This application relates to fan-out wafer-level packages, and more particularly to a fan-out wafer-level package with improved topology.
The explosive growth of the smartphone market has increased demand for functional convergence and die integration in the packaging arts. To meet this demand, fan-out wafer-level packages (FOWLP) packages have been developed. In a planar (2D) FOWLP, one or more dies are embedded in a molded wafer so that an active surface of each die is coplanar with a mold compound surface. A redistribution layer (RDL) may thus “fan out” from the active surface of the die onto the mold compound surface. In a 3D FOWLP, additional dies are stacked onto the active surface of the co-planar dies and wire bonded to the RDL over the mold compound surface. As compared to conventional package-on-package (PoP) technologies, a FOWLP eliminates the organic substrate so as to have reduced height and increased form factor as well as reduced cost.
Although FOWLP is thus an attractive packaging technology, its manufacture suffers from a number of drawbacks. For example, a polymer dielectric layer is typically deposited over the active surface of the coplanar dies and mold compound surface prior to deposition of the RDL and its associated vias. The polymer dielectric layer is then patterned so that the RDL vias may subsequently be deposited. To increase density, the via diameter and pitch must be relatively small, which requires the polymer dielectric layer to be relatively thin. Although the mold compound surface is coplanar with the active surface of the embedded dies, it is does not have the same height such that the relatively thin polymer dielectric layer covering the mold compound has an upper surface that is lower than the same polymer dielectric layer upper surface covering the dies. This step height difference leads to lithography issues when patterning the polymer dielectric layer prior to depositing the RDL vias.
Accordingly, there is a need in the art for fan-out wafer-level packages with improved topology.
A fan-out wafer-level-process (FOWLP) integrated circuit package is provided that includes a molded package in which at least one die is encapsulated in mold compound. The molded package has a mold compound surface in which an active surface of the at least one die is exposed. A plurality of interconnects extend through a polymer dielectric layer to couple to corresponding pads on the active surface of the at least one die. Each of the interconnects has a pad-facing surface that couples through a seed layer to the corresponding pad. In addition, the interconnects each have a longitudinally-extending metal body that ends at the pad-facing surface. A circumferential surface surrounds the longitudinally-extending metal body for each interconnect. A dielectric layer covers the mold compound surface and surrounds each interconnect such that the dielectric layer directly contacts the circumferential surface of the interconnect's longitudinally-extending metal body.
The direct contact between the circumferential surface for each interconnect and the dielectric layer results from the interconnects being formed prior to the deposition of the dielectric layer. In contrast, it is conventional to first pattern the dielectric layer so that vias may be electroplated or deposited through the dielectric layer to pads on the active surface of the encapsulated die (or dies) in the molded package. To obtain reduced pitch, the formation of such conventional vias required the dielectric layer to be relatively thin. But such relative thinness is problematic in light of the inevitable step height difference between the mold compound surface and the exposed active surface of the encapsulated dies. The relatively thin conventional dielectric layer thus retained this step height difference, which complicated the subsequent formation of a redistribution layer (RDL) over the conventional dielectric layer. In sharp contrast, the interconnects disclosed herein may be formed in a relatively thick photo-imageable layer such as a photoresist layer that is then removed after formation of the interconnects. The resulting interconnects may thus be relatively tall as compared to conventional vias. The subsequent deposition of the dielectric layer may thus result in a relatively-thick dielectric layer that does not have a stepped surface resulting from the step height differences on the mold compound surface. In this fashion, the resulting dielectric layer has a relatively planar topology so that the RDL may be accurately deposited. In addition to improving the lithography for the RDL, the improved dielectric layer herein is more robust to warpage. These advantageous features may be better appreciated through the disclosure of the following example embodiments.
Embodiments of the disclosure and their advantages are best understood by referring to the detailed description that follows. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures.
To provide improved topology, a fan-out wafer-level package (FOWLP) is provided in which a plurality of interconnects are deposited onto a molded package prior to the deposition of a dielectric layer such as a polymer dielectric layer. The molded package has a mold compound surface in which an active surface of one or more dies is exposed. The active surface includes a plurality of pads corresponding to the plurality of interconnects. After deposition of the plurality of interconnects, each pad couples to a corresponding interconnect. The polymer dielectric layer is then deposited over the mold compound surface so as to surround each interconnect. Since the polymer dielectric layer no longer needs to be patterned and etched for the formation of any vias to couple to the pads, the polymer dielectric layer may be relatively thick. In this fashion, an opposing surface of the polymer dielectric layer that faces away from the active surface of the mold-compound-embedded die(s) may be relatively planar despite step height differences between the active surface of encapsulated die(s) and the mold compound surface in the molded package. The metal layers for a redistribution layer (RDL) may then be deposited over the planar surface of the polymer dielectric layer without lithography issues caused by non-planarity. In addition, the relative thickness of the polymer dielectric layer enables its deposition in some embodiments in laminar or spin coating layers that inhibit warpage of the resulting FOWLP. These advantageous features may be better appreciated through the following example embodiments.
Turning now to the drawings, an example FOWLP 100 is shown in
It will be appreciated that additional dies may be encapsulated in mold compound 135 in alternative embodiments. Moreover, just a single die may be encapsulated (or embedded) in mold compound 135 in alternative embodiments. In addition, the number and type of embedded passive components such as capacitors 115 and 120 may be changed in alternative embodiments. For example, inductors may also be encapsulated in mold compound 135 analogously as discussed with regard to capacitors 115 and 120
A first plurality of interconnects 125 such as copper pillars (or other suitable interconnects) are deposited onto pads 111 for the active surface of die 105 and die 110 prior to the deposition of polymer dielectric layer 155. Each pad 111 thus couples to at least one corresponding interconnect 125. A second plurality of interconnects 125 couples to the plurality of contacts for capacitors 115 and 120. Each contact thus couples to at least one corresponding interconnect 125. As will be explained further herein, interconnects 125 may be relatively tall such as 10-35 microns. The subsequent deposition of polymer dielectric layer 155 surrounds these relative tall interconnects 125 such that polymer dielectric layer 155 is also relatively thick. In this fashion, the relative thickness of polymer dielectric layer 155 enables its opposing surface 156 to be planar despite the step height differences between the underlying mold compound surface 136 and the active surfaces for dies 105 and 110 and despite the step height differences between the underlying mold compound surface 136 and the contact surfaces for capacitors 115 and 120. The relative thickness of polymer dielectric layer 155 effectively “smooths over” these step height differences so that its opposing surface 156 is relatively planar. In contrast, a conventional polymer dielectric layer needs to be relatively thin so that its vias may have reduced pitch. The conventional polymer dielectric layer thus has an opposing surface that mirrors these step height differences. Due to the resulting planarity for opposing surface 156 of polymer dielectric layer 155, the metal layer(s) for a redistribution layer (RDL) 130 may then be accurately deposited onto opposing surface 156. Solder balls 140 couple to RDL 130 so that FOWLP 100 may be mounted onto a circuit board or other structure.
An interconnect 125 is shown in a close-up view in
An example method of manufacture for FOWLP 100 will now be discussed. As shown in
Dies 105 and 110 and capacitors 115 and 120 may then be encapsulated with mold compound 135 to form a molded package 210 as shown in
The resulting molded package 210 may then be flipped as shown in
As shown in
The method of manufacturing FOWLP 100 may be summarized with regard to the flowchart of
An example electronic system will now be discussed.
A FOWLP integrated circuit package as disclosed herein may be incorporated into a wide variety of electronic systems. For example, as shown in
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular embodiments illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.