





1516566
3792
3807
N/A
N/A
CAAATCGCTGTTCAGA
102
2455





1516580
5037
5052
N/A
N/A
AGGCCCCCCAAGACTT
111†
2456





1516584
3657
3672
N/A
N/A
CATACCTGCCAGGAAT
108
2457





1516585
5693
5708
 595
 610
CGCGGTACTGCACCAG
 94
2458





1516586
4128
4143
N/A
N/A
TGGGAGATCGAAACGG
 90
2459





1516605
3574
3589
N/A
N/A
AAACTGTCAATCAACC
113
2460





1516626
6234
6249
1136
1151
CAGTGATTGTCGCTGG
 54
2461





1516628
6266
6281
1168
1183
CGTGGGGTCGCATGGC
 18
2462





1516647
2916
2931
N/A
N/A
GAGACTACCTGGAGGC
108
2463





1516648
5833
5848
 735
 750
GGCCCCGGCCTGGTAC
116
2464





1516665
5990
6005
 892
 907
CCATCCGCGCGCGCAG
 65
2465





1516669
3835
3850
N/A
N/A
ACTCCTATCTCAAGGA
104
2466





1516676
3176
3191
N/A
N/A
TAGCTACCGTGTCGCT
 99
2467





1516699
6133
6148
1035
1050
CTCGAACCAGCTCTTG
 92
2468





1516701
6250
6265
1152
1167
TGCAGGCTTCGGCGTT
 51
2469





1516702
6242
6257
1144
1159
TCGGCGTTCAGTGATT
 72
2470





1516705
3312
3327
N/A
N/A
CCGCCGGTTCCATCTC
 87
2471





1516714
3635
3650
 209
 224
AGCAACGCAGCCCACA
 71
2472





1516738
6314
6329
1216
1231
ACAGGGTCTCCCGCTG
 70
2473





1516751
6330
6345
1232
1247
GACGGCTGGGGCGGGG
119
2474





1516754
2805
2820
  57
  72
CTTCACCTCCGCTGGG
 94
2475





1516764
3472
3487
N/A
N/A
AACAGCCTAATCCCAG
 40
2476





1516767
3432
3447
N/A
N/A
CCATTCCCTATTTAAC
117
2477





1516804
3445
3460
N/A
N/A
AGCCGCCCCCAACCCA
108
2478





1516813
5912
5927
 814
 829
CGGCCCGCACGCGGCC
111
2479





1516826
3341
3356
N/A
N/A
TCAAATTCCATCCCCC
 85
2480





1516831
6306
6321
1208
1223
TCCCGCTGCAGGCTGC
 56
2481





1516835
2854
2869
 106
 121
TCCCCGTGCCCCCGAC
111
2482





1516868
6338
6353
1240
1255
CCCAGGAGGACGGCTG
 89
2483





1516870
3420
3435
N/A
N/A
TAACTCCCTCCTGGTC
101
2484





1516874
3507
3522
N/A
N/A
CAGGTTAGCCTTCCAA
106
2485





1516877
6258
6273
1160
1175
CGCATGGCTGCAGGCT
 35
2486





1516879
5739
5754
 641
 656
ACCCGCAGCTCCTCGG
104
2487





1516883
4233
4248
N/A
N/A
GATCACAGCTGCCCCG
112
2488





1516889
4979
4994
N/A
N/A
CCGCCCACCAGGAGGG
104†
2489





1516891
6354
6369
1256
1271
TTAAACTAGGGTCCAC
 48
2490





1516895
5090
5105
N/A
N/A
GCTAAAGCCAGGAGTC
107†
2491





1516898
3453
3468
N/A
N/A
ATTTACCAAGCCGCCC
115
2492





1516901
6298
6313
1200
1215
CAGGCTGCGCGGAGGC
 46
2493





1516905
3097
3112
N/A
N/A
ATGATAGTGACAACTC
 79
2494





1516926
2875
2890
 127
 142
TTCTAGAGGCCCCTGA
104
2495





1516941
4988
5003
N/A
N/A
GAGGTATAGCCGCCCA
119†
2496





1516945
6274
6289
1176
1191
CGGGGTGGCGTGGGGT
122
2497





1516967
3185
3200
N/A
N/A
ATCGACGGCTAGCTAC
108
2498





1516980
6282
6297
1184
1199
AGGAGGCACGGGGTGG
 78
2499





1516997
5344
5359
N/A
N/A
GCAGAGACGAAGAAGG
 89†
2500





1517007
2949
2964
N/A
N/A
CTCTCCCCAAGCCCGA
 86
2501





1517008
3557
3572
N/A
N/A
CCAGTGAGGACTCCTC
123
2502





1517012
5787
5802
 689
 704
TCGCGGAGGAGCCGCT
 99
2503





1517028
5773
5788
 675
 690
CTTACGCAGCTTGCGC
 99
2504





1517032
6111
6126
1013
1028
GCCTGGAAGGCCTCGG
104
2505





1517035
2940
2955
N/A
N/A
AGCCCGACCCCGAGTA
104
2506





1517045
2932
2947
N/A
N/A
CCCGAGTAGCTCTCCT
108
2507





1517051
3674
3689
N/A
N/A
CGAGCAAGCCCCGCCC
131
2508





1517055
5648
5663
 550
 565
CCAGCCGGGCCTGCGC
 90
2509





1517067
4857
4872
 339
 354
CCAAAAGCGACCCAGT
 23†
2510





1517070
6290
6305
1192
1207
GCGGAGGCAGGAGGCA
 81
2511





1517071
6346
6361
1248
1263
GGGTCCACCCCAGGAG
107
2512





1517087
5903
5918
 805
 820
CGCGGCCCTGTTCCAC
 58
2513





1517089
3198
3213
N/A
N/A
TTAAAGTTCTCCAATC
 92
2514





1517090
3064
3079
N/A
N/A
CTTACATCCCAGTCCA
 97
2515





1517092
3523
3538
N/A
N/A
CAACCCGGCCTCACCC
129
2516





1517093
4842
4857
 324
 339
TGCCAGTTCCCAGCGC
177
2517





1517096
4865
4880
 347
 362
AGGTAATCCCAAAAGC
 87†
2518





1517103
3227
3242
N/A
N/A
TCCATTTATGAGCTAA
112
2519





1517127
4542
4557
N/A
N/A
CGGCCTGAACATGGTT
114
2520





1517130
6365
6380
1267
1282
GTGAATCTTTATTAAA
 34
1982





1517139
4707
4722
N/A
N/A
TGACCCCGTCCAGGCA
110
2521









Example 5: Dose-Dependent Inhibition of Human APOE in HepG2 Cells by Modified Oligonucleotides

Modified oligonucleotides selected from Examples 1-4 above were tested at various doses in HepG2 cells. Cultured HepG2 cells at a density of 10,000 cells per well were treated by Lipofectin with various concentrations of modified oligonucleotide as specified in the tables below. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. Human APOE primer-probe set RTS3073 (described herein in Example 1) was used to measure RNA levels as described above. APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in the tables below as percent APOE RNA, relative to untreated control cells (% UTC). Modified oligonucleotides marked with an “†” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.


The half maximal inhibitory concentration (IC50) of each modified oligonucleotide was calculated using a linear regression on a log/linear plot of the data in Excel and is also presented in the tables below.









TABLE 39







Dose-dependent reduction of human APOE RNA


in HepG2 cells by modified oligonucleotides










APOE RNA (% UTC)















Compound
6.25
12.5
25
50
100
200
IC50


No.
nM
nM
nM
nM
nM
nM
(μM)

















426010†
130
117
108
81
48
38
0.14


426011†
124
113
96
71
29
24
0.08


426013†
84
76
52
24
7
5
0.03


426017†
100
98
66
38
14
12
0.04


426020
142
123
114
92
55
54
>0.2


426028
128
117
98
69
47
39
0.12


426047
124
121
120
108
60
53
>0.2


426048
107
104
70
57
50
32
0.09


426049
121
119
109
80
59
40
0.16


426055
120
112
105
86
83
60
>0.2









Example 6: Dose-Dependent Inhibition of Human APOE in Hep3B Cells by Modified Oligonucleotides

Modified oligonucleotides selected from Examples 1˜4 above were tested at various doses in Hep3B cells. Cultured Hep3B cells at a density of 20,000 cells per well were treated by electroporation with various concentrations of modified oligonucleotide as specified in the tables below. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. Human APOE primer-probe set RTS3073 (described herein in Example 1) was used to measure RNA levels as described above. APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Reduction of APOE RNA is presented in the tables below as percent APOE RNA, relative to untreated control cells (% UTC). Modified oligonucleotides marked with an “f” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.


The half maximal inhibitory concentration (IC50) of each modified oligonucleotide was calculated using a linear regression on a log/linear plot of the data in Excel and is also presented in the tables below.









TABLE 40







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50













No.
62 nM
185 nM
556 nM
1667 nM
5000 nM
(μM)
















426048
116
85
57
38
24
1.10


688999
137
131
151
100
79
>5


689003
115
109
92
69
48
5.68


689009
117
136
126
78
72
>5


689013
112
63
54
64
18
1.13


689014
97
122
67
44
19
1.40


689015
99
50
32
30
12
0.41


689016
131
75
54
58
38
1.72


689017
145
98
82
71
26
2.29


689023
132
172
116
84
53
>5


689027
115
99
100
65
66
>5


689028
123
96
102
68
29
3.11


689029
136
114
99
75
56
>5


689040
135
121
93
103
74
>5


689042
124
133
110
93
66
>5
















TABLE 41







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50












No.
185 nM
556 nM
1667 nM
5000 nM
(μM)















426048
71
72
41
15
0.94


688711
184
226
167
132
>5


688848
77
94
97
73
>5


688886
82
103
108
66
>5


689015
55
31
15
9
0.19


689016
71
62
50
22
1.06


689029
73
71
64
39
3.22


689043
65
57
38
12
0.63


689044
135
101
53
31
2.42


689046
58
32
26
15
0.24


689047
92
91
72
50
>5


689048
53
31
25
13
0.17


689049
99
76
35
32
1.55


689050
75
69
18
15
0.73


689051
61
39
29
14
0.34


689090†
92
116
110
92
>5


689102†
100
138
98
85
>5


689110
95
96
78
83
>5


689118
67
49
29
8
0.50
















TABLE 42







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50












No.
78.125 nM
312.5 nM
1250 nM
5000 nM
(μM)















1516537†
46
31
19
11
<0.08


1516553
63
46
17
19
0.19


1516570
71
56
33
23
0.43


1516613
35
21
8
3
<0.08


1516617
84
54
30
16
0.49


1516620
76
59
33
15
0.46


1516715
74
58
29
11
0.41


1516750
72
62
33
11
0.44


1516758
44
26
25
26
<0.08


1516771
82
46
32
17
0.43


1516828
64
43
20
15
0.19


1516834
51
32
26
30
<0.08


1516839
56
41
17
14
0.12


1516866
59
42
18
10
0.15


1516871†
29
16
10
7
<0.08


1516931
101
58
29
21
0.71


1516937†
40
18
6
5
<0.08


1517136†
69
51
34
24
0.37


1517427
95
50
25
27
0.60
















TABLE 43







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50












No.
78.125 nM
312.5 nM
1250 nM
5000 nM
(μM)















 689043
76
55
35
18
0.47


 708021
84
50
28
14
0.45


1335661
78
65
34
14
0.55


1335672
82
56
25
12
0.44


1516555
73
40
33
15
0.29


1516628
71
46
29
11
0.29


1516652
70
57
41
17
0.47


1516672
72
53
35
25
0.45


1516816†
24
13
11
5
<0.08


1516862
62
43
19
11
0.17


1516944
70
51
36
13
0.36


1517003
44
38
25
25
<0.08


1517026
33
19
10
5
<0.08


1517067†
54
35
21
10
0.10


1517123
96
73
44
26
1.10


1517427
75
60
32
10
0.44


1517437†
28
13
4
4
<0.08


1517532
66
37
25
11
0.19


1517578
79
62
52
15
0.72
















TABLE 44







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50












No.
78.125 nM
312.5 nM
1250 nM
5000 nM
(μM)















1516539
86
65
36
19
0.68


1516559
81
55
31
21
0.51


1516607
96
67
38
22
0.87


1516658
50
31
14
11
<0.08


1516740
31
20
17
27
<0.08


1516778
51
26
18
5
<0.08


1516794
91
62
33
22
0.70


1516881
82
38
45
24
0.50


1516886
99
78
45
28
1.28


1516890
56
58
26
11
0.23


1516932
45
30
23
23
<0.08


1516936
75
57
32
16
0.44


1516974
66
46
23
30
0.25


1517024
27
25
23
23
<0.08


1517029
72
57
30
23
0.43


1517063
72
39
28
27
0.28


1517130
94
76
46
34
1.43


1517131
88
60
36
23
0.70


1517427
89
66
36
29
0.87
















TABLE 45







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50












No.
78.125 nM
312.5 nM
1250 nM
5000 nM
(μM)















 942586
78
52
25
12
0.38


1516589
80
79
51
33
1.53


1516824
89
94
92
93
>5


1516892
87
95
87
88
>5


1517016
96
89
71
51
>5


1517130
89
73
46
23
1.00


1517180
91
75
53
31
1.47


1517383
71
45
21
9
0.26


1517427
85
57
29
15
0.52


1517529†
33
17
13
9
<0.08


1517535
80
53
29
21
0.46


1517574
93
73
48
30
1.29


1517746†
84
57
32
18
0.54


1517770
56
26
18
5
0.08


1517807†
63
30
20
14
0.12


1517837
52
32
29
25
<0.08


1517849
66
49
32
27
0.33


1517853
73
56
28
16
0.39


1517885
79
58
33
18
0.52
















TABLE 46







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50












No.
78.125 nM
312.5 nM
1250 nM
5000 nM
(μM)















 708024
46
25
26
20
<0.08


 942588
82
57
31
25
0.57


1516623†
74
44
20
9
0.27


1516646
87
65
37
23
0.76


1516656
73
46
16
11
0.27


1516681
77
42
27
24
0.35


1516709†
68
50
28
9
0.29


1517082
66
32
16
9
0.15


1517085
77
46
17
9
0.30


1517130
88
66
45
22
0.87


1517208
100
79
75
45
4.89


1517220
80
47
30
17
0.41


1517269†
48
32
20
12
<0.08


1517427
81
52
27
13
0.42


1517508
67
50
25
15
0.28


1517736†
77
73
53
25
1.07


1517841
86
72
64
34
2.02


1517863†
39
24
20
14
<0.08


1517874
81
51
29
29
0.52









Example 7: Dose-Dependent Inhibition of Human APOE in Hep3B Cells by Modified Oligonucleotides

Modified oligonucleotides selected from Examples 1˜4 above were tested at various doses in Hep3B cells. Cultured Hep3B cells at a density of 20,000 cells per well were treated by electroporation with various concentrations of modified oligonucleotide as specified in the tables below. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. Human APOE primer-probe set RTS4652 (forward sequence CGCCTGGACGAGGTGAAG, designated herein as SEQ ID NO: 13; reverse sequence CCACTGGCGCTGCATGT, designated herein as SEQ ID NO: 14; probe sequence TTCCAGGCCCGCCTCAAGAGC, designated herein as SEQ ID NO: 15) was used to measure RNA levels as described above. APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Reduction of APOE RNA is presented in the tables below as percent APOE RNA, relative to untreated control cells (% UTC). Modified oligonucleotides marked with an “†” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.


The half maximal inhibitory concentration (IC50) of each modified oligonucleotide was calculated using a linear regression on a log/linear plot of the data in Excel and is also presented in the tables below.









TABLE 47







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50












No.
185 nM
556 nM
1667 nM
5000 nM
(μM)















426048
95
67
37
16
1.13


688739†
100
108
112
67
>5


688740†
94
76
86
55
>5


688742†
65
112
70
77
>5


688746†
114
109
76
71
>5


688750†
104
80
122
108
>5


688753†
94
81
83
62
>5


688758†
70
76
72
56
>5


688759†
85
125
70
74
>5


688761†
91
95
88
93
>5


688763†
101
90
109
101
>5


688769†
80
97
87
71
>5


688770†
69
73
81
53
>5


688776
117
89
87
85
>5


688783
72
62
53
35
1.62


688787
107
119
73
57
>5


688802
74
30
46
20
0.55


689014
102
85
54
43
2.86


689016
84
50
70
26
1.68
















TABLE 48







Dose-dependent reduction of human APOE RNA


in Hep3B cells by modified oligonucleotides









Compound
APOE RNA (% UTC)
IC50












No.
185 nM
556 nM
1667 nM
5000 nM
(μM)















426048
65
74
47
56
>5


688738†
81
76
85
87
>5


688748†
94
139
123
114
>5


688749†
109
88
100
58
>5


688752†
108
131
147
95
>5


688756†
70
73
88
55
>5


688762†
100
71
71
51
>5


688771†
97
95
101
89
>5


688774†
135
106
112
97
>5


688775†
137
112
201
104
>5


688777
112
99
113
97
>5


688778
116
75
78
58
>5


688780
99
76
94
66
>5


688800
125
108
92
92
>5


688801
128
92
94
95
>5


688806
76
152
116
75
>5


688811
88
164
62
140
>5


689014
83
81
98
56
>5


689016
95
84
102
49
>5









Example 8: Dose-Dependent Inhibition of Human APOE in Transgenic Primary Mouse Hepatocytes by Modified Oligonucleotides

Modified oligonucleotides selected from Examples 1-4 above were tested at various doses in transgenic primary mouse hepatocytes. An ApoE4 transgenic mouse model (model #1549) was obtained from Taconic Biosciences. Cultured transgenic primary mouse hepatocytes at a density of 15,000 cells per well were treated by free uptake with various concentrations of modified oligonucleotide as specified in the tables below. After a treatment period of approximately 24 hours, total RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. Human APOE primer-probe set RTS3073 (described herein in Example 1) was used to measure RNA levels as described above. APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Reduction of APOE RNA is presented in the tables below as percent APOE RNA, relative to untreated control cells (% UTC). Modified oligonucleotides marked with an “†” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region.


The half maximal inhibitory concentration (IC50) of each modified oligonucleotide was calculated using a linear regression on a log/linear plot of the data in Excel and is also presented in the tables below.









TABLE 49







Dose-dependent reduction of human APOE RNA in transgenic


primary mouse hepatocytes by modified oligonucleotides










APOE RNA (% UTC)















Compound
222
667
2000
6000
IC50



No.
nM
nM
nM
nM
(μM)


















689046
6
7
4
5
<0.2



942358
45
53
57
58
0.54



942363
77
87
81
118
>6



942472
59
79
92
104
>6



942490
78
73
86
107
>6



942496
63
81
81
94
>6



942497
85
73
67
81
>6



942514
76
75
71
61
>6



942585
24
24
22
36
<0.2



942591
23
25
24
18
<0.2



942594
45
46
53
50
2.28



942595
43
45
36
38
<0.2



942597
56
52
42
49
1.01



942618
99
83
76
111
>6



942619
97
92
75
63
>6



942627
144
107
86
63
>6



942649
76
73
64
68
>6



942765†
131
86
79
95
>6



942774†
75
75
80
92
>6

















TABLE 50







Dose-dependent reduction of human APOE RNA in transgenic


primary mouse hepatocytes by modified oligonucleotides










APOE RNA (% UTC)















Compound
222
667
2000
6000
IC50



No.
nM
nM
nM
nM
(μM)


















689046
9
6
5
5
<0.2



942354
57
58
72
103
0.23



942423
76
68
68
62
>6



942499
90
94
92
106
>6



942512
78
93
75
90
>6



942542
135
113
102
142
>6



942552
94
85
79
110
>6



942564
67
89
83
109
>6



942587
5
6
5
6
<0.2



942588
4
5
4
4
<0.2



942593
60
33
35
35
0.28



942598
15
13
14
17
<0.2



942604
83
85
100
127
>6



942617
82
87
72
69
>6



942629
101
98
106
103
>6



942665
120
120
87
110
>6



942670
101
136
141
183
>6



942724
96
74
86
80
>6



942778†
108
107
99
102
>6










Example 9: Design of RNAi Compounds with Antisense RNAi Oligonucleotides Complementary to a Human APOE Nucleic Acid

RNAi compounds comprising antisense RNAi oligonucleotides complementary to a human APOE nucleic acid and sense RNAi oligonucleotides complementary to the antisense RNAi oligonucleotides were designed as follows.


The RNAi compounds in the tables below consist of an antisense RNAi oligonucleotide and a sense RNAi oligonucleotide. The antisense RNAi oligonucleotide in each case is 23 nucleosides in length; has a sugar motif (from 5′ to 3′) of: yfyfyfyfyfyfyfyfyfyfyyy; wherein “y” represents a 2′40-methylribosyl sugar, and the “f” represents a 2′-fluororibosyl sugar; and a linkage motif (from 5′ to 3′) of: ssooooooooooooooooooss; wherein ‘o’ represents a phosphodiester internucleoside linkage and ‘s’ represents a phosphorothioate internucleoside linkage. The sense RNAi oligonucleotide in each case is 21 nucleosides in length; has a sugar motif (from 5′ to 3′) of: fyfyfyfyfyfyfyfyfyfyf; wherein “y” represents a 2′-O-methylribosyl sugar, and the “f” represents a 2′-fluororibosyl sugar; and a linkage motif (from 5′ to 3′) of: ssooooooooooooooooss; wherein ‘o’ represents a phosphodiester internucleoside linkage and ‘s’ represents a phosphorothioate internucleoside linkage. Each antisense RNAi oligonucleotides is complementary to the target nucleic acid (APOE), and each sense RNAi oligonucleotides is complementary to the first of the 21 nucleosides of the antisense RNAi oligonucleotide (from 5′ to 3′) wherein the last two 3′-nucleosides of the antisense RNAi oligonucleotides are not paired with the sense RNAi oligonucleotide (are overhanging nucleosides).


“Start site” indicates the 5′-most nucleoside to which the antisense RNAi oligonucleotides is complementary in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the antisense RNAi oligonucleotide is complementary in the human gene sequence. Each modified antisense RNAi oligonucleoside listed in the tables below is 100% complementary to SEQ ID NO: 2 (described herein above). In cases where the antisense RNAi oligonucleotide is not 100% complementary to SEQ ID NO: 2, the antisense RNAi oligonucleotide is mapped to SEQ ID NO: 3 as shown in Table 52 below. Any mismatches of the antisense RNAi oligonucleotide to SEQ ID NO:3 are indicated as below.









TABLE 51







RNAi compounds targeting human APOE SEQ ID NO: 2



















SEQ ID
SEQ ID






Anti-


NO: 2
NO: 2






sense


Anti-
Anti-
Sense





RNAi
Antisense
SEQ
sense
sense
RNAi
Sense
SEQ


Compoud
Oligo
Sequence
ID
Start
Stop
oligo
Sequence
ID


Number
ID
(5′ to 3′)
NO
Site
Site
ID
(5′ to 3′)
NO





1518137
1518154
UCACCUCCGCUG
2552
  48
  70
1518148
ACUCAGCCCCA
2743




GGGCUGAGUAG




GCGGAGGUGA






1518139
1518153
AUGUGACCAGCA
2553
 210
 232
1518145
GGGCUGCGUUG
2744




ACGCAGCCCAC




CUGGUCACAU






1518140
1518152
CACAGAACCUUC
2554
 190
 212
1518147
CAGGAAGAUGA
2745




AUCUUCCUGCC




AGGUUCUGUG






1518141
1518150
CUCCUGGGGAAG
2555
  68
  90
1518146
AAGGACGUCCU
2746




GACGUCCUUCA




UCCCCAGGAG






1518142
1518151
GGCCUGGCAUCC
2556
 230
 252
1518144
UUCCUGGCAGG
2747




UGCCAGGAAUG




AUGCCAGGCC






1518155
1518171
UCCACCGCUUGC
2557
 250
 272
1518164
CAAGGUGGAGC
2748




UCCACCUUGGC




AAGCGGUGGA






1518156
1518169
CACCCAGCGCAG
2558
 350
 372
1518161
UGGGAUUACCU
2749




GUAAUCCCAAA




GCGCUGGGUG






1518157
1518168
AAAAGCGACCCA
2559
 330
 352
1518162
AACUGGCACUG
2750




GUGCCAGUUCC




GGUCGCUUUU






1518158
1518172
UCCCAGCGCUGG
2560
 310
 332
1518165
GCAGAGCGGCC
2751




CCGCUCUGCCA




AGCGCUGGGA






1518159
1518167
CCACUCGGUCUG
2561
 290
 312
1518163
CUGCGCCAGCA
2752




CUGGCGCAGCU




GACCGAGUGG






1518160
1518170
GCUCGGGCUCCG
2562
 270
 292
1518166
AGACAGAGCCG
2753




GCUCUGUCUCC




GAGCCCGAGC






1518173
1518183
ACCUGCUCAGAC
2563
 370
 392
1518181
GCAGACACUGU
2754




AGUGUCUGCAC




CUGAGCAGGU






1518174
1518185
AGGCCUUCAACU
2564
 450
 472
1518180
CCAUGAAGGAG
2755




CCUUCAUGGUC




UUGAAGGCCU






1518175
1518187
GUCUCGUCCAUC
2565
 430
 452
1518178
GAGGGCGCUGA
2756




AGCGCCCUCAG




UGGACGAGAC






1518176
1518190
AGCUGAGCAGCU
2566
 390
 412
1518186
UGCAGGAGGAG
2757




CCUCCUGCACC




CUGCUCAGCU






1518177
1518188
CAGUUCCUGGGU
2567
 410
 432
1518182
UCCCAGGUCAC
2758




GACCUGGGAGC




CCAGGAACUG






1518179
1518189
UUCCUCCAGUUC
2568
 470
 492
1518184
UACAAAUCGGA
2759




CGAUUUGUAGG




ACUGGAGGAA






1518191
1518204
UCCGCCACCGGG
2569
 490
 512
1518200
ACAACUGACCC
2760




GUCAGUUGUUC




CGGUGGCGGA






1518192
1518208
GCCGCGGUACUG
2570
 590
 612
1518198
CGCCUGGUGCA
2761




CACCAGGCGGC




GUACCGCGGC






1518193
1518207
GGCCGCACACGU
2571
 570
 592
1518199
ACAUGGAGGAC
2762




CCUCCAUGUCC




GUGUGCGGCC






1518194
1518203
UCCGCGCCCAGC
2572
 550
 572
1518197
GCAGGCCCGGC
2763




CGGGCCUGCGC




UGGGCGCGGA






1518195
1518205
CGCCGCCUGCAG
2573
 530
 552
1518202
UCCAAGGAGCU
2764




CUCCUUGGACA




GCAGGCGGCG






1518196
1518206
ACAGCCGUGCCC
2574
 510
 532
1518201
AGGAGACGCGG
2765




GCGUCUCCUCC




GCACGGCUGU






1518209
1518221
CCGAGCAUGGCC
2575
 610
 632
1518218
CGAGGUGCAGG
2766




UGCACCUCGCC




CCAUGCUCGG






1518210
1518222
UGCCAGGCGCUU
2576
 710
 732
1518217
GACCUGCAGAA
2767




CUGCAGGUCAU




GCGCCUGGCA






1518211
1518226
CAUCGGCAUCGC
2577
 690
 712
1518216
GGCUCCUCCGC
2768




GGAGGAGCCGC




GAUGCCGAUG






1518212
1518223
CGCUUACGCAGC
2578
 670
 692
1518215
CCUGCGCAAGC
2769




UUGCGCAGGUG




UGCGUAAGCG






1518213
1518224
GUGGGAGGCGAG
2579
 650
 672
1518220
CGGGUGCGCCU
2770




GCGCACCCGCA




CGCCUCCCAC






1518214
1518225
GCAGCUCCUCGG
2580
 630
 652
1518219
GCCAGAGCACC
2771




UGCUCUGGCCG




GAGGAGCUGC






1518227
1518240
CGGGCCCCGGCC
2581
 730
 752
1518234
AGUGUACCAGG
2772




UGGUACACUGC




CCGGGGCCCG






1518228
1518241
UGGCGGCCCGCA
2582
 810
 832
1518233
AGGGCCGCGUG
2773




CGCGGCCCUGU




CGGGCCGCCA






1518229
1518239
UGUUCCACCAGG
2583
 790
 812
1518235
CCUGGGGCCCC
2774




GGCCCCAGGCG




UGGUGGAACA






1518230
1518242
GCGCUCGCGGAU
2584
 770
 792
1518237
CUCAGCGCCAU
2775




GGCGCUGAGGC




CCGCGAGCGC






1518231
1518243
GGCCGCGCUCGG
2585
 750
 772
1518236
GCGAGGGCGCC
2776




CGCCCUCGCGG




GAGCGCGGCC






1518232
1518244
GCCGGCCAGGGA
2586
 830
 852
1518238
ACUGUGGGCUC
2777




GCCCACAGUGG




CCUGGCCGGC






1518245
1518257
GCCCGCUCCUGU
2587
 850
 872
1518253
CCAGCCGCUAC
2778




AGCGGCUGGCC




AGGAGCGGGC






1518246
1518261
GCGCACCUCCGC
2588
 950
 972
1518254
GAGCAGGUGGC
2779




CACCUGCUCCU




GGAGGUGCGC






1518247
1518259
CCUUCACCUCGU
2589
 930
 952
1518252
ACCGCCUGGAC
2780




CCAGGCGGUCG




GAGGUGAAGG






1518248
1518258
CUCCUCCAUCCG
2590
 890
 912
1518251
CUGCGCGCGCG
2781




CGCGCGCAGCC




GAUGGAGGAG






1518249
1518260
GCCGCUCGCCCC
2591
 870
 892
1518255
CCCAGGCCUGG
2782




AGGCCUGGGCC




GGCGAGCGGC






1518250
1518262
UCGCGGGUCCGG
2592
 910
 932
1518256
GAUGGGCAGCC
2783




CUGCCCAUCUC




GGACCCGCGA






1518263
1518279
GCCUGCUCCUCC
2593
 970
 992
1518271
CGCCAAGCUGG
2784




AGCUUGGCGCG




AGGAGCAGGC






1518264
1518276
GCUGCAUGUCUU
2594
1050
1072
1518270
CCCUGGUGGAA
2785




CCACCAGGGGC




GACAUGCAGC






1518265
1518278
CACCAGCCCGGC
2595
1070
1092
1518273
CGCCAGUGGGC
2786




CCACUGGCGCU




CGGGCUGGUG






1518266
1518275
GGCUCGAACCAG
2596
1030
1052
1518269
CCUCAAGAGCU
2787




CUCUUGAGGCG




GGUUCGAGCC






1518267
1518280
CCUGCAGGCGUA
2597
 990
1012
1518272
CCCAGCAGAUA
2788




UCUGCUGGGCC




CGCCUGCAGG






1518268
1518277
GCGGGCCUGGAA
2598
1010
1032
1518274
GCCGAGGCCUU
2789




GGCCUCGGCCU




CCAGGCCCGC






1518281
1518293
ACGGCAGCCUGC
2599
1090
1112
1518288
GGAGAAGGUGC
2790




ACCUUCUCCAC




AGGCUGCCGU






1518282
1518295
CGGCGUUCAGUG
2600
1136
1158
1518289
AGCGACAAUCA
2791




AUUGUCGCUGG




CUGAACGCCG






1518283
1518294
GGCGUUCAGUGA
2601
1135
1157
1518287
CAGCGACAAUC
2792




UUGUCGCUGGG




ACUGAACGCC






1518284
1518297
UCAGUGAUUGUC
2602
1130
1152
1518291
GUGCCCAGCGA
2793




GCUGGGCACAG




CAAUCACUGA






1518285
1518296
CAGGGGCGGCGC
2603
1110
1132
1518290
UGGGCACCAGC
2794




UGGUGCCCACG




GCCGCCCCUG






1518286
1518298
UCGGCGUUCAGU
2604
1137
1159
1518292
GCGACAAUCAC
2795




GAUUGUCGCUG




UGAACGCCGA






1518299
1518312
UUCGGCGUUCAG
2605
1138
1160
1518305
CGACAAUCACU
2796




UGAUUGUCGCU




GAACGCCGAA






1518300
1518311
AGGCUUCGGCGU
2606
1142
1164
1518306
AAUCACUGAAC
2797




UCAGUGAUUGU




GCCGAAGCCU






1518301
1518313
GGCUUCGGCGUU
2607
1141
1163
1518307
CAAUCACUGAA
2798




CAGUGAUUGUC




CGCCGAAGCC






1518302
1518314
GCUUCGGCGUUC
2608
1140
1162
1518308
ACAAUCACUGA
2799




AGUGAUUGUCG




ACGCCGAAGC






1518303
1518316
CUUCGGCGUUCA
2609
1139
1161
1518309
GACAAUCACUG
2800




GUGAUUGUCGC




AACGCCGAAG






1518304
1518315
CAGGCUUCGGCG
2610
1143
1165
1518310
AUCACUGAACG
2801




UUCAGUGAUUG




CCGAAGCCUG






1518317
1518329
UGCAGGCUUCGG
2611
1145
1167
1518323
CACUGAACGCC
2802




CGUUCAGUGAU




GAAGCCUGCA






1518318
1518331
UGGCUGCAGGCU
2612
1149
1171
1518326
GAACGCCGAAG
2803




UCGGCGUUCAG




CCUGCAGCCA






1518319
1518334
GCAGGCUUCGGC
2613
1144
1166
1518324
UCACUGAACGC
2804




GUUCAGUGAUU




CGAAGCCUGC






1518320
1518332
GGCUGCAGGCUU
2614
1148
1170
1518325
UGAACGCCGAA
2805




CGGCGUUCAGU




GCCUGCAGCC






1518321
1518333
GCUGCAGGCUUC
2615
1147
1169
1518328
CUGAACGCCGA
2806




GGCGUUCAGUG




AGCCUGCAGC






1518322
1518330
CUGCAGGCUUCG
2616
1146
1168
1518327
ACUGAACGCCG
2807




GCGUUCAGUGA




AAGCCUGCAG






1518335
1518347
AUGGCUGCAGGC
2617
1150
1172
1518342
AACGCCGAAGC
2808




UUCGGCGUUCA




CUGCAGCCAU






1518336
1518348
UCGCAUGGCUGC
2618
1154
1176
1518341
CCGAAGCCUGC
2809




AGGCUUCGGCG




AGCCAUGCGA






1518337
1518351
CGCAUGGCUGCA
2619
1153
1175
1518346
GCCGAAGCCUG
2810




GGCUUCGGCGU




CAGCCAUGCG






1518338
1518350
GCAUGGCUGCAG
2620
1152
1174
1518344
CGCCGAAGCCU
2811




GCUUCGGCGUU




GCAGCCAUGC






1518339
1518352
CAUGGCUGCAGG
2621
1151
1173
1518343
ACGCCGAAGCC
2812




CUUCGGCGUUC




UGCAGCCAUG






1518340
1518349
GUCGCAUGGCUG
2622
1155
1177
1518345
CGAAGCCUGCA
2813




CAGGCUUCGGC




GCCAUGCGAC






1518353
1518355
GGUCGCAUGGCU
2623
1156
1178
1518354
GAAGCCUGCAG
2814




GCAGGCUUCGG




CCAUGCGACC






1518356
1518369
GGGUCGCAUGGC
2624
1157
1179
1518364
AAGCCUGCAGC
2815




UGCAGGCUUCG




CAUGCGACCC






1518357
1518367
GGGGUCGCAUGG
2625
1158
1180
1518362
AGCCUGCAGCC
2816




CUGCAGGCUUC




AUGCGACCCC






1518358
1518366
CGUGGGGUCGCA
2626
1161
1183
1518361
CUGCAGCCAUG
2817




UGGCUGCAGGC




CGACCCCACG






1518359
1518370
GUGGGGUCGCAU
2627
1160
1182
1518363
CCUGCAGCCAU
2818




GGCUGCAGGCU




GCGACCCCAC






1518360
1518368
UGGGGUCGCAUG
2628
1159
1181
1518365
GCCUGCAGCCA
2819




GCUGCAGGCUU




UGCGACCCCA






1518371
1518385
UGGCGUGGGGUC
2629
1164
1186
1518380
CAGCCAUGCGA
2820




GCAUGGCUGCA




CCCCACGCCA






1518372
1518388
GGGUGGCGUGGG
2630
1167
1189
1518379
CCAUGCGACCCC
2821




GUCGCAUGGCU




ACGCCACCC






1518373
1518386
GGUGGCGUGGGG
2631
1166
1188
1518381
GCCAUGCGACC
2822




UCGCAUGGCUG




CCACGCCACC






1518374
1518387
GGCGUGGGGUCG
2632
1163
1185
1518377
GCAGCCAUGCG
2823




CAUGGCUGCAG




ACCCCACGCC






1518375
1518384
GUGGCGUGGGGU
2633
1165
1187
1518382
AGCCAUGCGAC
2824




CGCAUGGCUGC




CCCACGCCAC






1518376
1518383
GCGUGGGGUCGC
2634
1162
1184
1518378
UGCAGCCAUGC
2825




AUGGCUGCAGG




GACCCCACGC






1518389
1518406
CGGGGUGGCGUG
2635
1169
1191
1518400
AUGCGACCCCA
2826




GGGUCGCAUGG




CGCCACCCCG






1518390
1518404
GGCACGGGGUGG
2636
1173
1195
1518397
GACCCCACGCCA
2827




CGUGGGGUCGC




CCCCGUGCC






1518391
1518402
GCACGGGGUGGC
2637
1172
1194
1518399
CGACCCCACGCC
2828




GUGGGGUCGCA




ACCCCGUGC






1518392
1518403
CACGGGGUGGCG
2638
1171
1193
1518398
GCGACCCCACGC
2829




UGGGGUCGCAU




CACCCCGUG






1518393
1518405
GGGGUGGCGUGG
2639
1168
1190
1518396
CAUGCGACCCC
2830




GGUCGCAUGGC




ACGCCACCCC






1518394
1518401
ACGGGGUGGCGU
2640
1170
1192
1518395
UGCGACCCCAC
2831




GGGGUCGCAUG




GCCACCCCGU






1518407
1518419
GAGGCACGGGGU
2641
1175
1197
1518416
CCCCACGCCACC
2832




GGCGUGGGGUC




CCGUGCCUC






1518408
1518423
GCAGGAGGCACG
2642
1179
1201
1518415
ACGCCACCCCGU
2833




GGGUGGCGUGG




GCCUCCUGC






1518409
1518424
CAGGAGGCACGG
2643
1178
1200
1518413
CACGCCACCCCG
2834




GGUGGCGUGGG




UGCCUCCUG






1518410
1518421
GGAGGCACGGGG
2644
1176
1198
1518414
CCCACGCCACCC
2835




UGGCGUGGGGU




CGUGCCUCC






1518411
1518422
AGGAGGCACGGG
2645
1177
1199
1518418
CCACGCCACCCC
2836




GUGGCGUGGGG




GUGCCUCCU






1518412
1518420
AGGCACGGGGUG
2646
1174
1196
1518417
ACCCCACGCCAC
2837




GCGUGGGGUCG




CCCGUGCCU






1518425
1518440
GGCAGGAGGCAC
2647
1180
1202
1518432
CGCCACCCCGUG
2838




GGGGUGGCGUG




CCUCCUGCC






1518426
1518441
GCGGAGGCAGGA
2648
1185
1207
1518433
CCCCGUGCCUCC
2839




GGCACGGGGUG




UGCCUCCGC






1518427
1518442
GGAGGCAGGAGG
2649
1183
1205
1518436
CACCCCGUGCCU
2840




CACGGGGUGGC




CCUGCCUCC






1518428
1518438
CGGAGGCAGGAG
2650
1184
1206
1518435
ACCCCGUGCCUC
2841




GCACGGGGUGG




CUGCCUCCG






1518429
1518437
GAGGCAGGAGGC
2651
1182
1204
1518434
CCACCCCGUGCC
2842




ACGGGGUGGCG




UCCUGCCUC






1518430
1518439
AGGCAGGAGGCA
2652
1181
1203
1518431
GCCACCCCGUGC
2843




CGGGGUGGCGU




CUCCUGCCU






1518443
1518456
CGCGGAGGCAGG
2653
1186
1208
1518450
CCCGUGCCUCCU
2844




AGGCACGGGGU




GCCUCCGCG






1518444
1518460
GGCUGCGCGGAG
2654
1191
1213
1518451
GCCUCCUGCCUC
2845




GCAGGAGGCAC




CGCGCAGCC






1518445
1518455
GCUGCGCGGAGG
2655
1190
1212
1518453
UGCCUCCUGCC
2846




CAGGAGGCACG




UCCGCGCAGC






1518446
1518458
UGCGCGGAGGCA
2656
1188
1210
1518454
CGUGCCUCCUG
2847




GGAGGCACGGG




CCUCCGCGCA






1518447
1518459
GCGCGGAGGCAG
2657
1187
1209
1518449
CCGUGCCUCCU
2848




GAGGCACGGGG




GCCUCCGCGC






1518448
1518457
CUGCGCGGAGGC
2658
1189
1211
1518452
GUGCCUCCUGC
2849




AGGAGGCACGG




CUCCGCGCAG






1518461
1518477
CAGGCUGCGCGG
2659
1193
1215
1518467
CUCCUGCCUCCG
2850




AGGCAGGAGGC




CGCAGCCUG






1518462
1518476
CGCUGCAGGCUG
2660
1198
1220
1518469
GCCUCCGCGCA
2851




CGCGGAGGCAG




GCCUGCAGCG






1518463
1518474
CUGCAGGCUGCG
2661
1196
1218
1518472
CUGCCUCCGCGC
2852




CGGAGGCAGGA




AGCCUGCAG






1518464
1518473
UGCAGGCUGCGC
2662
1195
1217
1518471
CCUGCCUCCGCG
2853




GGAGGCAGGAG




CAGCCUGCA






1518465
1518478
AGGCUGCGCGGA
2663
1192
1214
1518470
CCUCCUGCCUCC
2854




GGCAGGAGGCA




GCGCAGCCU






1518466
1518475
GCAGGCUGCGCG
2664
1194
1216
1518468
UCCUGCCUCCGC
2855




GAGGCAGGAGG




GCAGCCUGC






1518479
1518492
CCGCUGCAGGCU
2665
1199
1221
1518489
CCUCCGCGCAGC
2856




GCGCGGAGGCA




CUGCAGCGG






1518480
1518493
UCUCCCGCUGCA
2666
1203
1225
1518486
CGCGCAGCCUG
2857




GGCUGCGCGGA




CAGCGGGAGA






1518481
1518491
CUCCCGCUGCAG
2667
1202
1224
1518485
CCGCGCAGCCU
2858




GCUGCGCGGAG




GCAGCGGGAG






1518482
1518495
CCCGCUGCAGGC
2668
1200
1222
1518488
CUCCGCGCAGCC
2859




UGCGCGGAGGC




UGCAGCGGG






1518483
1518496
UCCCGCUGCAGG
2669
1201
1223
1518487
UCCGCGCAGCC
2860




CUGCGCGGAGG




UGCAGCGGGA






1518484
1518494
GCUGCAGGCUGC
2670
1197
1219
1518490
UGCCUCCGCGC
2861




GCGGAGGCAGG




AGCCUGCAGC






1518497
1518509
GUCUCCCGCUGC
2671
1204
1226
1518501
GCGCAGCCUGC
2862




AGGCUGCGCGG




AGCGGGAGAC






1518498
1518514
GGUCUCCCGCUG
2672
1205
1227
1518506
CGCAGCCUGCA
2863




CAGGCUGCGCG




GCGGGAGACC






1518499
1518511
ACAGGGUCUCCC
2673
1209
1231
1518504
GCCUGCAGCGG
2864




GCUGCAGGCUG




GAGACCCUGU






1518500
1518512
AGGGUCUCCCGC
2674
1207
1229
1518508
CAGCCUGCAGC
2865




UGCAGGCUGCG




GGGAGACCCU






1518502
1518513
GGGUCUCCCGCU
2675
1206
1228
1518505
GCAGCCUGCAG
2866




GCAGGCUGCGC




CGGGAGACCC






1518503
1518510
CAGGGUCUCCCG
2676
1208
1230
1518507
AGCCUGCAGCG
2867




CUGCAGGCUGC




GGAGACCCUG






1518515
1518530
GACAGGGUCUCC
2677
1210
1232
1518525
CCUGCAGCGGG
2868




CGCUGCAGGCU




AGACCCUGUC






1518516
1518531
GCGGGGACAGGG
2678
1215
1237
1518521
AGCGGGAGACC
2869




UCUCCCGCUGC




CUGUCCCCGC






1518517
1518529
CGGGGACAGGGU
2679
1214
1236
1518522
CAGCGGGAGAC
2870




CUCCCGCUGCA




CCUGUCCCCG






1518518
1518528
GGGGACAGGGUC
2680
1213
1235
1518524
GCAGCGGGAGA
2871




UCCCGCUGCAG




CCCUGUCCCC






1518519
1518532
GGACAGGGUCUC
2681
1211
1233
1518526
CUGCAGCGGGA
2872




CCGCUGCAGGC




GACCCUGUCC






1518520
1518527
GGGACAGGGUCU
2682
1212
1234
1518523
UGCAGCGGGAG
2873




CCCGCUGCAGG




ACCCUGUCCC






1518533
1518550
GGCGGGGACAGG
2683
1216
1238
1518540
GCGGGAGACCC
2874




GUCUCCCGCUG




UGUCCCCGCC






1518534
1518545
GCUGGGGCGGGG
2684
1221
1243
1518539
AGACCCUGUCC
2875




ACAGGGUCUCC




CCGCCCCAGC






1518535
1518549
CUGGGGCGGGGA
2685
1220
1242
1518541
GAGACCCUGUC
2876




CAGGGUCUCCC




CCCGCCCCAG






1518536
1518546
UGGGGCGGGGAC
2686
1219
1241
1518542
GGAGACCCUGU
2877




AGGGUCUCCCG




CCCCGCCCCA






1518537
1518548
GGGCGGGGACAG
2687
1217
1239
1518544
CGGGAGACCCU
2878




GGUCUCCCGCU




GUCCCCGCCC






1518538
1518547
GGGGCGGGGACA
2688
1218
1240
1518543
GGGAGACCCUG
2879




GGGUCUCCCGC




UCCCCGCCCC






1518551
1518563
GGACGGCUGGGG
2689
1226
1248
1518558
CUGUCCCCGCCC
2880




CGGGGACAGGG




CAGCCGUCC






1518552
1518564
GGCUGGGGCGGG
2690
1222
1244
1518557
GACCCUGUCCCC
2881




GACAGGGUCUC




GCCCCAGCC






1518553
1518565
GACGGCUGGGGC
2691
1225
1247
1518559
CCUGUCCCCGCC
2882




GGGGACAGGGU




CCAGCCGUC






1518554
1518567
ACGGCUGGGGCG
2692
1224
1246
1518561
CCCUGUCCCCGC
2883




GGGACAGGGUC




CCCAGCCGU






1518555
1518566
CGGCUGGGGCGG
2693
1223
1245
1518560
ACCCUGUCCCCG
2884




GGACAGGGUCU




CCCCAGCCG






1518556
1518568
AGGACGGCUGGG
2694
1227
1249
1518562
UGUCCCCGCCCC
2885




GCGGGGACAGG




AGCCGUCCU






1518569
1518582
GAGGACGGCUGG
2695
1228
1250
1518579
GUCCCCGCCCCA
2886




GGCGGGGACAG




GCCGUCCUC






1518570
1518586
CCAGGAGGACGG
2696
1232
1254
1518578
CCGCCCCAGCCG
2887




CUGGGGCGGGG




UCCUCCUGG






1518571
1518585
CCCAGGAGGACG
2697
1233
1255
1518576
CGCCCCAGCCGU
2888




GCUGGGGCGGG




CCUCCUGGG






1518572
1518581
CAGGAGGACGGC
2698
1231
1253
1518575
CCCGCCCCAGCC
2889




UGGGGCGGGGA




GUCCUCCUG






1518573
1518583
AGGAGGACGGCU
2699
1230
1252
1518577
CCCCGCCCCAGC
2890




GGGGCGGGGAC




CGUCCUCCU






1518574
1518584
GGAGGACGGCUG
2700
1229
1251
1518580
UCCCCGCCCCAG
2891




GGGCGGGGACA




CCGUCCUCC






1518587
1518600
CCCCAGGAGGAC
2701
1234
1256
1518596
GCCCCAGCCGUC
2892




GGCUGGGGCGG




CUCCUGGGG






1518588
1518599
GUCCACCCCAGG
2702
1239
1261
1518597
AGCCGUCCUCC
2893




AGGACGGCUGG




UGGGGUGGAC






1518589
1518602
UCCACCCCAGGA
2703
1238
1260
1518593
CAGCCGUCCUCC
2894




GGACGGCUGGG




UGGGGUGGA






1518590
1518603
CCACCCCAGGAG
2704
1237
1259
1518595
CCAGCCGUCCUC
2895




GACGGCUGGGG




CUGGGGUGG






1518591
1518604
CACCCCAGGAGG
2705
1236
1258
1518598
CCCAGCCGUCCU
2896




ACGGCUGGGGC




CCUGGGGUG






1518592
1518601
ACCCCAGGAGGA
2706
1235
1257
1518594
CCCCAGCCGUCC
2897




CGGCUGGGGCG




UCCUGGGGU






1518605
1518617
GGUCCACCCCAG
2707
1240
1262
1518612
GCCGUCCUCCU
2898




GAGGACGGCUG




GGGGUGGACC






1518606
1518618
UAGGGUCCACCC
2708
1243
1265
1518611
GUCCUCCUGGG
2899




CAGGAGGACGG




GUGGACCCUA






1518607
1518620
GGGUCCACCCCA
2709
1241
1263
1518615
CCGUCCUCCUG
2900




GGAGGACGGCU




GGGUGGACCC






1518608
1518621
AGGGUCCACCCC
2710
1242
1264
1518614
CGUCCUCCUGG
2901




AGGAGGACGGC




GGUGGACCCU






1518609
1518619
CUAGGGUCCACC
2711
1244
1266
1518613
UCCUCCUGGGG
2902




CCAGGAGGACG




UGGACCCUAG






1518610
1518622
ACUAGGGUCCAC
2712
1245
1267
1518616
CCUCCUGGGGU
2903




CCCAGGAGGAC




GGACCCUAGU






1518623
1518637
AACUAGGGUCCA
2713
1246
1268
1518629
CUCCUGGGGUG
2904




CCCCAGGAGGA




GACCCUAGUU






1518624
1518640
AUUAAACUAGGG
2714
1250
1272
1518632
UGGGGUGGACC
2905




UCCACCCCAGG




CUAGUUUAAU






1518625
1518639
UUAAACUAGGGU
2715
1249
1271
1518634
CUGGGGUGGAC
2906




CCACCCCAGGA




CCUAGUUUAA






1518626
1518635
UAUUAAACUAGG
2716
1251
1273
1518633
GGGGUGGACCC
2907




GUCCACCCCAG




UAGUUUAAUA






1518627
1518636
AAACUAGGGUCC
2717
1247
1269
1518630
UCCUGGGGUGG
2908




ACCCCAGGAGG




ACCCUAGUUU






1518628
1518638
UAAACUAGGGUC
2718
1248
1270
1518631
CCUGGGGUGGA
2909




CACCCCAGGAG




CCCUAGUUUA






1518641
1518656
CUUUAUUAAACU
2719
1254
1276
1518651
GUGGACCCUAG
2910




AGGGUCCACCC




UUUAAUAAAG






1518642
1518654
AAUCUUUAUUAA
2720
1257
1279
1518649
GACCCUAGUUU
2911




ACUAGGGUCCA




AAUAAAGAUU






1518643
1518655
AUCUUUAUUAAA
2721
1256
1278
1518647
GGACCCUAGUU
2912




CUAGGGUCCAC




UAAUAAAGAU






1518644
1518653
UCUUUAUUAAAC
2722
1255
1277
1518648
UGGACCCUAGU
2913




UAGGGUCCACC




UUAAUAAAGA






1518645
1518658
UUUAUUAAACUA
2723
1253
1275
1518650
GGUGGACCCUA
2914




GGGUCCACCCC




GUUUAAUAAA






1518646
1518657
UUAUUAAACUAG
2724
1252
1274
1518652
GGGUGGACCCU
2915




GGUCCACCCCA




AGUUUAAUAA






1518659
1518671
GAAUCUUUAUUA
2725
1258
1280
1518665
ACCCUAGUUUA
2916




AACUAGGGUCC




AUAAAGAUUC






1518660
1518672
UGGUGAAUCUUU
2726
1262
1284
1518666
UAGUUUAAUAA
2917




AUUAAACUAGG




AGAUUCACCA






1518661
1518673
GGUGAAUCUUUA
2727
1261
1283
1518667
CUAGUUUAAUA
2918




UUAAACUAGGG




AAGAUUCACC






1518662
1518674
GUGAAUCUUUAU
2728
1260
1282
1518668
CCUAGUUUAAU
2919




UAAACUAGGGU




AAAGAUUCAC






1518663
1518676
UGAAUCUUUAUU
2729
1259
1281
1518669
CCCUAGUUUAA
2920




AAACUAGGGUC




UAAAGAUUCA






1518664
1518675
UUGGUGAAUCUU
2730
1263
1285
1518670
AGUUUAAUAAA
2921




UAUUAAACUAG




GAUUCACCAA






1518677
1518692
CUUGGUGAAUCU
2731
1264
1286
1518686
GUUUAAUAAAG
2922




UUAUUAAACUA




AUUCACCAAG






1518678
1518689
UGAAACUUGGUG
2732
1269
1291
1518684
AUAAAGAUUCA
2923




AAUCUUUAUUA




CCAAGUUUCA






1518679
1518690
GAAACUUGGUGA
2733
1268
1290
1518688
AAUAAAGAUUC
2924




AUCUUUAUUAA




ACCAAGUUUC






1518680
1518693
AAACUUGGUGAA
2734
1267
1289
1518683
UAAUAAAGAUU
2925




UCUUUAUUAAA




CACCAAGUUU






1518681
1518691
AACUUGGUGAAU
2735
1266
1288
1518685
UUAAUAAAGAU
2926




CUUUAUUAAAC




UCACCAAGUU






1518682
1518694
ACUUGGUGAAUC
2736
1265
1287
1518687
UUUAAUAAAGA
2927




UUUAUUAAACU




UUCACCAAGU






1518695
1518705
CGUGAAACUUGG
2737
1271
1293
1518700
AAAGAUUCACC
2928




UGAAUCUUUAU




AAGUUUCACG






1518697
1518706
GCGUGAAACUUG
2738
1272
1294
1518701
AAGAUUCACCA
2929




GUGAAUCUUUA




AGUUUCACGC






1518698
1518707
UGCGUGAAACUU
2739
1273
1295
1518702
AGAUUCACCAA
2930




GGUGAAUCUUU




GUUUCACGCA






1518699
1518709
GUGAAACUUGGU
2740
1270
1292
1518703
UAAAGAUUCAC
2931




GAAUCUUUAUU




CAAGUUUCAC
















TABLE 52







RNAi compounds targeting human APOE SEQ ID NO: 3



















SEQ ID
SEQ ID
Sense





Antisense
Antisense
SEQ
NO: 3
NO: 3
RNAi
Sense
SEQ


Compound
RNAi
Sequence
ID
Antisense
Antisense
Oligo
Sequence
ID


Number
Oligo ID
(5′ to 3′)
NO
Start Site
Stop Site
ID
(5′ to 3′)
NO





1518138
1518149
GCCUGUGAUUG
2741
 40
 62
1518143
GCCGACUGGCC
2932




GCCAGUCGGCU




AAUCACAGGC





C











1518696
1518708*
GGCGGCCGCGC
2742
438
460
1518704
UGGAGGACGU
2933




ACGUCCUCCAU




GCGCGGCCGCC





G





*Compound No. 1518708 has a single mismatch to SEQ ID NO: 3 located at position 10 (from 5′ to 3′) of the antisense strand.






Example 10: Effect of RNAi Compounds on Human APOE RNA In Vitro, Single Dose

Double-stranded RNAi compounds described above were tested in a series of experiments under the same culture conditions. The results for each experiment are presented in separate tables below.


Cultured Hep3B cells at a density of 20,000 cells per well were transfected using RNAiMAX with 20 nM of double stranded RNAi. After a treatment period of approximately 24 hours, RNA was isolated from the cells and APOE RNA levels were measured by quantitative real-time RTPCR. Human primer probe set RTS3073 (described herein in Example 1 above) was used to measure RNA levels. APOE RNA levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented as percent APOE RNA relative to the amount in untreated control cells (% UTC). The values marked with an “†” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer probe set. Additional assays may be used to measure the potency and efficacy of the modified oligonucleotides complementary to the amplicon region. N.D. in the tables below refers to instances where the value was Not Defined.









TABLE 53







Reduction of APOE RNA by RNAi










Compound Number
APOE (% UTC)







1518137
107 



1518138
87



1518139
 7



1518140
 7



1518141
81



1518142
132 



1518155
43



1518156
 76†



1518157
 52†



1518158
104 



1518159
25



1518160
89



1518173
 59†



1518174
12



1518175
 42†



1518176
 88†



1518177
 81†



1518179
97



1518191
90



1518192
81



1518193
111 



1518194
103 



1518195
35



1518196
84



1518209
76



1518210
23



1518211
96



1518212
43



1518213
83



1518214
91



1518227
88



1518228
77



1518229
89



1518230
71



1518231
104 



1518232
75



1518245
74



1518246
66



1518247
88



1518248
84



1518249
84



1518250
86



1518263
75



1518264
62



1518265
92



1518266
 7



1518267
80



1518268
74



1518281
57



1518282
 5



1518283
21



1518284
57



1518285
72



1518286
23



1518299
23



1518300
55



1518301
38



1518302
41



1518303
39



1518304
10



1518317
43



1518318
72



1518319
14



1518320
71



1518321
41



1518322
60



1518335
 5



1518336
38



1518337
17



1518338
42



1518339
 9



1518340
16



1518353
76



1518356
61



1518357
11



1518358
64



1518359
53



1518360
40



1518372
68



1518376
68

















TABLE 54







Reduction of APOE RNA by RNAi










Compound Number
APOE (% UTC)














1518425
106



1518426
111



1518427
107



1518428
118



1518429
109



1518430
110



1518443
107



1518444
112



1518445
103



1518446
100



1518447
113



1518448
87



1518461
88



1518462
91



1518463
97



1518464
101



1518465
83



1518466
101



1518479
87



1518480
N.D.



1518481
N.D.



1518482
68



1518483
44



1518484
82



1518497
67



1518498
N.D.



1518499
61



1518500
79



1518502
82



1518503
15



1518515
55



1518516
53



1518517
N.D.



1518518
67



1518519
11



1518520
68



1518533
86



1518534
69



1518535
79



1518536
89



1518537
72



1518538
94



1518551
84



1518552
N.D.



1518553
N.D.



1518554
76



1518555
74



1518556
61



1518569
60



1518570
65



1518571
67



1518572
82



1518573
N.D.



1518574
73



1518587
66



1518588
N.D.



1518589
82



1518590
66



1518591
74



1518592
71



1518605
60



1518606
N.D.



1518607
70



1518608
67



1518609
57



1518610
71



1518623
65



1518624
50



1518625
67



1518626
6



1518627
21



1518628
17



1518641
61



1518642
2



1518643
2



1518644
2



1518645
46



1518646
24



1518659
2



1518663
2

















TABLE 55







Reduction of APOE RNA by RNAi










Compound Number
APOE (% UTC)














1518371
85



1518373
69



1518374
91



1518375
96



1518389
102



1518390
93



1518391
100



1518392
104



1518393
98



1518394
96



1518407
89



1518408
96



1518409
92



1518410
100



1518411
94



1518412
82



1518660
6



1518661
6



1518662
N.D.



1518664
8



1518677
6



1518678
5



1518679
6



1518680
7



1518681
3



1518682
4



1518695
12



1518696
98



1518697
7



1518698
61



1518699
7










Example 11: Design of Modified Oligonucleotides Complementary to Human APOE Nucleic Acid

Modified oligonucleotides complementary to a human APOE nucleic acid were designed, as described in the tables below. “Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified oligonucleotide listed in the tables below is 100% complementary to SEQ ID NO: 1 (described herein above), to SEQ ID NO: 2 (described herein above), or to both. ‘N/A’ indicates that the modified oligonucleotide is not 100% complementary to that particular target nucleic acid sequence.


The modified oligonucleotides in Table 56 are 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment consists of ten 2′-β-D-deoxynucleosides, and the 5′ and 3′ wing segments each consists of five 2′-MOE modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeddddddddddeeeee; wherein each ‘d’ represents a 2′-β-D-deoxyribosyl sugar moiety, and each ‘e’ represents a 2′-MOE modified sugar moiety. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): sooosssssssssssooss; wherein each “s” represents a phosphorothioate internucleoside linkage, and each “o” represents a phosphodiester internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.









TABLE 56







5-10-5 MOE gapmers with mixed PO/PS


internucleoside linkages complementary to human APOE















SEQ
SEQ
SEQ
SEQ





ID No:
ID No:
ID No:
ID No:



Compound

1 Start
1 Stop
2 Start
2 Stop
SEQ


Number
Sequence (5′ to 3′)
Site
Site
Site
Site
ID NO





1401842
CCTCATTTTAAAGTTCTCCA
3201
3220
N/A
N/A
2522





1401843
CCTCATTCTCCCTTCACATT
3275
3294
N/A
N/A
2523





1401845
GGGACACCCAGTAGGTGCTC
3118
3137
N/A
N/A
2524





1401846
TTCCTCATTCTCCCTTCACA
3277
3296
N/A
N/A
2525





1401848
GAGCTAATTCAGTCCTCATT
3214
3233
N/A
N/A
2526





1401852
TCCTCATTCTCCCTTCACAT
3276
3295
N/A
N/A
2527





1401853
CTCCAATCGACGGCTAGCTA
3186
3205
N/A
N/A
2528





1401857
TGAGCTAATTCAGTCCTCAT
3215
3234
N/A
N/A
2529





1401861
CATTCCTCATTCTCCCTTCA
3279
3298
N/A
N/A
2530





1401862
GCATTCCTCATTCTCCCTTC
3280
3299
N/A
N/A
2531









The modified oligonucleotides in Table 57 are 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment consists of ten 2′-β-D-deoxynucleosides, and the 5′ and 3′ wing segments each consists of five 2′-MOE modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeddddddddddeeeee; wherein each ‘d’ represents a 2′-β-D-deoxyribosyl sugar moiety, and each ‘e’ represents a 2′-MOE modified sugar moiety. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): soooossssssssssooss; wherein each “s” represents a phosphorothioate internucleoside linkage, and each “o” represents a phosphodiester internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.









TABLE 57







5-10-5 MOE gapmers with mixed PO/PS


internucleoside linkages complementary to human APOE















SEQ
SEQ
SEQ
SEQ





ID No:
ID No:
ID No:
ID No:



Compound

1 Start
1 Stop
2 Start
2 Stop
SEQ


Number
Sequence (5′ to 3′)
Site
Site
Site
Site
ID NO





1419518
ATGCATTAGAAACCTCTAAC
4187
4206
N/A
N/A
1697





1419519
GTTGCATTATCTGCAACAGC
3482
3501
N/A
N/A
1632





1419520
CCTGCTATGGCTTACATCCC
3070
3089
N/A
N/A
1669





1419521
CTATGGCTTACATCCCAGTC
3066
3085
N/A
N/A
1801





1419522
TCTGGTATTCACTATCTGCC
4211
4230
N/A
N/A
1899





1419523
CCCTTCACATTCTAAGCTCC
3266
3285
N/A
N/A
1188





1419524
CTCATTTTAAAGTTCTCCAA
3200
3219
N/A
N/A
1539





1419525
CTCGATAAATGATAGTGACA
3101
3120
N/A
N/A
1419





1419526
GCATTATCTGCAACAGCCTA
3479
3498
N/A
N/A
1830





1419527
TCATTTTAAAGTTCTCCAAT
3199
3218
N/A
N/A
1638





1419528
TATGAGCTAATTCAGTCCTC
3217
3236
N/A
N/A
1350





1419529
CACATTCTAAGCTCCAACCT
3261
3280
N/A
N/A
1521





1419530
CCTCCATAGAAAATTCCATC
3372
3391
N/A
N/A
1662





1419531
TGCTCCACAAATGCTTCTTT
4661
4680
N/A
N/A
1656





1419532
CCTCATTTTAAAGTTCTCCA
3201
3220
N/A
N/A
2522





1419533
CAGCACATTTACCAAGCCGC
3455
3474
N/A
N/A
 855





1419534
TCCTCATTTTAAAGTTCTCC
3202
3221
N/A
N/A
1457





1419535
TTCCATTTATGAGCTAATTC
3224
3243
N/A
N/A
1750









The modified oligonucleotides in Table 58 are 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment consists of ten 2′-β-D-deoxynucleosides, and the 5′ and 3′ wing segments each consists of five 2′-MOE modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeddddddddddeeeee; wherein each represents a 2′-β-D-deoxyribosyl sugar moiety, and each ‘e’ represents a 2′-MOE modified sugar moiety. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): sossssssssssssssoss; wherein each “s” represents a phosphorothioate internucleoside linkage, and each “o” represents a phosphodiester internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.









TABLE 58







5-10-5 MOE gapmers with mixed PO/PS


internucleoside linkages complementary to human APOE















SEQ
SEQ
SEQ
SEQ





ID No:
ID No:
ID No:
ID No:



Compound

1 Start
1 Stop
2 Start
2 Stop
SEQ


Number
Sequence (5′ to 3′)
Site
Site
Site
Site
ID NO





1449189
CAGCACATTTACCAAGCCGC
3455
3474
N/A
N/A
 855





1449190
CCTCATTTTAAAGTTCTCCA
3201
3220
N/A
N/A
2522





1449191
TATGAGCTAATTCAGTCCTC
3217
3236
N/A
N/A
1350





1449192
TTCCATTTATGAGCTAATTC
3224
3243
N/A
N/A
1750





1449193
TGGTGAATCTTTATTAAACT
6363
6382
1265
1284
1193









The modified oligonucleotides in Table 59 are 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment consists of ten 2′-β-D-deoxynucleosides, and wherein the 5′ and 3′ wing segments each consist of three cEt modified nucleosides. The sugar motif for the gapmers is (from 5′ to 3′): kkkddddddddddkkk; wherein each represents a 2′-β-D-deoxyribosyl sugar moiety, and each 1′ represents a cEt sugar moiety. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): soossssssssssos; wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.









TABLE 59







3-10-3 cEt gapmers with


mixed PO/PS internucleoside


linkages complementary to human APOE















SEQ
SEQ
SEQ
SEQ





ID
ID
ID
ID





No: 1
No: 1
No: 2
No: 2
SEQ


Compound
Sequence
Start
Stop
Start
Stop
ID


Number
(5′ to 3′)
Site
Site
Site
Site
NO





1335664
GAAGCTAGAA
5060
5075
N/A
N/A
2532



CCAGCA










1335669
GTTTAATCAC
4612
4627
N/A
N/A
2533



TTGGAA










1335682
CCAATTATAG
2758
2773
101
25
2534



GGCTCC









The modified oligonucleotides in Table 60 are 17 nucleosides in length. The sugar motif for each of the gapmers is (from 5′ to 3′): eeeeddddddddkkeee; wherein each ‘e’ represents a 2′-MOE modified sugar moiety, each represents a 2′-β-D-deoxyribosyl sugar moiety, and each 1′ represents a cEt sugar moiety. The gapmers each have an internucleoside linkage motif of (from 5′ to 3′): soosssssssssooss; wherein each “s” represents a phosphorothioate internucleoside linkage and each “o” represents a phosphodiester internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.









TABLE 60







Modified oligonucleotides with mixed PO/PS


internucleoside linkages complementary to human APOE















SEQ ID
SEQ ID
SEQ ID
SEQ ID





No: 1
No: 1
No: 2
No: 2



Compound
Sequence
Start
Stop
Start
Stop
SEQ


Number
(5′ to 3′)
Site
Site
Site
Site
ID NO





1449171
GTGAATCTTTATTAAAC
6364
6380
1266
1282
2535





1449172
CCTCATTTTAAAGTTCT
3204
3220
N/A
N/A
2536





1449173
CACATTTACCAAGCCGC
3455
3471
N/A
N/A
2537





1449174
GCACATTTACCAAGCCG
3456
3472
N/A
N/A
2538





1449176
CAGCACATTTACCAAGC
3458
3474
N/A
N/A
2539





1449177
CATTTATGAGCTAATTC
3224
3240
N/A
N/A
2540





1449178
CCATTTATGAGCTAATT
3225
3241
N/A
N/A
2541





1449179
TCCATTTATGAGCTAAT
3226
3242
N/A
N/A
2542





1449180
TTCCATTTATGAGCTAA
3227
3243
N/A
N/A
2543





1449181
GGTGAATCTTTATTAAA
6365
6381
1267
1283
2544





1449182
GAGCTAATTCAGTCCTC
3217
3233
N/A
N/A
2545





1449183
TGAGCTAATTCAGTCCT
3218
3234
N/A
N/A
2546





1449184
ATGAGCTAATTCAGTCC
3219
3235
N/A
N/A
2547





1449185
TATGAGCTAATTCAGTC
3220
3236
N/A
N/A
2548





1449186
CATTTTAAAGTTCTCCA
3201
3217
N/A
N/A
2549





1449187
TCATTTTAAAGTTCTCC
3202
3218
N/A
N/A
2550





1449188
CTCATTTTAAAGTTCTC
3203
3219
N/A
N/A
2551









Example 12: Activity of Modified Oligonucleotides Complementary to Human APOE in Transgenic Mice

ApoE4 transgenic mice (model #1549) were obtained from Taconic Biosciences. APOE transgenic mice were divided into groups of 4 mice each. Each mouse received a single intracerebroventricular (ICV) bolus of 100 μg, or 300 μg of modified oligonucleotide, as indicated in the tables below. A group of 4 mice received a single ICV bolus with PBS as a negative control, and the PCR values were normalized to this group.


Two weeks post treatment, mice were sacrificed and RNA was extracted from cortical brain tissue, and/or spinal cord for quantitative real-time RTPCR analysis of RNA expression of APOE using primer probe set RTS3073 (described herein above). Results are presented as percent change of RNA, relative to PBS control, normalized to mouse cyclophilin A (% control). Mouse cyclophilin A was amplified using primer probe set m_cyclo24 (forward sequence TCGCCGCTTGCTGCA, designated herein as SEQ ID NO: 16; reverse sequence ATCGGCCGTGATGTCGA, designated herein as SEQ ID NO: 17; probe sequence CCATGGTCAACCCCACCGTGTTC, designated herein as SEQ ID NO: 18). Data indicated as “n.d.” (no data) means that no data is available for that tissue for that compound.


As shown in the table below, treatment with modified oligonucleotides resulted in reduction of APOE RNA in comparison to the PBS control.









TABLE 61







Reduction of human APOE RNA in transgenic mice, 100 μg dose











APOE RNA



Compound No.
(% control) - CORTEX














PBS
100



1335661
82



1335663
97



1335664
88



1335669
79



1335672
73



1335675
75



1335678
90



1335679
83



1335681
81



1335682
86



1335683
79

















TABLE 62







Reduction of human APOE RNA in transgenic mice, 300 μg dose











APOE RNA



Compound No.
(% control) - CORTEX














PBS
100



942665
92



942683
74



1335661
82



1335663
65



1335664
77



1335675
71



1335683
86



1401842
89



1401843
90



1401845
91



1401846
96



1401848
80



1401852
82



1401853
80



1401857
91



1401861
88



1401862
71

















TABLE 63







Reduction of human APOE RNA in transgenic mice, 300 μg dose











APOE RNA



Compound No.
(% control) - CORTEX














PBS
100



1419518
83



1419519
121



1419520
78



1419521
88



1419522
96



1419523
75



1419524
90



1419525
86



1419526
89



1419527
96



1419528
56



1419529
104



1419530
87



1419531
92



1419532
62



1419533
63



1419534
80



1419535
58

















TABLE 64







Reduction of human APOE RNA in transgenic mice, 300 μg dose











Compound
APOE RNA (% control)












No.
CORTEX
SPINAL CORD















PBS
100
100



1449171
56
44



1449172
114
89



1449173
69
70



1449174
57
71



1449176
78
80



1449177
69
87



1449178
46
70



1449179
59
70



1449180
56
77



1449181
36
48



1449182
55
64



1449183
49
72



1449184
54
66



1449185
62
82



1449186
62
68



1449187
41
60



1449188
49
58



1449189
62
71



1449190
42
52



1449191
70
64



1449192
67
80



1449193
44
55










Example 13: Activity of Modified Oligonucleotides Complementary to Human APOE in Knock-In Mice

APOE knock-in mice used in this study express the full-length human APOE gene knocked into the mouse locus. Humanization of APOE gene was done via CRISPR/Cas-9-mediated gene editing, allowing for generation of a model with constitutive expression of human APOE gene. Targeting strategy was based on NCBI transcripts NM_009696.4 (mouse) and NM_000041.4 (human). Mouse genomic sequence from exon 1 to exon 4 (including the 5′ and 3′ UTRs) was replaced with the human counterpart from 141 bp upstream of exon 1 to 28 bp downstream of exon 4. A plasmid allowing expression of Cas9 mRNA, specific gRNA, and the puromycin resistance cassette, and a plasmid containing the homology regions of the mouse APOE gene, and the replaced human region were co-transfected into the Taconic Biosciences C57BL/6N Tac ES cell line. Homologous recombination clones were isolated using positive puromycin selection, and humanized allele was obtained after Cas9-mediated gene editing. C57BL/6NTac-Apoeem7250_A-C03(APOE) Tac mice were used in these experiments, and are herein called APOE knock-in mice.


APOE knock-in mice were divided into groups of 2 mice each. Each mouse received a single ICV bolus of 300 μg of modified oligonucleotide. A group of 4 mice received a single ICV bolus with PBS as a negative control.


Two weeks post treatment, mice were sacrificed and RNA was extracted from cortical brain tissue, and spinal cord for quantitative real-time RTPCR analysis of RNA expression of APOE using primer probe set RTS3073 (described herein above). Results are presented as percent change of RNA, relative to PBS control, normalized to mouse cyclophilin A (% control). Mouse cyclophilin A was amplified using primer probe set m_cyclo24 (designated herein above). The values marked with a “t” indicate that the modified oligonucleotide is complementary to the amplicon region of the primer-probe set. In such cases, human primer-probe set RTS36365 (forward sequence CAGCGGAGGTGAAGGAC, designated herein as SEQ ID NO: 7; reverse sequence CAACGCAGCCCACAGAA, designated herein as SEQ ID NO: 8; probe sequence TCATCTTCCTGCCTGTGATTGGCC, designated herein as SEQ ID NO: 9) was used to confirm RNA expression of APOE.


As shown in the table below, treatment with modified oligonucleotides resulted in reduction of APOE RNA in comparison to the PBS control.









TABLE 65







Reduction of human APOE RNA in knock-in mice










APOE RNA (% control)
APOE RNA (% control)



RTS3073
RTS36365











Compound
SPINAL

SPINAL



No.
CORD
CORTEX
CORD
CORTEX





PBS
100 
100 
100 
100 


688711
64
78
64
78


688730
96
102 
109 
111 


688775
103†
 92†
111 
98


688817
69
80
83
98


689046
45
52
48
55


729709
101 
82
111 
87


942364
80
92
90
99


942391
 98†
 94†
115 
99


942393
 99†
 96†
114 
110 


942593
96
81
97
100 


942728
78
78
89
91


1419528
83
82
 90†
 93†


1419533
79
89
 81†
 97†


1419535
77
91
 81†
 93†


1449190
67
73
 70†
 81†


1449193
61
59
72
71


1517154
80
72
 77†
 82†


1517173
89
90
89
95


1517222
90
87
 89†
 85†


1517226
80
70
 84†
 69†


1517228
94
86
95
90


1517234
106 
87
101 
93


1517246
78
78
 75†
 79†


1517248
89
93
87
91


1517254
52
57
53
56


1517281
71
81
77
84


1517311
 76†
100†
72
104 


1517316
90
98
94
107 


1517356
94
91
 95†
 96†


1517372
115 
96
116†
101†


1517383
81
69
73
72


1517394
129 
103 
117†
111†


1517508
77
71
63
73


1517529
226†
 97†
175 
108 


1517561
85
96
 87†
102†


1517564
108 
95
108
103 


1517641
107 
99
101
102 


1517651
100 
99
 96†
105†


1517652
90
79
78
87


1517663
103 
105 
 96†
141†


1517732
87
89
102†
100†


1517770
33
35
40
39


1517853
65
53
70
65


1517891
65
49
77
66
















TABLE 66







Reduction of human APOE RNA in knock-in mice











Compound
APOE RNA (% control)












No.
SPINAL CORD
CORTEX















PBS
100
100 



689046
43.7‡
 57‡



942594
83
107 



942596
100
101 



942684
85
85



1401848
79
87



1517718
91
85



1517841
78
73



1517885
63
58







‡Fewer than 2 samples available













TABLE 67







Reduction of human APOE RNA in knock-in mice











Compound
APOE RNA (% control)












No.
SPINAL CORD
CORTEX















PBS
100
100



1449193
65
71



1517770
28
35










Example 14: Design of Modified Oligonucleotides Complementary to Human APOE Nucleic Acid

Modified oligonucleotides complementary to a human APOE nucleic acid were designed, as described in the tables below. “Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified oligonucleotide listed in the tables below is 100% complementary to SEQ ID NO: 1 (described herein above), to SEQ ID NO: 2 (described herein above), or to both. ‘N/A’ indicates that the modified oligonucleotide is not 100% complementary to that particular target nucleic acid sequence.


The modified oligonucleotides in Table 56 are 6-10-4 MOE gapmers. The gapmers are 20 nucleosides in length. The sugar motif for the gapmers is (from 5′ to 3′): eeeeeeddddddddddeeee; wherein each ‘d’ represents a 2′-β-D-deoxyribosyl sugar moiety, and each ‘e’ represents a 2′-MOE modified sugar moiety. The gapmers have an internucleoside linkage motif of (from 5′ to 3′): sooooossssssssssoss; wherein each “s” represents a phosphorothioate internucleoside linkage, and each “o” represents a phosphodiester internucleoside linkage. Each cytosine residue is a 5-methyl cytosine.









TABLE 68







6-10-4 MOE gapmers with mixed PO/PS


internucleoside linkages complementary to human APOE














SEQ
SEQ
SEQ
SEQ





ID No:
ID No:
ID No:
ID No:




Compound
1 Start
1 Stop
2 Start
2 Stop

SEQ


Number
Site
Site
Site
Site
Sequence (5′ to 3′)
ID NO





1601915
4761
4780
243
262
GCTCCACCTTGGCCTGGCAT
2934





1601916
3430
3449
N/A
N/A
ACCCATTCCCTATTTAACTC
1462





1601918
3070
3089
N/A
N/A
CCTGCTATGGCTTACATCCC
1669





1601924
3266
3285
N/A
N/A
CCCTTCACATTCTAAGCTCC
1188





1601926
3179
3198
N/A
N/A
CGACGGCTAGCTACCGTGTC
 934





1601928
3284
3303
N/A
N/A
TCTCGCATTCCTCATTCTCC
1832





1601929
2970
2989
N/A
N/A
GCTGCTTGCCTCACCCCCGC
1376





1601931
4779
4798
261
280
GCTCTGTCTCCACCGCTTGC
1341





1601932
3405
3424
N/A
N/A
TGGTCTTCTCTTATCTCCCC
1586





1601934
3269
3288
N/A
N/A
TCTCCCTTCACATTCTAAGC
1705





1601937
3061
3080
N/A
N/A
GCTTACATCCCAGTCCAGCT
1254





1601938
2973
2992
N/A
N/A
CCTGCTGCTTGCCTCACCCC
1884





1601940
3297
3316
N/A
N/A
ATCTCAGTCCCAGTCTCGCA
1897





1601914
4613
4632
N/A
N/A
AGTCGGTTTAATCACTTGGA
1179





1601919
3424
3443
N/A
N/A
TCCCTATTTAACTCCCTCCT
1197





1601935
3283
3302
N/A
N/A
CTCGCATTCCTCATTCTCCC
1219





1601936
3408
3427
N/A
N/A
TCCTGGTCTTCTCTTATCTC
1322





1601939
3217
3236
N/A
N/A
TATGAGCTAATTCAGTCCTC
1350





1601945
3220
3239
N/A
N/A
ATTTATGAGCTAATTCAGTC
1874





1601951
4212
4231
N/A
N/A
GTCTGGTATTCACTATCTGC
 942





1601952
3414
3433
N/A
N/A
ACTCCCTCCTGGTCTTCTCT
1718





1601954
3403
3422
N/A
N/A
GTCTTCTCTTATCTCCCCAT
1687





1601960
4206
4225
N/A
N/A
TATTCACTATCTGCCTGCAA
1385









Example 15: Design of RNAi Compounds with Antisense RNAi Oligonucleotides Complementary to a Human APOE Nucleic Acid

RNAi compounds comprising antisense RNAi oligonucleotides complementary to a human APOE nucleic acid and sense RNAi oligonucleotides complementary to the antisense RNAi oligonucleotides were designed as follows.


The RNAi compounds in the tables below consist of an antisense RNAi oligonucleotide and a sense RNAi oligonucleotide. The antisense RNAi oligonucleotide in each case is 23 nucleosides in length; has a sugar motif (from 5′ to 3′) of: efyyyfyyyyyyyfyfyyyyyyy; wherein ‘e’ represents a 2′-MOE modified sugar moiety, each “y” represents a 2′-O-methylribosyl sugar, and each “f” represents a 2′-fluororibosyl sugar; and an internucleoside linkage motif (from 5′ to 3′) of: ssooooooooooooooooooss; wherein ‘o’ represents a phosphodiester internucleoside linkage and ‘s’ represents a phosphorothioate internucleoside linkage. Each antisense RNAi oligonucleotide described in the table below has a 5′-(E)-Vinylphosphonate on the 5′ end of the compound.


The sense RNAi oligonucleotide in each case is 21 nucleosides in length; has a sugar motif (from 5′ to 3′) of: yyyyyyfyfffyyyyyyyyyy; wherein each “y” represents a 2′-O-methylribosyl sugar, and each “f” represents a 2′-fluororibosyl sugar; and an internucleoside linkage motif (from 5′ to 3′) of: ssooooooooooooooooss; wherein ‘o’ represents a phosphodiester internucleoside linkage and ‘s’ represents a phosphorothioate internucleoside linkage. Each antisense RNAi oligonucleotides is complementary to the target nucleic acid (APOE), and each sense RNAi oligonucleotides is complementary to the first of the 21 nucleosides of the antisense RNAi oligonucleotide (from 5′ to 3′) wherein the last two 3′-nucleosides of the antisense RNAi oligonucleotides are not paired with the sense RNAi oligonucleotide (are overhanging nucleosides). Further, the RNAi sense oligonucleotides are conjugated to a [3nC7-C16] moiety at the 3′ end. “[3nC7-C16]” represents a palmitate moiety linked to a 3′-C7 amino modifier, as shown below, which is attached to the 3′-nucleoside via a phosphodiester linkage.




embedded image


“Start site” indicates the 5′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. “Stop site” indicates the 3′-most nucleoside to which the modified oligonucleotide is complementary in the target nucleic acid sequence. Each modified antisense RNAi oligonucleoside listed in the tables below is complementary to SEQ ID NO: 2 (described herein above), with a single mismatch to SEQ ID NO: 2 (described herein above) located at position 1 on 5′ end of the antisense strand. The non-complementary nucleobase is marked in the Antisense Sequence column in custom-character









TABLE 69A







RNAi compounds targeting human APOE
















SEQ ID
SEQ ID



Anti-


NO: 2
NO: 2



sense


Anti-
Anti-



RNAi

SEQ
sense
sense


Compound
Oligo
Antisense
ID
Start
Stop


Number
ID
Sequence (5′ to 3′)
NO
Site
Site





1642901
1628239

custom-character AUCUUUAUUAAACUAGGGUCCA

2935
1257
1278





1644690
1628956

custom-character AACUUGGUGAAUCUUUAUUAAA

2936
1267
1288





1644691
1628970

custom-character GACAGGGUCUCCCGCUGCAGGC

2937
1211
1232





1644692
1628972

custom-character AGGGUCUCCCGCUGCAGGCUGC

2938
1208
1229





1644693
1628974

custom-character GCUCGAACCAGCUCUUGAGGCG

2939
1030
1051
















TABLE 69B







RNAi compounds targeting human APOE











Sense

SEQ


Compound
RNAi
Sense
ID


Number
oligo ID
Sequence (5′ to 3′)
NO





1642901
1628318
GACCCUAGUUUAAUAAAGAUA
2940





1644690
1640442
UAAUAAAGAUUCACCAAGUUA
2941





1644691
1640443
CUGCAGCGGGAGACCCUGUCA
2942





1644692
1640444
AGCCUGCAGCGGGAGACCCUA
2943





1644693
1640445
CCUCAAGAGCUGGUUCGAGCA
2944









Example 16: Activity of Modified Oligonucleotides and RNAi Compounds that Target Human APOE in Knock-In Mice

ApoE4 knock-in mice (C57BL/6NTac-Apoeem7250_A-C03(APOE)Tac) were obtained from Taconic Biosciences. APOE knock-in mice were divided into groups of 2 mice each. Each mouse received a single ICV bolus of 300 μg of modified oligonucleotide or a single ICV bolus of 300 μg of RNAi compound. A group of 4 mice received a single ICV bolus with PBS as a negative control.


Two weeks post treatment, mice were sacrificed and RNA was extracted from cortical brain tissue, and spinal cord for quantitative real-time RTPCR analysis of RNA expression of APOE using primer probe set RTS3073 (described herein above). Results are presented as percent change of RNA, relative to PBS control, normalized to mouse cyclophilin A (% control). Mouse cyclophilin A was amplified using primer probe set m_cyclo24 (designated herein above).


As shown in the table below, treatment with modified oligonucleotides resulted in reduction of APOE RNA in comparison to the PBS control.









TABLE 70







Reduction of human APOE RNA in knock-in mice











Compound
APOE RNA (% control)












No.
SPINAL CORD
CORTEX















1601915
75
93



1601916
110
95



1601918
90
92



1601924
114
100



1601926
117
91



1601928
103
96



1601929
118
100



1601931
78
80



1601932
82
89



1601934
118
98



1601937
87
79



1601938
201
166



1601940
95
70

















TABLE 71







Reduction of human APOE RNA in knock-in mice











Compound
APOE RNA (% control)












No.
SPINAL CORD
CORTEX







PBS
100 
100 



1601914
74
79



1601919
87
89



1601935
53
69



1601936
88
92



1601939
85
91



1601945
104 
102 



1601951
58
82



1601952
100 
98



1601954
81
78



1601960
82
67



1642901
 4
13



1644690
 3‡
 5‡



1644691
15
62



1644692
17
47







‡Fewer than 2 samples available













TABLE 72







Reduction of human APOE RNA in knock-in mice











Compound
APOE RNA (% control)












No.
SPINAL CORD
CORTEX















1644693
12
76



1644690
5
28









Claims
  • 1. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is at least 80% complementary to an equal length portion of an APOE RNA, and wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.
  • 2. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides, wherein the nucleobase sequence of the modified oligonucleotide comprises at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 nucleobases of any of SEQ ID NOS: 20-2551 or 2934; wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.
  • 3. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides, wherein the nucleobase sequence of the modified oligonucleotide comprises at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, or at least 23 nucleobases of any of SEQ ID NOS: 2552-2742 or 2935-2944; wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.
  • 4. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is complementary to at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21 contiguous nucleobases of: an equal length portion of nucleobases 1155-1178 of SEQ ID NO: 2;an equal length portion of nucleobases 1207-1230 of SEQ ID NO: 2; oran equal length portion of nucleobases 1259-1295 of SEQ ID NO: 2;wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.
  • 5. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is complementary to at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21 contiguous nucleobases of: an equal length portion of nucleobases 1135-1166 of SEQ ID NO: 2; oran equal length portion of nucleobases 1255-1294 of SEQ ID NO: 2;wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.
  • 6. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides wherein the nucleobase sequence of the modified oligonucleotide is complementary to at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21 contiguous nucleobases of an equal length portion of nucleobases 1255-1295 of SEQ ID NO: 2, wherein the modified oligonucleotide comprises at least one modification selected from a modified sugar and a modified internucleoside linkage.
  • 7. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22 or at least 23 contiguous nucleobases of any of the nucleobase sequences of: SEQ ID NOS: 70, 71, 169, 170, 447, 448, 543, 552, 553, 919, 1061, 1132, 1938, 1991, 2066, 2154, 2226, 2259, 2324, 2417, or 2486;SEQ ID NOS: 460, 461, 462, 563, 564, 565, 566, 990, 1469, 1572, 1653, 1746, 1914, 1955, 2026, 2110, 2211, 2247, 2344, 2393, or 2481; orSEQ ID NOS: 77, 475, 476, 477, 478, 479, 480, 481, 482, 483, 578, 579, 580, 581, 582, 622, 623, 624, 625, 626, 627, 1063, 1193, 1231, 1232, 1300, 1305, 1378, 1409, 1493, 1526, 1564, 1576, 1678, 1679, 1695, 1827, 1870, 1921, 1928, 1950, 1982, 2012, 2046, 2051, 2074, 2088, 2118, 2158, 2169, 2208, 2223, 2232, 2255, 2321, 2343, 2380, 2436, 2449, or 2451.
  • 8. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22 or at least 23 contiguous nucleobases of any of the nucleobase sequences of: SEQ ID NOS: 2600, 2601, 2604, 2605, 2606, 2607, 2608, 2609, 2610, or 2613; orSEQ ID NOS: 2720, 2721, 2722, 2726, 2727, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, or 2740.
  • 9. An oligomeric compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22 or at least 23 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 76, 77, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 576, 578, 579, 580, 581, 582, 622, 623, 624, 625, 626, 627, 1063, 1193, 1231, 1232, 1300, 1305, 1378, 1409, 1493, 1526, 1564, 1576, 1678, 1679, 1695, 1701, 1792, 1827, 1870, 1886, 1906, 1921, 1928, 1950, 1982, 2012, 2046, 2051, 2074, 2088, 2118, 2158, 2169, 2208, 2223, 2232, 2255, 2321, 2343, 2370, 2380, 2436, 2449, 2490, 2451, 2720, 2721, 2722, 2725, 2726, 2727, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2740, 2935 or 2936.
  • 10. The oligomeric compound of any of claims 1-9, wherein the nucleobase sequence of the modified oligonucleotide is at least 80%, 85%, 90%, 95%, or 100% complementary to any of the nucleobase sequences of SEQ ID NOs: 1-6 when measured across the entire nucleobase sequence of the modified oligonucleotide.
  • 11. The oligomeric compound of any of claims 1-10, wherein at least one nucleoside of the modified oligonucleotide is a modified nucleoside.
  • 12. The oligomeric compound of claim 11, wherein at least one modified nucleoside of the modified oligonucleotide comprises a modified sugar moiety.
  • 13. The oligomeric compound of claim 12, wherein the modified sugar moiety comprises a bicyclic sugar moiety.
  • 14. The oligomeric compound of claim 13, wherein the bicyclic sugar moiety comprises a 2′-4′ bridge selected from —O—CH2—; and —O—CH(CH3)—.
  • 15. The oligomeric compound of any of claims 11-14, wherein at least one modified nucleoside of the modified oligonucleotide comprises a non-bicyclic modified sugar moiety.
  • 16. The oligomeric compound of claim 15, wherein at least one modified nucleoside of the modified oligonucleotide comprises a bicyclic sugar moiety having a 2′-4′ bridge and at least one nucleoside comprising a non-bicyclic modified sugar moiety.
  • 17. The oligomeric compound of claim 15 or 16, wherein the non-bicyclic modified sugar moiety is a 2′-O(CH2)2—OCH3 ribosyl modified sugar moiety, a 2′-OMe modified sugar moiety, or a 2′-F modified sugar moiety.
  • 18. The oligomeric compound of any of claims 1-17, wherein the modified oligonucleotide comprises at least one modified nucleoside comprising a sugar surrogate.
  • 19. The oligomeric compound of claim 18, wherein at least one modified nucleoside of the modified oligonucleotide comprises a sugar surrogate selected from morpholino and PNA.
  • 20. The oligomeric compound of any of claims 1-19, wherein the modified oligonucleotide comprises at least one modified internucleoside linkage.
  • 21. The oligomeric compound of claim 20, wherein each internucleoside linkage of the modified oligonucleotide is a modified internucleoside linkage.
  • 22. The oligomeric compound of claim 20 or 21, wherein at least one internucleoside linkage is a phosphorothioate internucleoside linkage.
  • 23. The oligomeric compound of claim 20 or 22, wherein the modified oligonucleotide comprises at least one phosphodiester internucleoside linkage.
  • 24. The oligomeric compound of any of claim 20, 22, or 23, wherein each internucleoside linkage is independently selected from a phosphodiester internucleoside linkage or a phosphorothioate internucleoside linkage.
  • 25. The oligomeric compound of any of claim 20 or 22-24, wherein at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 internucleoside linkages of the modified oligonucleotide are phosphorothioate internucleoside linkages.
  • 26. The oligomeric compound of any of claims 20-25, wherein each internucleoside linkage is a phosphorothioate internucleoside linkage.
  • 27. The oligomeric compound of any of claim 20 or 22-26, wherein the internucleoside linkage motif of the modified oligonucleotide is selected from: 5′-sssssssssssssssssss-3′, 5′-soossssssssssooss-3′, 5′-sooosssssssssssooss-3′, 5′-soossssssssssos-3′, 5′-ssooooooooooooooooooss-3′, 5′-ssooooooooooooooooss-3′, 5′-soooossssssssssooss-3′, 5′-sossssssssssssssoss-3′, 5′-soosssssssssooss-3′, and 5′-sooooossssssssssoss-3′; wherein each ‘o’ represents a phosphodiester internucleoside linkage and each ‘s’ represents a phosphorothioate internucleoside linkage.
  • 28. The oligomeric compound of any of claims 1-27, wherein the modified oligonucleotide comprises a modified nucleobase.
  • 29. The oligomeric compound of claim 28, wherein the modified nucleobase is a 5-methyl cytosine.
  • 30. The oligomeric compound of any of claims 1-29, wherein the oligomeric compound comprises a modified oligonucleotide consisting of 12-22, 12-20, 14-18, 14-20, 15-17, 15-25, 16-20, 16-18, 18-22, 18-25, 18-20, 20-25, or 21-23 linked nucleosides, or a pharmaceutically acceptable salt thereof
  • 31. The oligomeric compound of claim 30, which is a pharmaceutically acceptable salt comprising one or more cations selected from sodium, potassium, calcium, and magnesium.
  • 32. The oligomeric compound of any of claims 1-31, wherein the modified oligonucleotide consists of 16 or 18 linked nucleosides.
  • 33. The oligomeric compound of any of claims 1-31, wherein the modified oligonucleotide consists of 20 linked nucleosides.
  • 34. The oligomeric compound of any of claims 1-31, wherein the modified oligonucleotide consists of 21 linked nucleosides.
  • 35. The oligomeric compound of any of claims 1-31, wherein the modified oligonucleotide consists of 23 linked nucleosides.
  • 36. The oligomeric compound of any of claims 1-35, wherein the oligomeric compound is an RNase H compound.
  • 37. The oligomeric compound of claim 36, wherein the modified oligonucleotide is a gapmer.
  • 38. The oligomeric compound of any of claims 1-37, wherein the modified oligonucleotide has a sugar motif comprising: a 5′-region consisting of 1-6 linked 5′-region nucleosides;a central region consisting of 6-10 linked central region nucleosides; anda 3′-region consisting of 1-6 linked 3′-region nucleosides;wherein the 3′-most nucleoside of the 5′-region and the 5′-most nucleoside of the 3′-region comprise modified sugar moieties, andeach of the central region nucleosides is selected from a nucleoside comprising a 2′-β-D-deoxyribosyl sugar moiety and a nucleoside comprising a 2′-substituted sugar moiety, wherein the central region comprises at least six nucleosides comprising a 2′-β-D-deoxyribosyl sugar moiety and no more than two nucleosides comprising a 2′-substituted sugar moiety.
  • 39. The oligomeric compound of any of claim 1-34 or 36-37, wherein the modified oligonucleotide has a sugar motif comprising: a 5′-region consisting of 1-6 linked 5′-region nucleosides;a central region consisting of 6-10 linked central region nucleosides; anda 3′-region consisting of 1-6 linked 3′-region nucleosides; whereineach of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a modified sugar moiety and each of the central region nucleosides comprises a 2′-β-D-deoxyribosyl sugar moiety.
  • 40. The oligomeric compound of claim 39, wherein the modified oligonucleotide has a sugar motif comprising: a 5′-region consisting of 5 linked 5′-region nucleosides;a central region consisting of 10 linked central region nucleosides; anda 3′-region consisting of 5 linked 3′-region nucleosides; whereineach of the 5′-region nucleosides and each of the 3′-region nucleosides comprises either a cEt modified sugar moiety or a 2′-O(CH2)2—OCH3 ribosyl modified sugar moiety, and each of the central region nucleosides comprises a 2′-β-D-deoxyribosyl sugar moiety.
  • 41. The oligomeric compound of claim 39 or claim 40, wherein the modified oligonucleotide has a sugar motif comprising: a 5′-region consisting of 5 linked 5′-region nucleosides;a central region consisting of 10 linked central region nucleosides; anda 3′-region consisting of 5 linked 3′-region nucleosides; whereineach of the 5′-region nucleosides and each of the 3′-region nucleosides comprises a 2′-O(CH2)2—OCH3 ribosyl modified sugar moiety, and each of the central region nucleosides comprises a 2′-β-D-deoxyribosyl sugar moiety.
  • 42. The oligomeric compound of any of claims 1-35, wherein the oligomeric compound is an RNAi agent.
  • 43. The oligomeric compound of any of claims 1-42, wherein the oligomeric compound comprises an antisense RNAi oligonucleotide comprising a targeting region comprising at least 15 contiguous nucleobases, wherein the targeting region is at least 90% complementary to an equal-length portion of an APOE RNA.
  • 44. The oligomeric compound of claim 43, wherein the targeting region of the antisense RNAi oligonucleotide is at least 95% complementary or is 100% complementary to the equal length portion of an APOE RNA.
  • 45. The oligomeric compound of any of claims 43-44, wherein the targeting region of the antisense RNAi oligonucleotide comprises at least 19, 20, 21, or 25 contiguous nucleobases.
  • 46. The oligomeric compound of any of claims 43-45, wherein the APOE RNA has the nucleobase sequence of any of SEQ ID NOs: 1-6.
  • 47. The oligomeric compound of any of claims 43-46, wherein at least one nucleoside of the antisense RNAi oligonucleotide comprises a modified sugar moiety selected from: 2′-F, 2′-O(CH2)2—OCH3, 2′-NMA, LNA, and cEt; or a sugar surrogate selected from GNA, and UNA.
  • 48. The oligomeric compound of any of claims 43-47, wherein each nucleoside of the antisense RNAi oligonucleotide comprises a modified sugar moiety or a sugar surrogate.
  • 49. The oligomeric compound of any of claims 43-48, wherein at least 80%, at least 90%, or 100% of the nucleosides of the antisense RNAi oligonucleotide comprises a modified sugar moiety selected from 2′-F and 2′-OMe.
  • 50. The oligomeric compound of any of claims 43-49, comprising a stabilized phosphate group attached to the 5′ position of the 5′-most nucleoside of the antisense RNAi oligonucleotide.
  • 51. The oligomeric compound of claim 50, wherein the stabilized phosphate group comprises a cyclopropyl phosphonate or an (E)-vinyl phosphonate.
  • 52. The oligomeric compound of any of claims 1-51, wherein the oligomeric compound is a single-stranded oligomeric compound.
  • 53. The oligomeric compound of any of claims 1-52, consisting of the modified oligonucleotide or the RNAi antisense oligonucleotide.
  • 54. The oligomeric compound of any of claims 1-53, comprising a conjugate group comprising a conjugate moiety and a conjugate linker.
  • 55. The oligomeric compound of claim 54, wherein the conjugate linker consists of a single bond.
  • 56. The oligomeric compound of claim 54, wherein the conjugate linker is cleavable.
  • 57. The oligomeric compound of claim 54, wherein the conjugate linker comprises 1-3 linker-nucleosides.
  • 58. The oligomeric compound of any of claims 54-57, wherein the conjugate group is attached to the 5′-end of the modified oligonucleotide or the antisense RNAi oligonucleotide.
  • 59. The oligomeric compound of any of claims 54-57, wherein the conjugate group is attached to the 3′-end of the modified oligonucleotide or the antisense RNAi oligonucleotide.
  • 60. The oligomeric compound of any of claims 1-59, comprising a terminal group.
  • 61. The oligomeric compound of any of claim 1-56 or 58-60, wherein the oligomeric compound does not comprise linker-nucleosides.
  • 62. An oligomeric duplex, comprising a first oligomeric compound comprising an antisense RNAi oligonucleotide of any of claims 43-61 and a second oligomeric compound comprising a sense RNAi oligonucleotide consisting of 17 to 30 linked nucleosides, wherein the nucleobase sequence of the sense RNAi oligonucleotide comprises an antisense-hybridizing region comprising least 15 contiguous nucleobases wherein the antisense-hybridizing region is at least 90% complementary to an equal length portion of the antisense RNAi oligonucleotide.
  • 63. The oligomeric duplex of claim 62, wherein the sense RNAi oligonucleotide consists of 18-25, 20-25, or 21-23 linked nucleosides.
  • 64. The oligomeric duplex of claim 62, wherein the sense RNAi oligonucleotide consists of 21 or 23 linked nucleosides.
  • 65. The oligomeric duplex of any of claims 62-64, wherein 1-4 3′-most nucleosides of the antisense or the sense RNAi oligonucleotide are overhanging nucleosides.
  • 66. The oligomeric duplex of any of claims 62-65, wherein 1-4 5′-most nucleosides of the antisense or sense RNAi oligonucleotide are overhanging nucleosides.
  • 67. The oligomeric duplex of any of claims 62-64, wherein the duplex is blunt ended at the 3′-end of the antisense RNAi oligonucleotide.
  • 68. The oligomeric duplex of any of claims 62-64, wherein the duplex is blunt ended at the 5′-end of the antisense RNAi oligonucleotide.
  • 69. The oligomeric duplex of any of claims 62-68, wherein at least one nucleoside of the sense RNAi oligonucleotide comprises a modified sugar moiety selected from: 2′-F, 2′-OMe, LNA, cEt, or a sugar surrogate selected from GNA, and UNA.
  • 70. The oligomeric duplex of claim 69, wherein each nucleoside of the sense RNAi oligonucleotide comprises a modified sugar moiety or a sugar surrogate.
  • 71. The oligomeric duplex of claim 70, wherein at least 80%, at least 90%, or 100% of the nucleosides of the sense RNAi oligonucleotide comprises a modified sugar moiety selected from 2′-F and 2′-OMe.
  • 72. The oligomeric duplex of any of claims 62-71, wherein at least one nucleoside of the sense RNAi oligonucleotide comprises a modified nucleobase.
  • 73. The oligomeric duplex of any of claims 62-72, wherein at least one internucleoside linkage of the sense RNAi oligonucleotide is a modified internucleoside linkage.
  • 74. The oligomeric duplex of claim 73, wherein at least one internucleoside linkage of the sense RNAi oligonucleotide is a phosphorothioate internucleoside linkage.
  • 75. The oligomeric duplex of any of claims 62-74, wherein the oligomeric duplex comprises 1-5 abasic sugar moieties attached to one or both ends of the antisense or sense RNA oligonucleotide.
  • 76. The oligomeric duplex of any of claims 62-75, consisting of the antisense RNAi oligonucleotide and the sense RNAi oligonucleotide.
  • 77. The oligomeric duplex of any of claims 62-75, wherein the second oligomeric compound comprises a conjugate group comprising a conjugate moiety and a conjugate linker.
  • 78. The oligomeric duplex of claim 77, wherein the conjugate linker consists of a single bond.
  • 79. The oligomeric duplex of claim 78, wherein the conjugate linker is cleavable.
  • 80. The oligomeric duplex of claim 78, wherein the conjugate linker comprises 1-3 linker-nucleosides.
  • 81. The oligomeric duplex of any of claims 78-80, wherein the conjugate group is attached to the 5′-end of the sense RNAi oligonucleotide.
  • 82. The oligomeric duplex of any of claims 78-80, wherein the conjugate group is attached to the 3′-end of the sense RNAi oligonucleotide.
  • 83. The oligomeric duplex of any of claims 78-80, wherein the conjugate group is attached via the 2′ position of a ribosyl sugar moiety at an internal position of the sense RNAi oligonucleotide.
  • 84. The oligomeric compound of any of claims 54-59 or the oligomeric duplex of any of claims 77-83, wherein at least one conjugate group comprises a C16 alkyl group.
  • 85. The oligomeric duplex of claim 62, wherein the second oligomeric compound comprises a terminal group.
  • 86. An antisense agent comprising an antisense compound, wherein the antisense compound is the oligomeric compound of any of claims 1-61.
  • 87. The antisense agent of claim 86, wherein the antisense agent is the oligomeric duplex of any of claims 62-85.
  • 88. The antisense agent of claim 86 or claim 87, wherein the antisense agent is: i) an RNase H agent capable of reducing the amount of APOE nucleic acid through the activation of RNase H; orii) an RNAi agent capable of reducing the amount of APOE nucleic acid through the activation of RISC/Ago2.
  • 89. The antisense agent of any of claims 86-88, wherein the antisense agent comprises a conjugate group, wherein the conjugate group comprises a cell-targeting moiety.
  • 90. A chirally enriched population of oligomeric compounds of any of claims 1-61, wherein the population is enriched for modified oligonucleotides comprising at least one particular phosphorothioate internucleoside linkage having a particular stereochemical configuration.
  • 91. The chirally enriched population of claim 90, wherein the population is enriched for modified oligonucleotides comprising at least one particular phosphorothioate internucleoside linkage having the (Sp) or (Rp) configuration.
  • 92. The chirally enriched population of claim 90, wherein the population is enriched for modified oligonucleotides having a particular, independently selected stereochemical configuration at each phosphorothioate internucleoside linkage.
  • 93. The chirally enriched population of claim 90, wherein the population is enriched for modified oligonucleotides having the (Rp) configuration at one particular phosphorothioate internucleoside linkage and the (Sp) configuration at each of the remaining phosphorothioate internucleoside linkages.
  • 94. The chirally enriched population of claim 90, wherein the population is enriched for modified oligonucleotides having at least 3 contiguous phosphorothioate internucleoside linkages in the Sp, Sp, and Rp configurations, in the 5′ to 3′ direction.
  • 95. A population of oligomeric compounds of any of claims 1-61, wherein all of the phosphorothioate internucleoside linkages of the modified oligonucleotide are stereorandom.
  • 96. A pharmaceutical composition comprising an oligomeric compound of any of claims 1-61, an oligomeric duplex of any of claims 62-85, an antisense agent of any of claims 86-89, or a population of any of claims 90-95, and a pharmaceutically acceptable carrier or diluent.
  • 97. The pharmaceutical composition of claim 96, wherein the pharmaceutically acceptable diluent is artificial cerebral spinal fluid (aCSF), sterile saline, or PBS.
  • 98. The pharmaceutical composition of claim 97, wherein the pharmaceutical composition consists essentially of the modified oligonucleotide, the oligomeric duplex, the antisense agent, or the population and PBS or aCSF.
  • 99. A method comprising administering to a subject an oligomeric compound of any of claims 1-61, an oligomeric duplex of any of claims 62-85, an antisense agent of any of claims 86-89, a population of any of claims 90-95, or a pharmaceutical composition of any of claims 96-98.
  • 100. A method of treating a disease associated with APOE comprising administering to a subject having or at risk for developing a disease associated with APOE a therapeutically effective amount of an oligomeric compound of any of claims 1-61, an oligomeric duplex of any of claims 62-85, an antisense agent of any of claims 86-89, a population of any of claims 90-95, or a pharmaceutical composition according to any of claims 96-98; and thereby treating the disease associated with APOE.
  • 101. The method of claim 100, wherein the APOE-associated disease is Alzheimer's Disease.
  • 102. The method of any of claims 99-101, wherein at least one symptom or hallmark of the APOE-associated disease is ameliorated.
  • 103. The method of claim 102, wherein the symptom or hallmark is cognitive impairment, progressive memory loss, behavioral abnormality, dementia, difficulty performing daily activities, amyloid plaques, neurofibrillary tangles, or neuroinflammation.
  • 104. The method of any of claims 100-103, wherein administering an oligomeric compound of any of claims 1-61, an oligomeric duplex of any of claims 62-85, an antisense agent of any of claims 86-89, a population of any of claims 90-95, or a pharmaceutical composition according to any of claims 96-98 reduces cognitive impairment, behavioral abnormality, dementia, difficulty performing daily activities, amyloid plaques, neurofibrillary tangles, or neuroinflammation, or slows memory loss in the subject.
  • 105. The method of any of claims 99-104, wherein the subject is human.
  • 106. A method of reducing expression of APOE in a cell comprising contacting the cell with an oligomeric compound of any of claims 1-61, an oligomeric duplex of any of claims 62-85, an antisense agent of any of claims 86-89, a population of any of claims 90-95, or a pharmaceutical composition according to any of claims 96-98.
  • 107. The method of claim 106, wherein the cell is a neuron or a glial cell, optionally wherein the cell is an astrocyte or microglial cell.
  • 108. The method of claim 106 or claim 107, wherein the cell is a human cell.
  • 109. Use of an oligomeric compound of any of claims 1-61, an oligomeric duplex of any of claims 62-85, an antisense agent of any of claims 86-89, a population of any of claims 90-95, or a pharmaceutical composition according to any of claims 96-98 for treating a disease associated with APOE.
  • 110. Use of an oligomeric compound of any of claims 1-61, an oligomeric duplex of any of claims 62-85, an antisense agent of any of claims 86-89, a population of any of claims 90-95, or a pharmaceutical composition according to any of claims 96-98 in the manufacture of a medicament for treating a disease associated with APOE.
  • 111. The use of claim 109 or claim 110, wherein the APOE-associated disease is Alzheimer's Disease.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/051822 9/23/2021 WO
Provisional Applications (1)
Number Date Country
63083006 Sep 2020 US