The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
As shown in
Moreover, the buffer layer can also be a complex structure. That is, the buffer layer 302 can be a complex structure (shown in
Furthermore, the aforementioned vertical rod layer 306 is located over the aforementioned buffer layer and the vertical rod layer 306 is composed of several vertical rods 306a disposed over the substrate 300. Each of the vertical rods 306a can be, for example, made of group-III nitride. Preferably, for example, the vertical rods are made of gallium nitride. Further, the thickness of the vertical rod layer 306 is about 10 nano meters ˜5 micrometers. It should be noticed that the distribution density of the vertical rods 306a of the vertical rod layer 306 over the substrate 300 is about 109/cm2˜1012/cm2.
In addition, the group-III nitride vertical-rods substrate of the present invention further comprises a semiconductor layer 308. The thickness of the semiconductor layer 308 is larger than 20 micro meters. The semiconductor layer 308 can be, for example, made of group-III nitride. Preferably, the semiconductor layer 308 is made of gallium nitride. This semiconductor layer 308 is an epitaxial layer serving as a substrate for later formed group-III nitride device.
By using the grain arrangement provided by the surface of the buffer layer or the complex-structure buffer layer, the vertical rods perpendicular to the surface of the substrate are formed on the buffer layer, wherein each of the vertical rods has relatively high monomorphism property and is free from the dislocation phenomenon. While the semiconductor layer is formed over the vertical-rod layer, the dislocations in the semiconductor layer epitaxially formed on the vertical rod layer is uniform distributed since the surface of the vertical rod layer provides a dislocation free epitaxial environment.
Furthermore, since the vertical rod layer is located between the substrate and the semiconductor layer in the group-III nitride vertical-rods substrate of the present invention, the vertical rod layer can be served as a stress releasing point between heterogeneous lattices. Therefore, the thickness of the semiconductor layer formed over the vertical rod layer is relatively large. Additionally, by using the vertical rod layer as a structure attenuate point, it is easy to separate the semiconductor layer from the substrate through the vertical rod layer.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing descriptions, it is intended that the present invention covers modifications and variations of this invention if they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
95118646 | May 2006 | TW | national |