This invention relates to silicon wafer processing and more specifically relates to a wafer structure and process to prevent cracking of the die when they are singulated, or separated from the wafer.
In the manufacture of semiconductor die such as diodes or MOSFETs or the like, the die structures are completed to the extent possible in a common wafer and are then singulated (separated) as by sawing in a scribe area (“streets”) between and circumscribing adjacent die.
In many semiconductor device products, such as the Flip Fet™ flip chip MOSFET of U.S. Pat. No. 6,653,740 which is owned by the assignee of the present invention, the die are not packaged and need to be otherwise passivated from ambient.
For that purpose, and while the die are still in the wafer a silicon nitride (Si3 N4) layer about 1.2 microns thick is applied to the wafer surface after the front metal has been applied to the die in the wafer. A PECVD process is conventionally used to deposit the nitride layer. The nitride passivation layer was then subjected to a photolithography step in which a mask was processed and opened only to expose the scribe lines which circumscribe each of the die and the contact regions to which contacts (for contact balls in the case of the device of U.S. Pat. No. 6,653,740) are to be formed on the passivated die.
After masking, the exposed nitride areas are dry-etched and the photoresist was stripped.
To then prepare the surface for solder ball formation, the first step was an electroless Ni/Au plating step over the full wafer surface. The plating adheres only to the exposed areas opened in the passivation layer so that the scribe lines were also plated along with the solder ball electrode pads.
As a result, during dicing or singulation of the die from the wafer, the saw blade became clogged or gummed up by the Ni/Au plate layer.
In an attempt to solve this problem, an oxide (TEOS) film (the surface of the wafer has an overlying TEOS layer beneath the nitride passivation) was left on the streets (after the etch of the nitride). This protected the streets from plating of Ni/Au, but a new problem was created. Thus, the TEOS film was cracking during dicing, with some cracks propagating into the die termination areas.
To solve this problem, the TEOS was removed from the street and a street protection photoresist mask was added to protect the streets from plating. This mask was then stripped with hot sulfuric acid after the plating operation. However, with this process, some of the exposed metals of the wafer were also etched, and the additional photo steps added cost to the process.
In accordance with the invention, the nitride passivation over the streets is bordered on each side by oxide strips which interrupt and underlie and segregate a nitride strip over the street.
Thus, the nitride strip over the street prevents the deposit of the Ni/Au plate (or some other contact layer), and cracks in the nitride due to sawing propagate through the nitride but stop at the oxide border strips and do not go into the die termination areas.
One process to accomplish the boarder oxide strips employs a slight change in the contact mask which leaves spaced narrow (10 micron wide) oxide strips on each side of the street area unetched. The nitride passivation layer is then etched off the tops of the border oxide strips, leaving about a 6 micron wide opening over the 10 micron wide oxide strips. Thus, the nitride passivation is non-continuous, but protects the silicon in the street from being plated by the Ni/Au plating.
The termination shown includes polysilicon field plate layers 35 and 36. These are not critical to the invention.
The full wafer is passivated by a nitride (Si3 N4) layer 40 which is opened in areas of the device to be metallized. Thus, in order to attach the solder balls 20 to 23 in
In accordance with the invention, the nitride layer 40 is removed at narrow elongated gaps 42 and 43 which border a central nitride strip 40a (
Note that the oxide layers 50 an 51 may have a width of about 10 microns and may be overlapped along their edges by the nitride layer. The gaps in the nitride may be about 6 microns wide.
When the Ni/Au electroless plate layer is now applied, it will not adhere to any of the oxide or nitride surfaces in the street area of
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein.
This application claims the benefit of U.S. Provisional Application No. 60/576,701, filed Jun. 3, 2004.
Number | Date | Country | |
---|---|---|---|
60576701 | Jun 2004 | US |