This disclosure is related to gallium nitride based semiconductor transistors.
Gallium nitride (GaN) semiconductor devices, which are III-V or III-nitride type devices, are emerging as an attractive candidate for power semiconductor devices because the GaN devices are capable of carrying large currents and supporting high voltages. Such devices are also able to provide very low on-resistance and fast switching times. A high electron mobility transistor (HEMT) is one type power semiconductor device that can be fabricated based on GaN materials. As used herein, GaN materials that are suitable for transistors can include secondary, tertiary, or quaternary materials, which are based on varying the amounts of the III type material of AlInGaN, Al, In and Ga, from 0 to 1, or AlxInyGa1-x-yN. Further, GaN materials can include various polarities of GaN, such as Ga-polar, N-polar, semi-polar or non-polar. In particular, N-face material may be obtained from N-polar or semi-polar GaN.
A GaN HEMT device can include a III-nitride semiconductor body with at least two III-nitride layers formed thereon. Different materials formed on the body or on a buffer layer causes the layers to have different band gaps. The different materials in the adjacent III-nitride layers also causes polarization, which contributes to a conductive two dimensional electron gas (2DEG) region near the junction of the two layers, specifically in the layer with the narrower band gap. One of the layers through which current is conducted is the channel layer. Herein, the narrower band gap layer in which the current carrying channel, or the 2DEG is located is referred to as the channel layer. The device also includes a gate electrode, a schottky contact and an ohmic source and drain electrodes on either side of the gate. The region between the gate and drain and the gate and source, which allows for current to be conducted through the device, is the access region.
The III-nitride layers that cause polarization typically include a barrier layer of AlGaN adjacent to a layer of GaN to induce the 2DEG, which allows charge to flow through the device. This barrier layer may be doped or undoped. In some cases, doping of the barrier layer may add to channel charge and it may also help in dispersion control. Because of the 2DEG typically existing under the gate at zero gate bias, most III-nitride devices are normally on or depletion mode devices. If the 2DEG is depleted, i.e., removed, below the gate at zero applied gate bias, the device can be an enhancement mode or normally off device.
Enhancement mode or normally off III-nitride type devices are desirable for power devices, because of the added safety they provide. An enhancement mode device requires a positive bias applied at the gate in order to conduct current. Although methods of forming III-nitride enhancement type devices are known, improved methods of depleting the 2DEG from under the gate in the channel layer are desirable.
Devices are described that are enhancement mode devices with low off state leakage current as well as low on resistance. This is achieved in structures that result in not only depleting the 2DEG from under the gate region, but also have a high barrier to current flow under the gate region in the off state while ensuring that the region outside the gate, i.e., the access region, remains highly conductive.
In one aspect, a method of forming an N-face enhancement mode high electron mobility transistor device is described. The method includes forming on a substrate a Ga-faced sacrificial layer, forming a cap layer on the sacrificial layer, forming a GaN channel layer on the cap layer, forming an AlxGaN layer on the channel layer, wherein 0≦x≦1, forming a buffer layer on the AlxGaN layer, bonding a carrier wafer on the buffer layer to form a stack, removing the substrate and the sacrificial layer from the stack to form an N-faced assembly of layers and forming a gate, source and drain on the N-faced assembly of layers.
In another aspect, a normally off III-nitride HEMT device is described. The device includes a gate, a source and a drain and an access region formed of a III-nitride material between either the source and the gate or the drain and the gate. In the access region the sheet resistance is less than 750 ohms/square. The device has an internal barrier under the gate of at least 0.5 eV, such as at least 1 eV, when no voltage is applied to the gate. The device is capable of supporting a 2DEG charge density under the gate of greater than 1×1012/cm2 in the on state.
In yet another aspect, a Ga-face enhancement mode high electrode mobility transistor device is described. The device includes a GaN buffer layer, a p-type bottom cap on the GaN buffer layer, wherein the GaN buffer layer has an aperture exposing the bottom cap, a GaN channel layer on an opposite side of the bottom cap from the GaN buffer layer, an AlxGaN layer on an opposite side of the GaN channel layer from the cap layer, a p-type top cap on an opposite side of the AlxGaN layer from the channel layer and a gate adjacent to the top cap.
In yet another aspect, a method of making a Ga-face enhancement mode high electrode mobility transistor device is described. The method includes forming a structure including the GaN buffer, GaN channel layer and AlxGaN layer, forming the p-type top cap on the AlxGaN layer, forming the gate adjacent to the p-type top cap, applying a passivation layer over the p-type top cap and AlxGaN layer, bonding a carrier wafer onto the passivation layer and forming the aperture in the GaN buffer layer.
In another aspect, a Ga-face enhancement mode high electrode mobility transistor device is described. The device has a GaN buffer layer, an AlxGaN layer on the GaN buffer layer, wherein the GaN buffer layer has an aperture exposing the AlxGaN layer, a GaN channel layer on an opposite side of the AlxGaN layer from the GaN buffer layer, an AlyGaN layer on an opposite side of the GaN channel layer from the AlxGaN layer, wherein a gate region of the AlyGaN layer is treated with fluorine and an upper gate adjacent to the gate region. The fluorine treatment can include a treatment with a fluorine containing plasma.
In yet another aspect, a method of forming a Ga-face enhancement mode high electrode mobility transistor device is described. The method includes forming a structure of the GaN buffer layer, the AlxGaN layer on the GaN buffer layer, wherein the GaN buffer layer has an aperture exposing a portion of the AlxGaN layer, a GaN channel layer on an opposite side of the AlxGaN layer from the GaN buffer layer and an AlyGaN layer on an opposite side of the GaN channel layer from the AlxGaN layer, treating the exposed portion of the AlxGaN layer with a fluorine containing compound and treating the gate region of the AlyGaN layer with the fluorine containing compound.
In yet another aspect, a structure that is part of an enhancement mode high electrode mobility transistor device is described. The structure includes a GaN buffer layer on a substrate. On the buffer layer is a heterostructure region and 2DEG formed by a layer of AlGaN, with an aluminum composition between 0 and 1 or equal to 1 and a GaN channel layer. A cap is on the layers that form the heterostructure region. A dielectric layer is formed on the layers that form the heterostructure region and adjacent to the cap. A gate on the cap. The device is an N-face device.
In one aspect, an N-face enhancement mode high electron mobility transistor device is described. The device includes a substrate and a heterostructure region and 2DEG region formed by a layer of AlGaN with an aluminum composition between 0 and 1 or equal to 1 and a GaN channel layer. The heterostructure region is on the substrate. The GaN channel layer has a Ga-face adjacent to the layer of AlxGaN. A cap is in a recess of an N-face of the channel layer. The cap does not overlie an access region of the device. A gate is formed on the cap. A source and drain are on laterally opposing sides of the cap.
Embodiments of the devices and methods described herein may include one or more of the following features. A GaN channel layer on the cap layer can be a channel layer of GaN with up to 15% Al in the GaN. The cap layer can include p-type AlzGaN and a method of forming a device can further include etching the p-type AlzGaN to form a p-type AlzGaN cap, where forming a gate includes forming the gate on the p-type AlzGaN cap. Forming the channel layer and forming the AlxGaN layer on the channel layer can form a region of a first 2DEG charge, a method can further include forming a layer surrounding the p-type AlzGaN cap, the layer surrounding the p-type AlzGaN cap and the channel layer together having a net 2DEG charge that is greater than the first 2DEG charge. Forming a layer surrounding the p-type AlzGaN cap can include forming a layer of AlyGaN, wherein y<x. Forming a cap layer of p-type AlzGaN can include forming the cap layer to have a thickness of at least 50 Angstroms, with 0<z<1. Forming a channel layer of GaN can comprise forming a channel layer having a thickness less than 300 Angstroms under the gate region. Forming a GaN channel layer can include forming a channel layer having a thickness about 50 Angstroms. A device can have a 2DEG charge that is depleted under the gate and can have an internal barrier that is greater than 0.5 eV, such as at least 1 eV. The channel layer can be AlzGaN, 0.05<z<0.15. Forming the cap layer can include forming a multi-compositional cap layer, wherein a first layer of the cap layer comprises AlxGaN and a second layer of the cap layer comprises of AlyGaN, wherein the second layer is formed prior to the first layer being formed and y>x. A method of forming a device can include etching the multi-compositional cap layer to form a multi-compositional cap and forming a layer of GaN surrounding the multi-compositional cap. The surrounding GaN layer can be formed using selective regrowth. The multi-compositional cap layer can change from AlxGaN to AlyGaN in a continuous or discontinuous manner.
The carrier layer can be thermally conducting and electrically insulating. Removing the substrate can include using laser liftoff, lapping, wet etching or dry etching. The method can further include plasma treating a portion of an N-face that corresponds to a location in which the gate is subsequently formed. The channel layer and the layer of AlxGaN can form a hetero structure with a resulting 2DEG region in the channel layer and the method can further include implanting ions in the access region of the wider bandgap layer to increase net 2DEG charge. The device can have an access region, and the method can further include doping the access region by thermal diffusion of donor species. An N-face layer can be passivated after the N-face layer is exposed. In a device where the structure is built upside down, an AlN layer can be formed on the channel layer prior to forming the layer of AlxGaN. The access region can be selectively doped in the channel layer, such as by thermal diffusion of donor species. A dielectric layer can be formed on a surface of the access region to form a pinning layer. The device can be capable of blocking at least 600 V, 900V or 1200 V. The device can have an on-resistance of less than 15 mohm-cm2, less than 10 mohm-cm2, 3 mohm-cm2 or less than 2 mohm-cm2. A top cap can be formed of p-type AlzGaN. The top cap may comprise a thin AlN layer, e.g., less than 20 Angstroms, or a high Al composition AlGaN layer, e.g., where the Al composition is greater than 50%, to prevent or reduce gate leakage. A bottom cap can be formed of p-type GaN. The bottom cap can be formed of AlyGaN, wherein y varies from one surface to an opposite surface of the bottom cap. The AlxGaN layer can have a thickness of less than 500 Angstroms. The channel layer can have a thickness of less than 300 Angstroms, such as less than 100 Angstroms, under the gate region. A gate can be in an aperture and contacting the bottom cap. A layer of AlyGaN can laterally surround the top cap, where y>x. The device can have an internal barrier of at least 0.5 eV, such as at least 1 eV when no voltage is applied to the gate. A gate can be formed in the aperture in the GaN buffer layer. The AlxGaN layer exposed by an aperture can be doped with fluorine. A lower gate can be within an aperture exposing the AlxGaN layer. A p-type cap layer can be between the upper gate and the AlyGaN layer. A p-type cap layer can be between the lower gate and the AlxGaN layer. An insulator layer can be between the lower gate and the AlxGaN layer. An insulator layer can be between the upper gate and the AlyGaN layer. The device can have an internal barrier of at least 0.5 eV, such as at least 1 eV, when no voltage is applied to the gate. An insulator can be between the upper gate and the gate region. A cap can be a p-type cap. The cap can be a combination of p-type AlGaN layer and an AlN layer. The cap can include AlyGaN and AlxGaN, the AlyGaN is closer to the gate than the AlxGaN is and y>x. The AlyGaN and AlxGaN can be doped p-type. The channel layer can be adjacent to the cap. The dielectric layer can be a dopant diffusion layer and donor species in the dopant diffusion layer can increase 2DEG density in the access region. The dielectric layer can be on a side of the cap opposite to the channel layer. The channel layer can be adjacent to the cap and can have an N-face adjacent to the cap. The dielectric layer can form a pinning layer and can induce charge in the access region. A layer of AlN can be between the layer of AlGaN forming the heterostructure and the 2DEG and the GaN channel layer. A slant field plate can be on the gate. The dielectric layer can be between the cap layer and the gate. The GaN channel layer can laterally surround a gate region in which the gate is located. The cap can be a p-type AlzGaN. The cap can include p-type AlzGaN and AlN layers. The cap can include AlyGaN and AlxGaN, where the AlyGaN is closer to the gate than the AlxGaN is and y>x. The AlyGaN and AlxGaN can be doped p-type. The cap can include AlyGaN and AlxGaN, where the AlyGaN is closer to the gate than the AlxGaN is, AlyGaN and AlxGaN are doped p-type and x>y. An access region between the gate and source and between the gate and drain can be ion implanted. An insulating layer can be disposed between the gate and the cap. A dielectric passivation layer can be over at least the access region.
Implementations of the methods and devices described herein can include one or more of the following advantages. High performance normally off devices with high positive threshold voltage are achieved. The positive threshold voltage can be adjusted by depositing an insulator of varying thickness on a device. However, high performance normally off devices require a large internal barrier that is not easily adjusted by merely depositing a thick insulator. A device can be formed with a high barrier, which determines the off state leakage current when the device is off. The internal barrier under the gate can be greater than 1 eV. The device may have a threshold voltage that is between about 1-3 volts. A device with a high internal barrier under the gate region can be formed while ensuring adequate charge or 2DEG in the access regions. The characteristics of the gate and access region can be independently controlled. Thus, a high internal barrier, high threshold voltage and low access region-resistance (high access region conductance) can simultaneously be achieved.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Ga-Faced Devices
Referring to
On an opposite side of the p GaN layer 14 is a GaN channel layer 13, which can have a thickness of between about 1 nm and 50 nm, such as about 10 nm. A layer of AlxGaN 12 adjacent to the GaN channel layer 13 and opposite to the p-type GaN cap layer 14 contributes to the 2DEG in the GaN channel layer 13. The p-type AlzGaN cap 11 is on the layer of AlxGaN 12, in the gate region and under gate 17. The break in the 2DEG indicator line under the gate, shows that there is no charge under the gate at zero bias on the gate and that the device is an enhancement mode or normally off device. (A dashed line in each figure, other than
In some embodiments, the AlxGaN/GaN layers 12, 13 are grown thin enough so that the surface pinning position of the p-type AlzGaN or GaN layers 11, 14 depletes the 2DEG at the AlxGaN/GaN layer interface in the gate region. For example, the AlxGaN/GaN layers 12, 13 are grown thin when the device includes a fully depleted p-type layer. If the device has a thick p-type layer on top, the barrier created by the p-type AlzGaN/AlxGaN junction depletes the 2DEG. Depleting the 2DEG from both surfaces increases the internal barrier and the threshold voltage. The presence of high p-AlxGaN or GaN barriers also results in high gate turn-on voltage and reduction of gate leakage current. Additional insulating layers may be applied between the gates (17 or 17′) and the respective p-type layers (11 and 14).
In some embodiments, one of gates 17, 17′ is optional on the device.
Without the p-type AlzGaN cap 11, the polarization fields in the AlxGaN/GaN layers 12, 13 allows for the 2DEG at the AlxGaN/GaN interface in the access region. Thus, the thickness of the AlxGaN cap 12 is controlled to maintain adequate 2DEG and a low on-resistance.
Referring to
Referring to
Referring to
Referring to
Referring to
The structure under the gate is a layer of AlyGaN 25 on a GaN channel layer 13 on a layer of AlxGaN 21, which is on a GaN buffer layer 15. A recess in the GaN buffer layer 15 exposes a portion of the layer of AlxGaN 21. The recess is below the gate 17 and not below the access region. The exposed portion of the layer of AlxGaN 21 is treated with a plasma of a fluorine compound. Similarly, a gate region of the layer of AlyGaN 25 is treated with the plasma. The fluorine-based treatment is not applied to the access regions.
In some embodiments, a bottom gate 17′ is formed in the recess after the fluorine treatment of the N-face. In some embodiments, the Al composition, x, in the AlxGaN layer 21 is minimized, such as to between 0.1 to 0.3, for example, 0.1, and the thicknesses of the GaN channel layer 13 and the AlxGaN layer 21 are controlled to prevent depletion of the 2DEG or the formation of a parasitic channel at the interface between the layer of AlxGaN 21 and GaN buffer layer 15. In some embodiments, the GaN channel layer 13 has a thickness of about 20 nm. In some embodiments, the thickness of the AlxGaN layer 21 is 10 nm. Optionally, the device includes an insulator 27 between the gate 17 and the layer of AlyGaN 25 and/or between the bottom gate 17′ and the layer of AlxGaN 21. The insulator can have a thickness of between about 0.1 nm and 100 nm. In some embodiments, one of the gates 17, 17′ is optional.
Referring to
In some embodiments, the fluorine based plasma treatment is combined with the device shown in
N-Face Devices
Referring to
Referring to
Referring to
In some embodiments, the GaN channel layer 41 is reduced to 5 nm to increase the internal barrier and the threshold voltage of the device. Referring to
Referring to
Reducing the thickness of the GaN layer under the gate increases the barrier under the gate and hence, the threshold voltage. The thick portion in the access region allows for sufficient 2DEG at the GaN channel layer 41/AlxGaN layer 43 interface to result in minimum resistance in the access region. In some embodiments, the full thickness of the GaN channel layer 41 is grown first and then subsequently etched away, followed by the selective regrowth of the p-type AlzGaN cap 11. In other embodiments, a thinner GaN channel layer 41 is formed during the first structure growth and is then capped by a layer of AlzGaN, followed by etching the layer of AlzGaN outside the gate region, i.e., in the access region and the regrowth of the remainder of GaN channel layer 41 in the access region. Referring to
In alternative embodiments to the device shown in
As noted above, formation of an N-face device is not necessarily as easy as growing a Ga-face device. Referring to
Referring to
Referring to
Referring to
Referring to
Similar to the method shown in
Referring to
Referring to
In some embodiments, the layers of AlxGaN 67 and AlyGaN 69 are omitted in the initial growth and the GaN channel layer 41 is the final desired thickness for the access region, when it is applied to the layer of AlxGaN 67. The GaN channel layer 41 is then etched in the gate region and the cap 65 is formed where the GaN channel layer material was removed. In some embodiments, the device shown in
Referring to
Referring to
The devices shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Throughout the specification and in the claims, where III-nitride materials are described, a modification of the material may be used in its place so long as the material is not modified in such a way to reverse the intended polarization, e.g., by hindering the 2DEG in an access region or by inducing charge in the gate region. For example, where use of GaN is described, small amounts of aluminum or indium, e.g., up to 15%, 10%, 5% or 2% may be included in the GaN layer without deviating from the scope of the disclosed methods and devices. Similarly, where AlGaN materials are described, AlInGaN materials can be used in their place. That is, any of the GaN materials that are described can be replaced by secondary, tertiary, or quaternary materials, which are based on varying the amounts of the III type material of AlInGaN, Al, In and Ga, from 0 to 1, or AlxInyGa1-x-yN. When AlxGaN material is described, 0<x<1, AlxGa1-xN can be substituted. Further, when a subscript for a group III material is used in the specification, such as x, y or z, a different letter may be used in the claims. Throughout the specification, > or < may be substituted by > or <, respectively and > or < can be substituted by > or <, respectively.
Throughout the specification and in the claims, the AlxGaN layer adjacent to the channel layer and responsible for forming a heterostructure with and 2DEG in the channel layer, can be doped at least in part. In embodiments, the doping is n-type. Throughout the specification, the GaN buffer layer is generally semi-insulating but in some embodiments may include a small portion, such as a portion furthest from the substrate side of the buffer layer, that is doped. This doping can be either n-type or p-type.
The devices described herein can be formed on a substrate of sapphire, silicon carbide (either Si-face or C-face), silicon, aluminum nitride, gallium nitride or zinc oxide. Although not shown in the various epilayer structure schematics, a transition layer or a nucleation layer can be formed on the substrate to facilitate the growth of the III-nitride layers. The nucleation layer is specific to the type of substrate used.
In many embodiments, a cap is only in the gate region and not in the access region. However, in other embodiments, the cap extends across the access region as well.
Reference is made to fluorine treatment throughout the specification. This treatment may result in fluorine doping in the semiconductor layers.
Many intermediary structures are described herein, which are subsequently finished by depositing a gate metal and source and drain ohmic contacts. Further, individual devices can be isolated when multiple devices are formed on a single substrate. Where these steps are not explicitly stated, it is assumed that one would finish the device using known techniques.
The transistors described herein are power transistors, which are capable of blocking at least 600 V, such as at least 900 V or at least 1200 V.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, many of the features described with one embodiment may be used with another embodiment. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4645562 | Liao et al. | Feb 1987 | A |
4728826 | Einzinger et al. | Mar 1988 | A |
4821093 | Iafrate et al. | Apr 1989 | A |
4914489 | Awano | Apr 1990 | A |
5329147 | Vo et al. | Jul 1994 | A |
5646069 | Jelloian et al. | Jul 1997 | A |
5705847 | Kashiwa et al. | Jan 1998 | A |
5714393 | Wild et al. | Feb 1998 | A |
6008684 | Ker et al. | Dec 1999 | A |
6097046 | Plumton | Aug 2000 | A |
6316793 | Sheppard et al. | Nov 2001 | B1 |
6867078 | Green et al. | Mar 2005 | B1 |
6897495 | Yoshida et al. | May 2005 | B2 |
6979863 | Ryu | Dec 2005 | B2 |
7030428 | Saxler | Apr 2006 | B2 |
7071498 | Johnson et al. | Jul 2006 | B2 |
7084475 | Shelton et al. | Aug 2006 | B2 |
7268375 | Shur et al. | Sep 2007 | B2 |
7304331 | Saito et al. | Dec 2007 | B2 |
7321132 | Robinson et al. | Jan 2008 | B2 |
7501669 | Parikh et al. | Mar 2009 | B2 |
7566918 | Wu et al. | Jul 2009 | B2 |
7777252 | Sugimoto et al. | Aug 2010 | B2 |
7795642 | Suh et al. | Sep 2010 | B2 |
7851825 | Suh et al. | Dec 2010 | B2 |
7875907 | Honea et al. | Jan 2011 | B2 |
7884394 | Wu et al. | Feb 2011 | B2 |
7893500 | Wu et al. | Feb 2011 | B2 |
7898004 | Wu et al. | Mar 2011 | B2 |
7915643 | Suh et al. | Mar 2011 | B2 |
7939391 | Suh et al. | May 2011 | B2 |
7965126 | Honea et al. | Jun 2011 | B2 |
20010032999 | Yoshida | Oct 2001 | A1 |
20010040247 | Ando | Nov 2001 | A1 |
20020036287 | Yu et al. | Mar 2002 | A1 |
20020121648 | Hsu et al. | Sep 2002 | A1 |
20030006437 | Mizuta et al. | Jan 2003 | A1 |
20030020092 | Parikh et al. | Jan 2003 | A1 |
20040041169 | Ren et al. | Mar 2004 | A1 |
20040061129 | Saxler et al. | Apr 2004 | A1 |
20040164347 | Zhao et al. | Aug 2004 | A1 |
20050077541 | Shen et al. | Apr 2005 | A1 |
20050133816 | Fan | Jun 2005 | A1 |
20050189561 | Kinzer et al. | Sep 2005 | A1 |
20050189562 | Kinzer et al. | Sep 2005 | A1 |
20050194612 | Beach | Sep 2005 | A1 |
20050253168 | Wu et al. | Nov 2005 | A1 |
20060011915 | Saito et al. | Jan 2006 | A1 |
20060043499 | De Cremoux et al. | Mar 2006 | A1 |
20060102929 | Okamoto et al. | May 2006 | A1 |
20060108602 | Tanimoto | May 2006 | A1 |
20060121682 | Saxler | Jun 2006 | A1 |
20060124962 | Ueda et al. | Jun 2006 | A1 |
20060157729 | Ueno et al. | Jul 2006 | A1 |
20060186422 | Gaska et al. | Aug 2006 | A1 |
20060189109 | Fitzgerald | Aug 2006 | A1 |
20060202272 | Wu et al. | Sep 2006 | A1 |
20060220063 | Kurachi et al. | Oct 2006 | A1 |
20060255364 | Saxler | Nov 2006 | A1 |
20060289901 | Sheppard et al. | Dec 2006 | A1 |
20070007547 | Beach | Jan 2007 | A1 |
20070018199 | Sheppard et al. | Jan 2007 | A1 |
20070018210 | Sheppard et al. | Jan 2007 | A1 |
20070045670 | Kuraguchi | Mar 2007 | A1 |
20070077745 | He et al. | Apr 2007 | A1 |
20070080672 | Yang | Apr 2007 | A1 |
20070128743 | Huang et al. | Jun 2007 | A1 |
20070134834 | Lee et al. | Jun 2007 | A1 |
20070145390 | Kuraguchi | Jun 2007 | A1 |
20070158692 | Nakayama et al. | Jul 2007 | A1 |
20070164315 | Smith et al. | Jul 2007 | A1 |
20070164322 | Smith et al. | Jul 2007 | A1 |
20070194354 | Wu et al. | Aug 2007 | A1 |
20070205433 | Parikh et al. | Sep 2007 | A1 |
20070224710 | Palacios et al. | Sep 2007 | A1 |
20070228477 | Suzuki et al. | Oct 2007 | A1 |
20070278518 | Chen et al. | Dec 2007 | A1 |
20080073670 | Yang et al. | Mar 2008 | A1 |
20080093626 | Kuraguchi | Apr 2008 | A1 |
20080157121 | Ohki | Jul 2008 | A1 |
20080203430 | Simin et al. | Aug 2008 | A1 |
20080230784 | Murphy | Sep 2008 | A1 |
20080237640 | Mishra et al. | Oct 2008 | A1 |
20080274574 | Yun | Nov 2008 | A1 |
20080283844 | Hoshi et al. | Nov 2008 | A1 |
20080308813 | Suh et al. | Dec 2008 | A1 |
20090032820 | Chen | Feb 2009 | A1 |
20090032879 | Kuraguchi | Feb 2009 | A1 |
20090072240 | Suh et al. | Mar 2009 | A1 |
20090072269 | Suh et al. | Mar 2009 | A1 |
20090075455 | Mishra | Mar 2009 | A1 |
20090085065 | Mishra et al. | Apr 2009 | A1 |
20090146185 | Suh et al. | Jun 2009 | A1 |
20090201072 | Honea et al. | Aug 2009 | A1 |
20090267078 | Mishra et al. | Oct 2009 | A1 |
20100067275 | Wang et al. | Mar 2010 | A1 |
20100073067 | Honea | Mar 2010 | A1 |
20100264461 | Rajan et al. | Oct 2010 | A1 |
20100289067 | Mishra et al. | Nov 2010 | A1 |
20110012110 | Sazawa et al. | Jan 2011 | A1 |
20110049526 | Chu et al. | Mar 2011 | A1 |
20110101466 | Wu | May 2011 | A1 |
20110121314 | Suh et al. | May 2011 | A1 |
20110127541 | Wu et al. | Jun 2011 | A1 |
20110140172 | Chu et al. | Jun 2011 | A1 |
20110169549 | Wu | Jul 2011 | A1 |
20110193619 | Parikh et al. | Aug 2011 | A1 |
20110249477 | Honea et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
1748320 | Mar 2006 | CN |
101897029 | Nov 2010 | CN |
102017160 | Apr 2011 | CN |
1 998 376 | Dec 2008 | EP |
2 188 842 | May 2010 | EP |
2000-058871 | Feb 2000 | JP |
2003-229566 | Aug 2003 | JP |
2003-244943 | Aug 2003 | JP |
2004-260114 | Sep 2004 | JP |
2006-32749 | Feb 2006 | JP |
2006-033723 | Feb 2006 | JP |
2007-036218 | Feb 2007 | JP |
2007-215331 | Aug 2007 | JP |
2008199771 | Aug 2008 | JP |
2010-539712 | Dec 2010 | JP |
200924068 | Jun 2009 | TW |
200924201 | Jun 2009 | TW |
200947703 | Nov 2009 | TW |
201010076 | Mar 2010 | TW |
201027912 | Jul 2010 | TW |
2010278759 | Jul 2010 | TW |
201036155 | Oct 2010 | TW |
WO 2007108404 | Sep 2007 | WO |
WO 2008120094 | Oct 2008 | WO |
WO 2009036181 | Mar 2009 | WO |
WO 2009036266 | Mar 2009 | WO |
WO 2009039028 | Mar 2009 | WO |
WO 2009039041 | Mar 2009 | WO |
WO 2009076076 | Jun 2009 | WO |
WO 2009132039 | Oct 2009 | WO |
WO 2010-039463 | Apr 2010 | WO |
WO 2010068554 | Jun 2010 | WO |
WO 2010090885 | Aug 2010 | WO |
WO 2010132587 | Nov 2010 | WO |
WO 2011031431 | Mar 2011 | WO |
WO 2011072027 | Jun 2011 | WO |
Entry |
---|
Arulkumaran et al. (2005), “Enhancement of breakdown voltage by AIN buffer layer thickness in AlGaN/GaN high-electron-mobility transistors on 4 in. diameter silicon,” Applied Physics Letters, 86:123503-1-3. |
Ando et al., “10-W/mm AlGaN-GaN HFET with a field modulating plate,” IEEE Electron Device Letters, 2003, 24(5):289-291. |
Authorized officer Chung Keun Lee, International Search Report and Written Opinion in PCT/US2008/076079, mailed Mar. 20, 2009, 11 pages. |
Authorized officer Nora Lindner, International Preliminary Report on Patentability in PCT/US2008/076079, mailed Apr. 1, 2010, 6 pages. |
Authorized officer Keon Hyeong Kim, International Search Report and Written Opinion in PCT/US2008/076160, mailed Mar. 18, 2009, 11 pages. |
Authorized officer Dorothée Mülhausen, International Preliminary Report on Patentability for application No. PCT/US2008/076199, mailed Apr. 1, 2010. |
Authorized officer Keon Hyeong Kim, International Search Report and Written Opinion in PCT/US2008/085031, mailed Jun. 24, 2009, 11 pages. |
Authorized officer Yolaine Cussac, International Preliminary Report on Patentability in PCT/US2008/085031, mailed Jun. 24, 2010, 6 pages. |
Authorized officer Tae Hoon Kim, International Search Report and Written Opinion in PCT/US2009/041304, mailed Dec. 18, 2009, 13 pages. |
Authorized officer Dorothée Mülhausen, International Preliminary Report on Patentability in PCT/US2009/041304, mailed Nov. 4, 2010, 8 pages. |
Authorized officer Sung Hee Kim, International Search Report and Written Opinion in PCT/US2009/057554, mailed May 10, 2010, 13 pages. |
Authorized officer Gijsbertus Beijer, International Preliminary Report on Patentability in PCT/US2009/057554, mailed Apr. 7, 2011, 7 pages. |
Authorized officer Cheon Whan Cho, International Search Report and Written Opinion in PCT/US2009/066647, mailed Jul. 1, 2010, 16 pages. |
Authorized officer Athina Nikitas-Etienne, International Preliminary Report on Patentability in PCT/US2009/066647, mailed Jun. 23, 2011, 12 pages. |
Authorized officer Chung Keun Lee, International Search Report and Written Opinion in PCT/US2009/076030, mailed Mar. 23, 2009, 10 pages. |
Authorized officer Yolaine Cussac, International Preliminary Report on Patentability in PCT/US2009/076030, Mar. 25, 2010, 5 pages. |
Authorized officer Sung Chan Chung, International Search Report and Written Opinion in PCT/US2010/021824, mailed Aug. 23, 2010, 9 pages. |
Authorized officer Sang Ho Lee, International Search Report and Written Opinion in PCT/US2010/034579, mailed Dec. 24, 2010, 9 pages. |
Authorized officer Jeongmin Choi, International Search Report and Written Opinion in PCT/US2010046193, mailed Apr. 26, 2011, 13 pages. |
Authorized officer Sang Ho Lee, International Search Report and Written Opinion in PCT/US2010/059486, mailed Jul. 26, 2011, 9 pages. |
Barnett and Shinn (1994), “Plastic and elastic properties of compositionally modulated thin films,” Annu. Rev. Mater. Sci., 24:481-511. |
Chen et al., “High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors,” Jun. 25, 2008, Applied Physics Letters, 92, 253501-1-3. |
Cheng et al. (2006), “Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” Journal of Electronic Materials, 35(4):592-598. |
Coffie, R.L., Characterizing and suppressing DC-to-RF dispersion in AlGaN/GaN high electron mobility transistors, 2003, PhD Thesis, University of California, Santa Barbara, 169 pp. |
Coffie et al. (2003), “Unpassivated p-GaN/AIGaN/GaN HEMTs with 7.1 W/mm at 10 GhZ,” Electronic Letters, 39(19):1419-1420. |
Dora et al., “Zr02 gate dielectrics produced by ultraviolet ozone oxidation for GaN and AlGaN/GaN transistors,” Mar./Apr. 2006, J. Vac. Sci. Technol. B, 24(2)575-581. |
Dora et al., “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates”, Sep. 9, 006, IEEE Electron Device Letters, 27(9):713-715. |
Fanciulli et al., “Structural and electrical properties of Hf02 films grown by atomic layer deposition on Si, Ge, GaAs and GaN,” 2004, Mat. Res. Soc. Symp. Proc., vol. 786, 6 pp. |
Green et al., “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT's,” IEEE Electron Device Letters, 2000, 21(6): 268-270. |
Gu et al., “AlGaN/GaN MOS transistors using crystalline Zr02 as gate dielectric,” 2007, Proceedings of SPIE, vol. 6473, 64730S-1-8. |
Authorized officer Chung Keun Lee, International Search Report and Written Opinion in PCT/US2008/076199, mailed Mar. 24, 2009, 11 pp. |
Karmalkar and Mishra (2001), “Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate,” IEEE Transactions on Electron Devices, 48(8):1515-1521. |
Karmalkar and Mishra, “Very high voltage AlGaN/GaN high electron mobility transistors using a field plate deposited on a stepped insulator,” Solid-State Electronics, 2001, 45:1645-1652. |
Keller et al. (2002), “GaN-GaN junctions with ultrathin AIN interlayers: expanding heterojunction design,” Applied Physics Letters, 80(23):4387-4389. |
Keller et al., “Method for heteroepitaxial growth of high quality N-Face GaN, InN and AIN and their alloys by metal organic chemical vapor deposition,” U.S. Appl. No. 60/866,035, filed Nov. 15, 2006, 31 pages. |
Khan et al., “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Letters, 2000, 21(2):63-65. |
Kumar et al., “High transconductance enhancement-mode AlGaN/GaN NEMTs on SiC substrate,” Electronics Letters, 2003, 39(24): 2 pages. |
Kuraguchi et al. (2007), “Normally-off GaN-MISFET with well-controlled threshold voltage,” Phys. Stats. Sol., 204(6):2010-2013. |
Lanford et al., “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Mar. 31, 2005, Electronics Letters, vol. 41, No. 7, 2 pages, Online No. 20050161. |
Lee et al. (2001), “Self-aligned process for emitter- and base-regrowth GaN HBTs and BJTs,” Solid-State Electronics, 45:243-247. |
Marchand et al. (2001), “Metalorganic chemical vapor deposition of GaN on Si(111): stress control and application to field-effect transistors,” Journal of Applied Physics, 89(12):7846-7851. |
Mishra et al., “AlGaN/GaN HEMTs—An Overview of Device Operation and Applications,” Proceedings of the IEEE, 2002, 90(6): 1022-1031. |
Mishra et al., “N-face high electron mobility transistors with low buffer leakage and low parasitic resistance,” U.S. Appl. No. 60/908,914, filed Mar. 29, 2007, 21 pages. |
Mishra et al., “Growing N-polar III-nitride structures,” U.S. Appl. No. 60/972,467, filed Sep. 14, 2007, 7 pp. |
Mishra et al., “Polarization-induced barriers for n-face nitride-based electronics,” U.S. Appl. No. 60/940,052, filed May 24, 2007, 29 pages. |
Ota and Nozawa (2008), “AlGaN/GaN recessed MIS-Gate HFET with high threshold-voltage normally-off operation for power electronics applications,” IEEE Electron Device Letters, 29(7):668-670. |
Palacios et al., “Fluorine treatment to shape the electric field in electron devices, passivate dislocations and point defects, and enhance the luminescence efficiency of optical devices,” U.S. Appl. No. 60/736,628, filed Nov. 15, 2005, 21 pages. |
Palacios et al. (2006), “Nitride-based high electron mobility transistors with a GaN spacer,” Applied Physics Letters, 89:073508-1-3. |
Rajan et al., “Advanced transistor structures based on N-face GaN,” 32nd International Symposium on Compound Semiconductors (ISCS), Sep. 18-22, 2005, Europa-Park Rust, Germany, 2 pages. |
Rajan et al., “Method for Heteroepitaxial growth of high quality N-Face GaN, InN and AIN and their alloys by metal organic chemical vapor deposition,” U.S. Appl. No. 60/866,035, filed Nov. 15, 2006, 31 pages. |
Rajan et al., “N-polar aluminum gallium nitride/gallium nitride enhancement-mode field effect transistor,” U.S. Appl. No. 11/523,286, filed Sep. 18, 2006, 23 pages. |
Reiher et al. (2003), “Efficient stress relief in GaN heteroepitaxy on SiC (111) using low-temperature AIN interlayers,” Journal of Crystal Growth, 248:563-567. |
Saito et al., “Recess-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” Feb. 2006, IEEE Transactions on Electron Device, 53(2):356-362. |
Shelton et al., “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Transactions on Electron Devices, 2001, 48(3): 490-494. |
Shen, L., “Advanced polarization-based design of AlGaN/GaN HEMTs,” Jun. 2004, PhD Thesis, University of California, Santa Barbara, 191 pp. |
SIPO First Office Action for Application No. 200880120050.6, Aug. 2, 2011, 8 pages. |
Suh et al., “High breakdown enhancement mode GaN-based HEMTs with integrated slant field plate,” U.S. Appl. No. 60/822,886, filed Aug. 18, 2006, 16 pp. |
Suh et al., “III-nitride devices with recessed gates,” U.S. Appl. No. 60/972,481, filed Sep. 14, 2007, 18 pp. |
Sugiura et al., “Enhancement-mode n-channel GaN MOSFETs fabricated on p-GaN using Hf02 as gate oxide,” Aug. 16, 2007, Electronics Letters, vol. 43, No. 17, 2 pp. |
Vetury et al. (1998), “Direct measurement of gate depletion in high breakdown (405V) Al/GaN/GaN heterostructure field effect transistors,” IEDM 98, pp. 55-58. |
Wang et al., “Comparison of the effect of gate dielectric layer on 2DEG carrier concentration in strained AlGaN/GaN heterostructure,” 2005, Mater. Res. Soc. Symp. Proc., vol. 831, 6 pp. |
Wang et al., “Enhancement-Mode Si3N4/AlGaN/GaN MISHFETs,” IEEE Electron Device Letters, 2006, 27(10): 793-795. |
Yoshida, S., “AlGan/GaN power FET,” Furukawa Review, 21:7-11, 2002. |
Number | Date | Country | |
---|---|---|---|
20130175580 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13406723 | Feb 2012 | US |
Child | 13723753 | US | |
Parent | 13019150 | Feb 2011 | US |
Child | 13406723 | US | |
Parent | 11856687 | Sep 2007 | US |
Child | 13019150 | US |