The present invention generally relates to a semiconductor device, and more particularly to a germanium-containing semiconductor device containing a low equivalent oxide thickness (EOT) high-k layer on the germanium-containing substrate and a method of forming the device.
As metal-oxide-semiconductor field-effect transistors (MOSFETs) continue to scale, a short channel effect has become an increasing problem and new device architectures such as FinFETs and trigates have been introduced. Semiconductor devices with a high-mobility channel, such as germanium(Ge)-containing semiconductor devices and III-V semiconductor devices, offer the possibility of increased device performance beyond traditional silicon(Si)-containing semiconductor devices. A challenge for germanium-containing semiconductor devices containing a high dielectric constant (high-k) layer includes the need to protect the germanium-containing substrate against oxidation and/or degradation during deposition and processing of the high-k layer on the germanium-containing substrate.
A germanium-containing semiconductor device and a method for forming a germanium-containing semiconductor device are described. The germanium-containing semiconductor device includes a germanium-containing substrate, an aluminum-containing diffusion barrier layer on the germanium-containing substrate, and a high-k layer on the aluminum-containing diffusion barrier layer, where the high-k layer has been exposed to atomic oxygen to reduce the equivalent oxide thickness (EOT) of the high-k layer while avoiding oxidizing the germanium-containing substrate.
According to one embodiment, the method includes providing a germanium-containing substrate, depositing an aluminum-containing diffusion barrier layer on the germanium-containing substrate, depositing a high-k layer on the aluminum-containing diffusion barrier layer, and exposing the high-k layer to atomic oxygen to reduce the EOT of the high-k layer while avoiding oxidizing the germanium-containing substrate.
In the accompanying drawings:
A challenge for advanced germanium-containing semiconductor devices includes the need to protect a germanium-containing substrate against oxidation and/or degradation during semiconductor processing, for example during deposition and post-deposition processing of a high-k layer on the germanium-containing substrate. Embodiments of the invention describe a method for forming an aluminum-containing diffusion barrier layer between the germanium-containing substrate and the high-k layer. The aluminum-containing diffusion barrier layer (e.g., Al2O3) provides a good barrier to germanium diffusion into overlying high-k layer and a good barrier to oxygen diffusion into the germanium-containing substrate during post-deposition processing that includes exposing the high-k layer to atomic oxygen to reduce the equivalent oxide thickness (EOT) of the high-k layer while avoiding oxidizing the germanium-containing substrate.
The inventors have discovered that exposing the high-k layer to atomic oxygen to reduce the equivalent oxide thickness (EOT) of the high-k layer while avoiding oxidizing the germanium-containing substrate results in low EOT (e.g., less than 7 Angstrom (Å)) which achieves the International Technology Roadmap for Semiconductors (ITRS) requirement for leakage current density and thermal stability (<500° C.) for 10 nm, 7 nm, and 5 nm nodes.
Referring now to the figures,
In 104, the method further includes depositing an aluminum-containing diffusion barrier layer on the germanium-containing substrate. A thickness of the aluminum-containing diffusion barrier layer can be, for example, between about 3 Å and about 20 Å, between about 3 Å and about 10 Å, or between about 4 Å and about 6 Å. In one embodiment, the aluminum-containing diffusion barrier layer can contain aluminum oxide (Al2O3), aluminum oxynitride (AlON), aluminum nitride (AlN), or a combination thereof. The aluminum-containing diffusion barrier layer may be deposited onto the germanium-containing substrate by ALD, CVD, PEALD, or PECVD, using an aluminum precursor, and an oxidation source, a nitridation source, or both an oxidation source and a nitridation source.
Embodiments of the invention may utilize a wide variety of aluminum precursors for depositing the aluminum-containing diffusion barrier layer. Examples of aluminum precursors include, but are not limited to, AlMe3, AlEt3, AlMe2H, [Al(OsBu)3]4, Al(CH3COCHCOCH3)3, AlCl3, AlBr3, AlI3, Al(OiPr)3, [Al(NMe2)3]2, Al(iBu)2Cl, Al(iBu)3, Al(iBu)2H, AlEt2Cl, Et3Al2(OsBu)3, Al(THD)3, H3AlNMe3, H3AlNEt3, H3AlNMe2Et, and H3AlMeEt2.
Embodiments of the invention may utilize a wide variety of oxidation sources and nitridation sources for depositing the aluminum-containing diffusion barrier layer. The oxidation sources can include, but are not limited to, O2, atomic oxygen (O), ozone (O3), water (H2O), or peroxide (H2O2), or a combination thereof, and optionally an inert gas such as Argon (Ar). The nitridation sources can include, but is not limited to, ammonia (NH3), atomic nitrogen (N), hydrazine (N2H4), and C1-C10 alkylhydrazine compounds. Common C1 and C2 alkylhydrazine compounds include monomethyl-hydrazine (MeNHNH2), 1,1-dimethyl-hydrazine (Me2NNH2), and 1,2-dimethyl-hydrazine (MeNHNHMe). According to one embodiment, a mixture of the oxidation sources and the nitridation sources may be utilized. According to one embodiment, an oxidation and nitridation source may, for example, contain NO, NO2, or N2O, or a combination thereof, and optionally an inert gas such as Ar.
In 104, the method further includes depositing a high-k layer on the aluminum-containing diffusion barrier layer. A thickness of the high-k layer can, for example, be between about 1 nm and about 10 nm, between about 1.5 nm and about 5 nm, or between about 2 nm and about 4 nm. The high-k layer may be deposited onto the aluminum-containing diffusion barrier layer by ALD, CVD, PEALD, or PECVD, using a high-precursor, and an oxidation source, a nitridation source, or both an oxidation source and a nitridation source.
In one embodiment, the high-k layer includes hafnium, zirconium, titanium, a rare earth element, or a combination thereof. For example, the high-k layer can contain an oxide of hafnium, an oxide of zirconium, an oxide of titanium, an oxide of a rare earth element, or a combination thereof. Examples include TiO2, HfO2, ZrO2, HfSiO, ZrSiO, HfON, ZrON, HfZrO, HfZrON), HfZrSiO, or HfZrSiON, or a combination of two or more thereof. In other examples, the high-k layer can include an oxide, nitride, or oxynitride containing a rare earth element, such as yttrium (Y), lutetium (Lu), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), or ytterbium (Yb), or any combination of two or more thereof. Examples of a rare earth-based high-k layer 108 include lanthanum oxide (La2O3), lutetium oxide (Lu2O3), and lanthanum lutetium oxide (LaLuO3).
Embodiments of the invention may utilize a wide variety of oxidation sources and nitridation sources for depositing the high-k layer. The oxidation sources can include, but is not limited to, O2, atomic oxygen (O), ozone (O3), water (H2O), or peroxide (H2O2), or a combination thereof, and optionally an inert gas such as Ar. The nitridation sources can include, but is not limited to, ammonia (NH3), atomic nitrogen (N), hydrazine (N2H4), and C1-C10 alkylhydrazine compounds. Common C1 and C2 alkylhydrazine compounds include monomethyl-hydrazine (MeNHNH2), 1,1-dimethyl-hydrazine (Me2NNH2), and 1,2-dimethyl-hydrazine (MeNHNHMe). According to one embodiment, a mixture of the oxidation sources and the nitridation sources may be utilized. According to one embodiment, an oxidation and nitridation source may, for example, contain NO, NO2, or N2O, or a combination thereof, and optionally an inert gas such as Ar.
In 108, the method further includes exposing the high-k layer to atomic oxygen to reduce the EOT of the high-k layer while avoiding oxidizing the germanium-containing substrate. According to some embodiments, the exposing includes exposing the high-k layer to plasma-excited oxidizing gas. In one example, the oxidizing gas consists of O2 and optionally an inert gas. The oxidizing gas may be plasma-excited by a plasma source, for example a microwave plasma source. Examples of microwave plasma sources are described in
It is contemplated that the exposure of the high-k layer to the atomic oxygen reduces the EOT of the high-k layer by repairing oxygen vacancies in the high-k layer. The presence of the aluminum-containing diffusion barrier layer between the high-k layer and the germanium-containing substrate effectively acts as a barrier to oxygen diffusion during the atomic oxygen exposure, thereby avoiding oxidation of the germanium-containing substrate which would increase the EOT.
The method can further include depositing a metal-containing gate electrode on the high-k layer. In one embodiment, the metal-containing gate electrode can include TiN, TiAlN, W, or TaN, or a combination of two or more thereof. Following deposition of the metal-containing gate electrode on the metal-containing gate electrode, the resulting film structure may be further processed to form a gate stack for a transistor.
According to one embodiment, the DADA process can include forming at least one first monolayer of first material on a surface of the germanium-containing substrate by performing a first plurality of cycles of atomic layer deposition and, thereafter, annealing the formed at least one first monolayer of first material under a first inert atmosphere at a first temperature, thereafter, forming at least one second monolayer of second material by performing a second plurality of cycles of atomic layer deposition, where the formed at least one second monolayer of second material at least partially overlies the annealed at least one first monolayer of first material, and thereafter, annealing the formed at least one second monolayer of second material under a second inert atmosphere at a second temperature.
CET is related to EOT for ultra-thin gate dielectrics through the equation:
CET˜EOT+(kSiO2/k) Zavg
where k=dielectric constant of the actual material, Zavg=average distance of inversion carriers from the gate-dielectric interface, and kSiO2=dielectric constant of SiO (˜3.9). Further, EOT=(kSiO2/k)t, where t=physical thickness of the actual material.
The CET results in
Exemplary microwave plasma processing systems
Gas lines 572 are located in the side wall of the upper portion of plasma processing chamber 550 below the top plate 554. In one example, the number of gas lines 572 can be 16 (only two of which are shown in
In the plasma processing system 510, microwave power is provided to the plasma processing chamber 550 through the top plate 554 via a slot antenna 560 having a plurality of slots 560A. The slot antenna 560 faces the substrate 558 to be processed and the slot antenna 560 can be made from a metal plate, for example copper. In order to supply the microwave power to the slot antenna 560, a waveguide 563 is disposed on the top plate 554, where the waveguide 563 is connected to a microwave power supply 561 for generating microwaves with a frequency of about 2.45 GHz, for example. The waveguide 563 contains a flat circular waveguide 563A with a lower end connected to the slot antenna 560, a circular waveguide 563B connected to the upper surface side of the circular waveguide 563A, and a coaxial waveguide converter 563C connected to the upper surface side of the circular waveguide 563B. Furthermore, a rectangular waveguide 563D is connected to the side surface of the coaxial waveguide converter 563C and the microwave power supply 561.
Inside the circular waveguide 563B, an axial portion 562 of an electroconductive material is coaxially provided, so that one end of the axial portion 562 is connected to the central (or nearly central) portion of the upper surface of slot antenna 560, and the other end of the axial portion 562 is connected to the upper surface of the circular waveguide 563B, thereby forming a coaxial structure. As a result, the circular waveguide 563B is constituted so as to function as a coaxial waveguide. The microwave power can, for example, be between about 0.5 W/cm2 and about 4 W/cm2. Alternatively, the microwave power can be between about 0.5 W/cm2 and about 3 W/cm2. The microwave irradiation may contain a microwave frequency of about 300 MHz to about 10 GHz, for example about 2.45 GHz, and the plasma may contain an electron temperature of less than or equal to 5 eV, including 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 or 5 eV, or any combination thereof. In other examples, the electron temperature can be below 5 eV, below 4.5 eV, below 4 eV, or even below 3.5 eV. In some examples, the electron temperature can be between 3.0 and 3.5 eV, between 3.5 eV and 4.0 eV, or between 4.0 and 4.5 eV. The plasma may have a density of about 1×1011/cm3 to about 1×1013/cm3, or higher.
In addition, in the plasma processing chamber 550, a substrate holder 552 is provided opposite the top plate 554 for supporting and heating a substrate 558 (e.g., a wafer). The substrate holder 552 contains a heater 557 to heat the substrate 525, where the heater 557 can be a resistive heater. Alternatively, the heater 557 may be a lamp heater or any other type of heater. Furthermore the plasma processing chamber 550 contains an exhaust line 553 connected to the bottom portion of the plasma processing chamber 550 and to a vacuum pump 555.
The plasma processing system 510 further contains a substrate bias system 556 configured to bias the substrate holder 552 and the substrate 558 for generating a plasma and/or controlling energy of ions that are drawn to a substrate 558. The substrate bias system 556 includes a substrate power source configured couple power to the substrate holder 552. The substrate power source contains a RF generator and an impedance match network. The substrate power source is configured to couple power to the substrate holder 552 by energizing an electrode in the substrate holder 552. A typical frequency for the RF bias can range from about 0.1 MHz to about 100 MHz, and can be 13.56 MHz. In some examples, the RF bias can be less than 1 MHz, for example less than 0.8 MHz, less than 0.6 MHz, less than 0.4 MHz, or even less than 0.2 MHz. In one example, the RF bias can be about 0.4 MHz. Alternatively, RF power is applied to the electrode at multiple frequencies. The substrate bias system 556 is configured for supplying RF bias power can be between 0 W and 100 W, between 100 W and 200 W, between 200 W and 300 W, between 300 W and 400 W, or between 400 W and 500 W. In some examples, the RF bias power can be less than 100 W, less than 50 W, or less than 25 W, for example. RF bias systems for plasma processing are well known to those skilled in the art. Further, the substrate bias system 556 includes a DC voltage generator capable of supplying DC bias between −5 kV and +5 kV to the substrate holder 552.
The substrate bias system 556 is further configured to optionally provide pulsing of the RF bias power. The pulsing frequency can be greater than 1 Hz, for example 2 Hz, 4 Hz, 6 Hz, 8 Hz, 10 Hz, 20 Hz, 30 Hz, 50 Hz, or greater. It is noted that one skilled in the art will appreciate that the power levels of the substrate bias system 556 are related to the size of the substrate being processed. For example, a 300 mm Si wafer requires greater power consumption than a 200 mm wafer during processing.
Still referring to
A top portion of the plasma processing chamber 20 is open-ended. The plasma gas supply unit 30 is placed opposite to the substrate holder 21 and is attached to the top portion of the plasma processing chamber 20 via sealing members such as O rings (not shown). The plasma gas supply unit 30, which may also function as a dielectric window, can be made of materials such as aluminum oxide or quartz and has a planar surface. A plurality of gas supply holes 31 are provided opposite the substrate holder 21 on a planar surface of the plasma gas supply unit 30. The plurality of gas supply holes 31 communicate with a plasma gas supply port 33 via a gas flow channel 32. A plasma gas supply source 34 provides a plasma gas, for example argon (Ar) gas, or other inert gases, into the plasma gas supply port 33. The plasma gas is then uniformly supplied into the plasma generation region R1 via the plurality of gas supply holes 31.
The plasma processing system 10 further includes a process gas supply unit 40, which is centered in the plasma processing chamber 20 between the plasma generation region R1 and the plasma diffusion region R2. The process gas supply unit 40 may be made of a conducting material, for example an aluminum alloy that includes magnesium (Mg), or stainless steel. Similar to the plasma gas supply unit 30, a plurality of gas supply holes 41 are provided on a planar surface of the process gas supply unit 40. The planar surface of the process gas supply unit 40 is positioned opposite to the substrate holder 21.
The plasma processing chamber 20 further includes exhaust lines 26 connected to the bottom portion of the plasma processing chamber 20, a vacuum line 27 connecting the exhaust lines 26 to a pressure controller valve 28 and to a vacuum pump 29. The pressure controller valve 28 may be used to achieve a desired gas pressure in the plasma processing chamber 20.
A plan view of the process gas supply unit 40 is shown in
Further, a plurality of openings 44 are formed in the process gas supply unit 40 such that the plurality of openings 44 pass through the process gas supply unit 40 in the vertical direction. The plurality of openings 44 introduce the plasma gas, e.g., argon (Ar) gas, helium (He) gas, or other inert gases, into the plasma diffusion region R2 above the substrate holder 21. As shown in
The process gas flows through the grid-like gas flow channels 42 and is uniformly supplied into the plasma diffusion region R2 via the plurality of gas supply holes 41. The plasma processing system 10 further includes four valves (V1-V4) and four mass flow rate controller (MFC1-MFC4) for controlling a supply of the process gas.
An external microwave generator 55 provides a microwave of a predetermined frequency, e.g., 2.45 GHz, to the antenna unit 50 via a coaxial waveguide 54. The coaxial waveguide 54 may include an inner conductor 54B and an outer conductor 54A. The microwave from the microwave generator 55 generates an electric field just below the plasma gas supply unit 30 in the plasma generation region R1, which in turn causes excitation of the process gas within the plasma processing chamber 20.
A plurality of slots 56 are provided on the radial line slot plate 52 to generate a circularly polarized wave. The plurality of slots 56 are arranged in a substantially T-shaped form with a small gap between each slot. The plurality of slots 56 are arranged in a concentric circle pattern or a spiral pattern along a circumferential direction. Since the slots 56a and 56b are perpendicular to each other, a circularly polarized wave containing two orthogonal polarized components is radiated, as a plane wave, from the radial line slot plate 52.
The dielectric plate 53 can be made of a low loss dielectric material, e.g., aluminum oxide (Al2O3) or silicon nitride (Si3N4), that is located between the radial line slot plate 52 and the flat antenna main body 51. The radial line slot plate 52 may be mounted on the plasma processing chamber 20 using sealing members (not shown), such that the radial line slot plate 52 is in close contact with a cover plate 23. The cover plate 23 is located on the upper surface of plasma gas supply unit 30 and is formed from a microwave transmissive dielectric material such as aluminum oxide (Al2O3).
An external high-frequency power supply source 22 is electrically connected to the substrate holder 21 via a matching network 25. The external high-frequency power supply source 22 generates an RF bias power of a predetermined frequency, e.g. 13.56 MHz, for controlling the energy of ions in the plasma that are drawn to the substrate W. The power supply source 22 is further configured to optionally provide pulsing of the RF bias power. The pulsing frequency can be greater than 1 Hz, for example 2 Hz, 4 Hz, 6 Hz, 8 Hz, 10 Hz, 20 Hz, 30 Hz, 50 Hz, or greater. The power supply source 22 is configured for supplying RF bias power between 0 W and 100 W, between 100 W and 200 W, between 200 W and 300 W, between 300 W and 400 W, or between 400 W and 500 W. One skilled in the art will appreciate that the power levels of the power supply source 22 are related to the size of the substrate being processed. For example, a 300 mm Si wafer requires greater power consumption than a 200 mm wafer during processing. The plasma processing system 10 further includes DC voltage generator 35 capable of supplying DC voltage bias between −5 kV and +5 kV to the substrate holder 21.
A germanium-containing semiconductor device and a method of forming have been disclosed in various embodiments. The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. This description and the claims following include terms that are used for descriptive purposes only and are not to be construed as limiting. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above teaching. Persons skilled in the art will recognize various equivalent combinations and substitutions for various components shown in the Figures. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
Number | Date | Country | |
---|---|---|---|
62220784 | Sep 2015 | US |