Heating center PCRAM structure and methods for making

Abstract
Memory devices are described along with manufacturing methods. A memory device as described herein includes a bottom electrode and a first phase change layer comprising a first phase change material on the bottom electrode. A resistive heater comprising a heater material is on the first phase change material. A second phase change layer comprising a second phase change material is on the resistive heater, and a top electrode is on the second phase change layer. The heater material has a resistivity greater than the most highly resistive states of the first and second phase change materials.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to high density memory devices based on phase change based memory materials, including chalcogenide based materials and on other programmable resistive materials, and to methods for manufacturing such devices.


2. Description of Related Art


Phase change based memory materials are widely used in read-write optical disks. These materials have at least two solid phases, including for example a generally amorphous solid phase and a generally crystalline solid phase. Laser pulses are used in read-write optical disks to switch between phases and to read the optical properties of the material after the phase change.


Phase change based memory materials, like chalcogenide based materials and similar materials, also can be caused to change phase by application of electrical current at levels suitable for implementation in integrated circuits. The generally amorphous state is characterized by higher electrical resistivity than the generally crystalline state, which can be readily sensed to indicate data. These properties have generated interest in using programmable resistive material to form nonvolatile memory circuits, which can be read and written with random access.


The change from the amorphous to the crystalline state is generally a lower current operation. The change from crystalline to amorphous, referred to as reset herein, is generally a higher current operation, which includes a short high current density pulse to melt or break down the crystalline structure, after which the phase change material cools quickly, quenching the phase change process and allowing at least a portion of the phase change material to stabilize in the amorphous state. It is desirable to minimize the magnitude of the reset current used to cause the transition of the phase change material from the crystalline state to the amorphous state. The memory cells using phase change material include an “active region” in the bulk of the phase change material of the cell in which the actual phase transitions are located. Techniques are applied to make the active region small, so that the amount of current needed to induce the phase change is reduced. Also, techniques are used to thermally isolate the active region in the phase change cell so that the resistive heating needed to induce the phase change is confined to the active region.


The magnitude of the current needed to induce a phase change during reset can be reduced by increasing the resistivity of the phase change material because the phase change occurs as a result of heating and the temperature increase due to self-heating is proportional to the resistivity of the phase change material (ignoring heat sink effects). However, a small read current will also be needed to insure that the phase change material does not undergo an undesired phase change during the reading of data from the memory cell. Issues associated with a small read current include a slow read process. Additionally, increasing the resistivity of the phase change material will result in a higher overall resistance for the memory cell and does not have provide any benefit for power consumption of the memory cell. Furthermore, it has been observed that a higher overall memory cell resistance may result in a lower SET speed.


The magnitude of the current needed for reset can also be reduced by reducing the size of the phase change material element in the cell and/or the contact area between electrodes and the phase change material, such that higher current densities are achieved with small absolute current values through the phase change material element.


One direction of development has been toward forming small pores in an integrated circuit structure, and using small quantities of programmable resistive material to fill the small pores. Patents illustrating development toward small pores include: Ovshinsky, “Multibit Single Cell Memory Element Having Tapered Contact,” U.S. Pat. No. 5,687,112, issued Nov. 11, 1997; Zahorik et al., “Method of Making Chalogenide [sic] Memory Device,” U.S. Pat. No. 5,789,277, issued Aug. 4, 1998; Doan et al., “Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same,” U.S. Pat. No. 6,150,253, issued Nov. 21, 2000.


Another technology developed by the assignee of the present application is referred to as a phase change bridge cell, in which a very small patch of memory material is formed as a bridge across a thin film insulating member located between electrodes. The phase change bridge is easily integrated with logic and other types of circuitry on integrated circuits. See, U.S. application Ser. No. 11/155,067, filed 17 Jun. 2005, entitled “Thin Film Fuse Phase Change RAM and Manufacturing Method,” by Lung et al., incorporated by reference as if fully set forth herein, which application was owned at the time of invention and is currently owned by the same assignee.


Yet another approach to controlling the size of the active area in a phase change cell is to devise very small electrodes for delivering current to a body of phase change material. This small electrode structure induces phase change in the phase change material in a small area like the head of a mushroom, at the location of the contact. See, U.S. Pat. No. 6,429,064, issued Aug. 6, 2002, to Wicker, “Reduced Contact Areas of Sidewall Conductor;” U.S. Pat. No. 6,462,353, issued Oct. 8, 2002, to Gilgen, “Method for Fabricating a Small Area of Contact Between Electrodes;” U.S. Pat. No. 6,501,111, issued Dec. 31, 2002, to Lowrey, “Three-Dimensional (3D) Programmable Device;” U.S. Pat. No. 6,563,156, issued Jul. 1, 2003, to Harshfield, “Memory Elements and Methods for Making Same.”


One approach to the heat flow problem is seen in U.S. Pat. No. 6,815,704, entitled “Self Aligned Air-Gap Thermal Insulation for Nano-scale Insulated Chalcogenide Electronics (NICE) RAM”, in which an attempt is made to isolate the memory cell using gaps or voids on the sides of the phase change material. It has also been proposed to use thermally insulating materials to improve the confinement of heat to the active region.


Also, approaches to improving thermal isolation include forming the phase change element in a way that tends to isolate the active region from the electrodes, as shown for example in U.S. patent application Ser. No. 11/348,848, filed 7 Feb. 2006, entitled “I-Shaped Phase Change Memory Cell” by Chen et al., incorporated by reference as if fully set forth herein, which application was owned at the time of invention and is currently owned by the same assignee.


Problems have arisen in manufacturing devices with very small dimensions, and with variations in process that meet tight specifications needed for large-scale memory devices. It is therefore desirable to provide a memory cell structure having small dimensions and low reset currents, as well as a structure that addresses the heat flow problem, and methods for manufacturing such structure that meets tight process variation specifications needed for large-scale memory devices. Furthermore, it is desirable to produce memory devices having a small active phase change region.


SUMMARY OF THE INVENTION

A memory device as described herein includes a bottom electrode and a first phase change layer comprising a first phase change material on the bottom electrode. A resistive heater comprising a heater material is on the first phase change material. A second phase change layer comprising a second phase change material is on the resistive heater, and a top electrode is on the second phase change layer. The heater material has a resistivity greater than the most highly resistive states of the first and second phase change materials.


In embodiments illustrated, a memory cell includes a dielectric layer having a top surface and a via extending from the top surface of the dielectric layer. The bottom electrode is within a bottom portion of the via and the first phase change layer is within the top portion of the via.


A method for manufacturing a memory device as described herein includes providing a bottom electrode extending to a top surface of a dielectric layer, and removing a portion of the bottom electrode to form a recess. The method includes filling the recess with a first phase change material layer, and forming a layer of heater material on the first phase change layer. A second phase change layer is formed on the layer of heater material, and a top electrode material layer on the second phase change layer.


A memory cell as described herein results in an active region that can be made very small and provides some thermal isolation from the top and bottom electrodes, thereby reducing the amount of current needed to induce a phase change. The first phase change layer has a width less than the width of the second phase change layer, the width of the first phase change layer preferably less than a minimum feature size for a process, typically a lithographic process, used to form the memory cell. The difference in widths concentrates current in the first phase change layer, thereby reducing the magnitude of current needed to induce a phase change in the active region of the memory cell. Additionally, the heater material has a resistivity greater than that of the phase change materials of the first and second phase change layers, thus raising the temperature of the portions of the first and second phase change layers adjacent the heater layer relative to the other portions of the first and second phase change layers. This can result in the active region being spaced away from the top and bottom electrodes, which allows the remaining portions of the first and second phase change layers to provide some thermal isolation to the active region, which also helps to reduce the amount of current necessary to induce a phase change.


Other aspects and advantages of the invention are described below with reference to the figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a cross-sectional view of a “mushroom” phase change memory cell.



FIG. 2 illustrates a cross-sectional view of a “pillar-type” phase change memory cell.



FIG. 3 illustrates a cross-sectional view of a memory cell in accordance with an embodiment.



FIG. 4A illustrates a cross-sectional view of a memory cell similar to that of FIG. 3 with the heater layer omitted.



FIG. 4B illustrates the heat generated in the phase change layer of the memory cell illustrated in FIG. 4A during operation.



FIG. 4C illustrates the heat loss in the phase change layer of the memory cell illustrated in FIG. 4A during operation.



FIGS. 5-8 illustrate an embodiment of a process flow for manufacturing memory cells described herein.



FIG. 9 is a simplified block diagram of an integrated circuit in accordance with an embodiment.



FIG. 10 is schematic illustration of a memory array implemented using memory cells as described herein.





DETAILED DESCRIPTION

The following description of the invention will typically be with reference to specific structural embodiments and methods. It is understood that there is no intention to limit the invention to the specifically disclosed embodiments and methods but that the invention may be practiced using other features, elements, methods, and embodiments. Preferred embodiments are described to illustrate the present invention, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows. Like elements in various embodiments are commonly referred to with like reference numerals.


A detailed description is provided with reference to FIGS. 1-10.



FIG. 1 illustrates a cross-sectional view of a prior art “mushroom” memory cell having a bottom electrode 120 extending through a dielectric layer 110, a layer of phase change material 130 on the bottom electrode 120, and a top electrode 140 on the phase change material 130. A dielectric layer 160 surrounds the layer of phase change material 130. As can be seen in FIG. 1, the bottom electrode 120 has a width 125 less than the width 145 of the top electrode 140 and phase change material 130. Due to the differences in the widths 125 and 145, in operation the current density will be largest in the region of the phase change layer 130 adjacent the bottom electrode 120, resulting in the active region 150 of the phase change material having a “mushroom” shape as shown in FIG. 1.


Because the phase change in the active region 150 occurs as a result of heating, the thermal conductivity of the bottom electrode 120 will act to draw heat away from the active region 150, thus resulting in a need for higher current to induce the desired phase change in the active region 150.



FIG. 2 illustrates a cross-sectional view of a prior art “pillar-type” memory cell 200. The memory cell 200 includes a bottom electrode 220 in a dielectric layer 210, a pillar of phase change material 230 on the bottom electrode 220, and a top electrode 240 on the pillar of phase change material 230. A dielectric layer 260 surrounds the pillar of phase change material 230. As can be seen in the Figure the top and bottom electrodes 240, 220 have the same width 275 as that of the pillar of phase change material 230. Thus, the active region 250 can be spaced away from the top and bottom electrodes 240, 220, resulting in a reduced heat sink effect by the top and bottom electrodes 240, 220. However, there is heat loss through the sidewalls 232 of the phase change material 230 to the dielectric layer 260 due to the proximity of the active region 250 to the dielectric layer 260.


Additionally, the pillar of phase change material 230 may be formed by depositing a phase change material layer on the bottom electrode 220 and dielectric 210 and subsequently etching the phase change material layer to form the pillar 230. Problems have arisen in manufacturing such devices due to etch damage to the sidewalls 232 of the pillar of memory material 230 and alignment tolerance issues between the pillar of memory material 230 and the bottom electrode 220.



FIG. 3 illustrates a cross-sectional view of a memory cell 300 in accordance with an embodiment, the memory cell having a resistive heater layer 305 between first and second phase change layers 330, 335. The resistive heater layer 305 comprises heater material having a resistivity greater than the most highly resistive state of the phase change materials of the first and second phase change layers 330, 335.


A via 360 extends from a top surface 312 of the dielectric 310, and the first phase change layer 330 is within a top portion of the via 360 and a bottom electrode 320 is within a bottom portion of the via 360.


The bottom electrode 320 contacts the first phase change layer 330 and extends through the dielectric 310 to underlying access circuitry. The bottom electrode 320 may comprise, for example, TiN or TaN. TiN may be preferred in embodiments in which the phase change layer comprises GST (discussed below) because it makes good contact with GST, it is a common material used in semiconductor manufacturing, and it provides a good diffusion barrier at the higher temperatures at which GST transitions, typically in the 600-700° C. range. Alternatively, the bottom electrode 320 may be TiAlN or TaAlN, or comprises, for further examples, one or more elements selected from the group consisting of Ti, W, Mo, Al, Ta, Cu, Pt, Ir, La, Ni, N, O and Ru and combinations thereof.


A top electrode 340 is on the second phase change layer 335 and may comprise, for example, any of the materials described above with reference to the bottom electrode 320.


In operation, voltages on the top electrode 340 and bottom electrode 320 can induce current to flow from the bottom electrode 320 to the top electrode 340, or vice versa, via the first phase change layer 330, the heater layer 305, and the second phase change layer 335.


The active region 333 is the region of the memory cell 300 in which memory material is induced to change between at least two solid phases. As can be appreciated the active region 333 can be made extremely small in the illustrated structure, thus reducing the magnitude of current needed to induce a phase change. The first phase change layer 330 has a width 331 less than the width 336 of the second phase change layer 335, the width 331 preferably less than a minimum feature size for a process, typically a lithographic process, used to form the memory cell 300. The difference in the widths 331, 336 concentrates current density in the first phase change layer 330, thereby reducing the magnitude of current needed to induce a phase change in the active region 333. Additionally, the heater material of the heater layer 305 has a resistivity greater than that of the phase change materials of the first and second phase change layers 330, 335, thus raising the temperature of the portions of the first and second phase change layers 330, 335 adjacent the heater layer 305 relative to the other portions of the first and second phase change layers 330, 335. As can be seen in the Figure, the active region 333 is spaced away from both the top and bottom electrodes 340, 320, which allows the remaining portions of the first and second phase change layers 330, 335 to provide some thermal isolation to the active region 330, which also helps to reduce the amount of current necessary to induce a phase change.


The resistance of the heater layer 305 is proportional to the thickness 307 and to the resistivity of the heater material. Increasing the resistance of the heater layer 305 will increase the overall resistance of the memory cell 300, which does not provide any benefits for power consumption of the memory cell 300 and can result in a slower read process of the memory cell 300. However, as explained in more detail below, during operation the increase in temperature in the heater layer 305 is proportional to the resistivity of the heater material. Thus increasing the resistivity of the heater material is desirable since this can reduce the magnitude of the current needed to induce a phase change in the active region 333. Therefore, the thickness 307 of the heater layer 305 is preferably very thin while the resistivity of the heater material is high.


Ignoring heat sink effects, the change in temperature of a self-heated element due to a current I can be given by:










Δ





T

=



I
2

·
R
·
t


M
·
s






(
1
)








where M is the mass of the element, s is the specific heat content of the material, T is temperature, I is the electrical current, R is the electrical resistance, and t is time. Furthermore, the mass M, current I, and resistance R can be represented respectively by:









M
=

A
·
h
·
D





(
2
)






I
=

J
·
A





(
3
)






R
=


ρ
·
h

A





(
4
)








where A is the cross-sectional area of the current flow in the element, h is the height of the element, D is the density of the material, J is the current density, and ρ is the resistivity of the material. Combining equations (2) to (4) into equation (1) results in:










Δ





T

=



J
2

·
ρ
·
t


s
·
d






(
5
)







Therefore, as can be seen in equation (5) above the change in temperature is proportional to the resistivity of the material.


In one embodiment the resistivity of the heater material is between about 1.5 and 100 times greater than the most highly resistive states of the phase change materials of the first and second phase change layers 330, 335, and in another example is between about 4 and 50 times greater.


Additionally, the thickness 307 of the resistive heater layer 305 is preferably less than that of the first phase change layer 330. In some embodiments the thickness 307 is less than or equal to 10 nm, for example being between about 1 nm and 5 nm.


The resistive heater layer 305 is doped with impurities in some embodiments to modify resistivity, and may comprise, for example, highly doped TiN, TaN, TiW, TiSiN, or TaSiN. Impurities used in doping to increase the resistivity may include, for example, nitrogen, carbon, or silicon. In embodiments in which the resistive heater layer 305 is formed by a plasma vapor deposition PVD process, increased doping may be accomplished, for example, by using a high doped target and/or increasing the N2 flow. In a chemical vapor deposition CVD or atomic vapor deposition ALD process, the increased doping may be achieved, for example, by increasing the N2 flow and/or reducing the operation temperature of these processes.


In one embodiment the resistive heater layer 305 is formed by depositing TiN using a TDMAT (Ti[N(CH3)2]4) precursor, resulting in a significant amount of impurities (mainly Carbon) and causing a high resistivity. An H2 plasma treatment can be used to remove the carbon and reduce the resistivity.


Embodiments of the memory cell 300 include phase change based memory materials, including chalcogenide based materials and other materials, for the first and second phase change layers 330, 335. The first and second phase change layers 530, 535 may comprise the same or different phase change materials. Chalcogens include any of the four elements oxygen (O), sulfur (S), selenium (Se), and tellurium (Te), forming part of group VI of the periodic table. Chalcogenides comprise compounds of a chalcogen with a more electropositive element or radical. Chalcogenide alloys comprise combinations of chalcogenides with other materials such as transition metals. A chalcogenide alloy usually contains one or more elements from column six of the periodic table of elements, such as germanium (Ge) and tin (Sn). Often, chalcogenide alloys include combinations including one or more of antimony (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change based memory materials have been described in technical literature, including alloys of: Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te and Te/Ge/Sb/S. In the family of Ge/Sb/Te alloys, a wide range of alloy compositions may be workable. The compositions can be characterized as TeaGebSb100-(a+b).


Chalcogenides and other phase change materials are doped with impurities in some embodiments to modify conductivity, transition temperature, melting temperature, and other properties of memory elements using the doped chalcogenides. Representative impurities used for doping chalcogenides include nitrogen, silicon oxygen, silicon dioxide, silicon nitride, copper, silver, gold, aluminum, aluminum oxide, tantalum, tantalum oxide, tantalum oxide, tantalum nitride, titanium and titanium oxide. See, for example U.S. Pat. No. 6,800,504, and U.S. Patent Application Publication No. US 2005/0029502.


One researcher has described the most useful alloys as having an average concentration of Te in the deposited materials well below 70%, typically below about 60% and ranged in general from as low as about 23% up to about 58% Te and most preferably about 48% to 58% Te. Concentrations of Ge were above about 5% and ranged from a low of about 8% to about 30% average in the material, remaining generally below 50%. Most preferably, concentrations of Ge ranged from about 8% to about 40%. The remainder of the principal constituent elements in this composition was Sb. These percentages are atomic percentages that total 100% of the atoms of the constituent elements. (Ovshinsky '112 patent, cols 10-11.) Particular alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7. (Noboru Yamada, “Potential of Ge—Sb—Te Phase-Change Optical Disks for High-Data-Rate Recording”, SPIE v.3109, pp. 28-37 (1997).) More generally, a transition metal such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt) and mixtures or alloys thereof may be combined with Ge/Sb/Te to form a phase change alloy that has programmable resistive properties. Specific examples of memory materials that may be useful are given in Ovshinsky '112 at columns 11-13, which examples are hereby incorporated by reference.


Phase change alloys are capable of being switched between a first structural state in which the material is in a generally amorphous solid phase, and a second structural state in which the material is in a generally crystalline solid phase in its local order in the active channel region of the cell. These alloys are at least bistable. The term amorphous is used to refer to a relatively less ordered structure, more disordered than a single crystal, which has the detectable characteristics such as higher electrical resistivity than the crystalline phase. The term crystalline is used to refer to a relatively more ordered structure, more ordered than in an amorphous structure, which has detectable characteristics such as lower electrical resistivity than the amorphous phase. Typically, phase change materials may be electrically switched between different detectable states of local order across the spectrum between completely amorphous and completely crystalline states. Other material characteristics affected by the change between amorphous and crystalline phases include atomic order, free electron density and activation energy. The material may be switched either into different solid phases or into mixtures of two or more solid phases, providing a gray scale between completely amorphous and completely crystalline states. The electrical properties in the material may vary accordingly.


Phase change alloys can be changed from one phase state to another by application of electrical pulses. It has been observed that a shorter, higher amplitude pulse tends to change the phase change material to a generally amorphous state. A longer, lower amplitude pulse tends to change the phase change material to a generally crystalline state. The energy in a shorter, higher amplitude pulse is high enough to allow for bonds of the crystalline structure to be broken and short enough to prevent the atoms from realigning into a crystalline state. Appropriate profiles for pulses can be determined empirically or by modeling, and specifically adapted to a particular phase change alloy. In following sections of the disclosure, the phase change material is referred to as GST, and it will be understood that other types of phase change materials can be used. A material useful for implementation of a PCRAM described herein is Ge2Sb2Te5.


Representative chalcogenide material can be characterized as follows: GexSbyTez, where x:y:z=2:2:5. Other compositions can be used with x: 0˜5; y: 0˜5; z: 0˜10. GeSbTe with doping, such as N-, Si-, Ti-, or other element doping may also be used. These materials can be formed by PVD sputtering or magnetron-sputtering with reactive gases of Ar, N2, and/or He, etc. and chalcogenide at the pressure of 1 mtorr˜100 mtorr. The deposition is usually done at room temperature. A collimator with an aspect ratio of 1˜5 can be used to improve the fill-in performance. To improve the fill-in performance, the DC bias of several tens of volts to several hundred volts is also used. Also, the combination of DC bias and the collimator can be used simultaneously. The post deposition annealing treatment with vacuum or N2 ambient is sometimes needed to improve the crystallize state of chalcogenide material. The annealing temperature typically ranges 100° C. to 400° C. with an anneal time of less than 30 minutes.


As was described above, the heater material of the heater layer 305 has a resistivity greater than that of the phase change materials of the first and second phase change layers 330, 335, thus raising the temperature of the portions of the first and second phase change layers 330, 335 adjacent the heater layer 305 relative to the other portions of the first and second phase change layers 330, 335 and reducing the heat sink effect due to the top and bottom electrodes 340, 320.



FIG. 4A illustrates a cross-sectional view of a memory cell 400 similar to that illustrated in FIG. 3 with the heater layer 305 omitted. Without the heater layer 305, the large current density in the region 432 of the phase change material 430 below the top surface 412 of the dielectric 410 will result in significant heat generated adjacent to the bottom electrode 420, as shown in FIG. 4B with the darker colors indicating higher heat generation. Due to the high thermal conductivity of the bottom electrode 420 there will also be a significant amount of heat loss within the region 432 as shown in FIG. 4C, with the darker colors indicating higher heat loss. The high heat loss within the region 432 results in a need for higher current to induce the desired phase change during operation of the memory cell 400.



FIGS. 5-8 illustrate steps in a fabrication sequence in accordance with an embodiment for manufacturing memory cells as described herein. The following description does not repeat certain explanations regarding materials, thicknesses, and the like, as set out above.



FIG. 5 illustrates a cross-sectional view of a structure formed as a first stage of the fabrication sequence, the structure including a bottom electrode 500 extending from the top surface 312 of dielectric layer 310 to couple to access circuitry (not shown) such as access transistors or diodes and word lines, etc. The bottom electrode 500 has a diameter 331 which is preferably less than a minimum feature size for a process, generally a lithographic process, used to manufacture the access circuitry (not shown).


The bottom electrodes 500 having a sublithographic diameter 331 and the dielectric layer 310 can be formed, for example, using methods, materials, and processes as disclosed in U.S. patent application Ser. No. 11/764,678 filed on 18 Jun. 2007 entitled “Method for Manufacturing a Phase Change Memory Device with Pillar Bottom Electrode”, which is incorporated by reference herein. For example, a layer of electrode material can be formed on the top surface of access circuitry (not shown), followed by patterning of a layer of photoresist on the electrode layer using standard photo lithographic techniques so as to form a mask of photoresist overlying the locations of the bottom electrode 500. Next the mask of photoresist is trimmed, using for example oxygen plasma, to form mask structures having sublithographic dimensions overlying the locations of the bottom electrodes 500. Then the layer of electrode material is etched using the trimmed mask of photoresist, thereby forming the bottom electrodes 500 having sublithographic diameters 331. Next dielectric material 310 is formed and planarized, resulting in the structure illustrated in FIG. 5.


As another example, the bottom electrode 500 and dielectric layer 310 can be formed using methods, materials, and processes as disclosed in U.S. patent application Ser. No. 11/855,979 filed on 14 Sep. 2007 entitled “Phase Change Memory Cell in Via Array with Self-Aligned, Self-Converged Bottom Electrode and Method for Manufacturing”, which is incorporated by reference herein. For example, the dielectric layer 310 can be formed on the top surface of access circuitry followed by sequentially forming an isolation layer and a sacrificial layer. Next, a mask having openings close to or equal to the minimum feature size of the process used to create the mask is formed on the sacrificial layer, the openings overlying the locations of the bottom electrode 500. The isolation layer and the sacrificial layers are then selectively etched using the mask, thereby forming vias in the isolation and sacrificial layers and exposing a top surface of the dielectric layer 310. After removal of the mask, a selective undercutting etch is performed on the vias such that the isolation layer is etched while leaving the sacrificial layer and the dielectric layer 310 intact. A fill material is then formed in the vias, which due to the selective undercutting etch process results in a self-aligned void in the fill material being formed within each via. Next, an anisotropic etching process is performed on the fill material to open the voids, and etching continues until the dielectric layer 310 is exposed in the region below the void, thereby forming a sidewall spacer comprising fill material within each via. The sidewall spacers have an opening dimension substantially determined by the dimensions of the void, and thus can be less than the minimum feature size of a lithographic process. Next, the dielectric layer 310 is etched using the sidewall spacers as an etch mask, thereby forming openings in the dielectric layer 310 having a diameter less than the minimum feature size. Next, an electrode layer is formed within the openings in the dielectric layer 144. A planarizing process, such as chemical mechanical polishing CMP, is then performed to remove the isolation layer and the sacrificial layer and to form the bottom electrode 500, resulting in the structure illustrated in FIG. 5.


Next, a portion of the bottom electrode 500 is etched from the structure illustrated in FIG. 5, resulting in the structure illustrated in FIG. 6 having a recess 600 above a bottom electrode 320.


Next, a phase change layer comprising a first phase change material is formed in the recess 600 in FIG. 6 and planarized, resulting in the structure illustrated in FIG. 7 having a first phase change layer 330 on the bottom electrode 320.


Next a multi-layer structure is formed on the structure illustrated in FIG. 8 comprising sequentially forming a layer of resistive heater material, a layer of second phase change material, and a layer top electrode material and patterning to form the memory cell 300 illustrated in FIG. 9 having a resistive heater 305 comprising resistive heater material, a second phase change layer 335 comprising second phase change material, and a top electrode 340 comprising top electrode material.



FIG. 9 is a simplified block diagram of an integrated circuit in accordance with an embodiment. The integrated circuit 1000 includes a memory array 1005 implemented using memory cells as described herein having a heating center PCRAM structure. A row decoder 1010 having read, set and reset modes is coupled to a plurality of word lines 1015 arranged along rows in the memory array 1005. A column decoder 1020 is coupled to a plurality of bit lines 1025 arranged along columns in the memory array 1005 for reading, setting and resetting memory cells in the memory array 1005. Addresses are supplied on bus 1060 to column decoder 1020 and row decoder 1010. Sense amplifiers and data-in structures in block 1030, including current sources for the read, set and reset modes, are coupled to the column decoder 1020 via data bus 1035. Data is supplied via the data-in line 1040 from input/output ports on the integrated circuit 1000 or from other data sources internal or external to the integrated circuit 1000, to the data-in structures in block 1030. In the illustrated embodiment, other circuitry 1065 is included on the integrated circuit 1000, such as a general purpose processor or special purpose application circuitry, or a combination of modules providing system-on-a-chip functionality supported by the phase change memory cell array. Data is supplied via the data-out line 1045 from the sense amplifiers in block 1030 to input/output ports on the integrated circuit 1000, or to other data destinations internal or external to the integrated circuit 1000.


A controller implemented in this example using bias arrangement state machine 1050 controls the application of bias arrangement supply voltages and current sources 1055, such as read, set, reset and verify voltages and or currents for the word lines and bit lines, and controls the word line/source line operation using an access control process. The controller can be implemented using special-purpose logic circuitry as known in the art. In alternative embodiments, the controller comprises a general-purpose processor, which may be implemented on the same integrated circuit, which executes a computer program to control the operations of the device. In yet other embodiments, a combination of special-purpose logic circuitry and a general-purpose processor may be utilized for implementation of the controller.



FIG. 10 is a schematic illustration of a memory array 1100, which can be implemented using memory cells as described herein. Four memory cells 1102, 1104, 1106, and 1108 having respective memory elements 1112, 1114, 1116, and 1118 each having respective first and second phase change layers with a resistive heater therebetween are illustrated in FIG. 11, representing a small section of an array that can include millions of memory cells.


In the schematic illustration of FIG. 10, common source line 1120 and word lines 1122, 1124 are arranged generally parallel in the y-direction. Bit lines 1126, 1128 are arranged generally parallel in the x-direction. Thus, a y-decoder and a word line driver 1150, having set, reset, and read modes, are coupled to the word lines 1122, 1124. Bit line current sources 1152 for set, reset, and read modes, a decoder and sense amplifiers (not shown) are coupled to the bit lines 1126, 1128. The common source line 1120 is coupled to the source line termination circuit 1154, such as a ground terminal. The source line termination circuit 1154 may include bias circuits such as voltage sources and current sources, and decoding circuits for applying bias arrangements, other than ground, to the source lines in some embodiments.


The common source line 1120 is coupled to the source terminals of memory cells 1102, 1104, 1106, and 1108. The word line 1122 is coupled to the gate terminals of memory cells 1102, 1106. The word line 1124 is coupled to the gate terminals of memory cells 1104, 1108.


Memory cells 1102, 1104 including respective memory elements 1112, 1114 are representative. The memory element 1112 couples the drain of memory cell 1102 to bit line 1126. Likewise, memory element 1114 couples the drain of memory cell 1104 to bit line 1126. In operation, current sources 1152 operate in a lower current read mode, one or more intermediate current set modes, and a higher current reset mode. During the higher current reset mode, a current path 1180 through the selected memory cell (e.g. memory cell 1102 including memory element 1112) is established by applying a voltage and current to the bit line 1126, and voltages on the word line 1122 and source line 1120 sufficient to turn on the access transistor to memory cell 1102, so that the current flows through the source line 1120.


Likewise, during the lower current read mode, a current path 1182 through the selected memory cell (see the memory cell 1104 including memory element 1114) is established by applying a voltage and current to the bit line 1126, and voltages on the word line 1124 and source line 1120 sufficient to turn on the access transistor of memory cell 1104 and provide for current flow to the source line 1120.


During set mode, used for one or more intermediate current levels, an access transistor is enabled, as just described with respect to the read mode.


Advantages described herein include memory cells having reduced cell sizes, as well as a structure that addresses the heat conductivity problem, providing an array architecture supporting high-density devices, and a method for manufacturing such structure that meets tight process variation specifications needed for large-scale memory devices.


The invention has been described with reference to specific exemplary embodiments. Various modifications, adaptations, and changes may be made without departing from the spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded as illustrative of the principles of this invention rather than restrictive, the invention is defined by the following appended claims.


Any and all patents, patent applications and printed publications referred to above are incorporated by reference.

Claims
  • 1. A memory device comprising: a dielectric layer having a top surface;a via extending from the top surface of the dielectric layer and having a bottom portion and a top portion;a bottom electrode within the bottom portion of the via;a first phase change layer comprising a first phase change material within the top portion of the via and contacting the bottom electrode, the first phase change layer having a first contact area on a top surface having a first width;a resistive heater layer comprising a heater material having a bottom side in contact with the contact surface on the first phase change layer and having a second contact area on a top side, the second contact area having a second width greater than the first width, and wherein the resistive heater layer has a thickness less than or equal to 10 nm;a second phase change layer comprising a second phase change material, the second phase change layer having a bottom side in contact with the second contact area on the top side of the resistive heater layer; anda top electrode on the second phase change layer;wherein the heater material has a resistivity greater than the most highly resistive states of the first and second phase change materials.
  • 2. The device of claim 1, wherein the first width is less than a minimum feature size for a lithographic process used to form the memory device.
  • 3. The device of claim 2, wherein the resistive heater layer, second phase change layer, and top electrode form a multi-layer stack having said second width overlying the top surface of the dielectric layer.
  • 4. The device of claim 1, wherein the heater material has a resistivity between about 1.5 and 100 times greater than the most highly resistive states of the first and second phase change materials.
  • 5. The device of claim 4, wherein the heater material has a resistivity between about 4 and 50 times greater than the most highly resistive states of the first and second phase change materials.
  • 6. The device of claim 1, wherein the heater material comprises one of TiN, TaN, TiW, TiSiN, or TaSiN doped with carbon.
  • 7. The device of claim 1, wherein the first and second phase change materials comprise the same phase change material.
  • 8. The device of claim 1, wherein the first and second phase change materials comprise different phase change material.
  • 9. The device of claim 1, wherein each of the first and second phase change materials comprise a combination of two or more materials from the group of Ge, Sb, Te, Se, In, Ti, Ga, Bi, Sn, Cu, Pd, Pb, Ag, S, Si, O, P, As, N and Au.
  • 10. A method for manufacturing a memory device, the method comprising: providing a bottom electrode extending to a top surface of a dielectric layer;removing a portion of the bottom electrode to form a recess;filling the recess with a first phase change material layer to form a phase change element having a first contact area on a top side, the first contact surface having a first width;forming a layer of heater material having a bottom side in contact with the first contact area on the first phase change layer and having a second contact area on a top side, the second contact area having a second width greater than the first width, wherein the layer of heater material has a thickness less than or equal to 10 nm;forming a second phase change material layer having a bottom side in contact with the second contact area across said second width on the top side of the layer of heater material; andforming a top electrode material layer on the second phase change layer;wherein the heater material has a resistivity greater than the most highly resistive state of the first and second phase change materials.
  • 11. The method of claim 10, wherein the filling the recess step comprises: forming the first phase change material layer in the recess and on the top surface of the dielectric layer; andplanarizing the first phase change material layer to expose the top surface of the dielectric layer.
  • 12. The method of claim 11, further comprising etching the layer of heater material, the second phase change material layer, and the top electrode material layer, thereby forming a multi-layer stack having said second width overlying the top surface of the dielectric layer.
  • 13. The method of claim 10, wherein the first width is less than a minimum feature size for a lithographic process used to form the memory device.
  • 14. The method of claim 10, wherein the heater material has a resistivity between about 1.5 and 100 times greater than the most highly resistive states of the first and second phase change materials.
  • 15. The method of claim 10, wherein the heater material comprises one of TiN, TaN, TiW, TiSiN, or TaSiN doped with carbon.
  • 16. The method of claim 10, wherein the first and second phase change materials comprise the same phase change material.
  • 17. The method of claim 10, wherein the first and second phase change materials comprise different phase change material.
  • 18. The method of claim 10, wherein each of the first and second phase change materials comprise a combination of two or more materials from the group of Ge, Sb, Te, Se, In, Ti, Ga, Bi, Sn, Cu, Pd, Pb, Ag, S, Si, O, P, As, N and Au.
US Referenced Citations (364)
Number Name Date Kind
3271591 Ovshinsky Sep 1966 A
3530441 Ovshinsky Sep 1970 A
4452592 Tsai Jun 1984 A
4599705 Holmberg et al. Jul 1986 A
4719594 Young et al. Jan 1988 A
4769339 Ishii et al. Sep 1988 A
4876220 Mohsen et al. Oct 1989 A
4959812 Momodomi et al. Sep 1990 A
5106775 Kaga et al. Apr 1992 A
5166096 Cote et al. Nov 1992 A
5166758 Ovshinsky et al. Nov 1992 A
5177567 Klersy et al. Jan 1993 A
5332923 Takeuchi et al. Jul 1994 A
5389566 Lage Feb 1995 A
5391901 Tanabe et al. Feb 1995 A
5515488 Hoppe et al. May 1996 A
5534712 Ovshinsky et al. Jul 1996 A
5550396 Tsutsumi et al. Aug 1996 A
5687112 Ovshinsky Nov 1997 A
5688713 Linliu et al. Nov 1997 A
5716883 Tseng et al. Feb 1998 A
5751012 Wolstenholme et al. May 1998 A
5754472 Sim et al. May 1998 A
5789277 Zahorik et al. Aug 1998 A
5789758 Reinberg Aug 1998 A
5814527 Wolstenholme et al. Sep 1998 A
5831276 Gonzalez et al. Nov 1998 A
5837564 Sandhu et al. Nov 1998 A
5869843 Harshfield Feb 1999 A
5879955 Gonzalez et al. Mar 1999 A
5902704 Schoenborn et al. May 1999 A
5920788 Reinberg Jul 1999 A
5933365 Klersy et al. Aug 1999 A
5952671 Reinberg et al. Sep 1999 A
5958358 Tenne et al. Sep 1999 A
5970336 Wolstenholme et al. Oct 1999 A
5985698 Gonzalez et al. Nov 1999 A
5998244 Wolstenholme et al. Dec 1999 A
6011725 Eitan et al. Jan 2000 A
6025220 Sandhu Feb 2000 A
6031287 Harshfield Feb 2000 A
6034882 Johnson et al. Mar 2000 A
6066870 Siek May 2000 A
6077674 Schleifer et al. Jun 2000 A
6077729 Harshfield Jun 2000 A
6087269 Williams Jul 2000 A
6087674 Ovshinsky et al. Jul 2000 A
6104038 Gonzalez et al. Aug 2000 A
6111264 Wolstenholme et al. Aug 2000 A
6114713 Zahorik Sep 2000 A
6117720 Harshfield Sep 2000 A
6147395 Gilgen Nov 2000 A
6150253 Doan et al. Nov 2000 A
6153890 Wolstenholme et al. Nov 2000 A
6177317 Huang et al. Jan 2001 B1
6185122 Johnson et al. Feb 2001 B1
6189582 Reinberg et al. Feb 2001 B1
6236059 Wolstenholme et al. May 2001 B1
RE37259 Ovshinsky Jul 2001 E
6271090 Huang et al. Aug 2001 B1
6280684 Yamada et al. Aug 2001 B1
6287887 Gilgen Sep 2001 B1
6291137 Lyons et al. Sep 2001 B1
6314014 Lowrey et al. Nov 2001 B1
6316348 Fu et al. Nov 2001 B1
6320786 Chang et al. Nov 2001 B1
6326307 Lindley et al. Dec 2001 B1
6339544 Chiang et al. Jan 2002 B1
6351406 Johnson et al. Feb 2002 B1
6372651 Yang et al. Apr 2002 B1
6380068 Jeng et al. Apr 2002 B2
6420215 Knall et al. Jul 2002 B1
6420216 Clevenger et al. Jul 2002 B1
6420725 Harshfield Jul 2002 B1
6423621 Doan et al. Jul 2002 B2
6429064 Wicker Aug 2002 B1
6440837 Harshfield Aug 2002 B1
6462353 Gilgen Oct 2002 B1
6483736 Johnson et al. Nov 2002 B2
6487114 Jong et al. Nov 2002 B2
6501111 Lowrey Dec 2002 B1
6507061 Hudgens et al. Jan 2003 B1
6511867 Lowrey et al. Jan 2003 B2
6512241 Lai Jan 2003 B1
6514788 Quinn Feb 2003 B2
6514820 Ahn et al. Feb 2003 B2
6534781 Dennison Mar 2003 B2
6545903 Wu Apr 2003 B1
6551866 Maeda et al. Apr 2003 B1
6555858 Jones et al. Apr 2003 B1
6555860 Lowrey et al. Apr 2003 B2
6563156 Harshfield May 2003 B2
6566700 Xu May 2003 B2
6567293 Lowrey et al. May 2003 B1
6576546 Gilbert et al. Jun 2003 B2
6579760 Lung et al. Jun 2003 B1
6586761 Lowrey Jul 2003 B2
6589714 Maimon et al. Jul 2003 B2
6593176 Dennison Jul 2003 B2
6596589 Tseng et al. Jul 2003 B2
6597009 Wicker Jul 2003 B2
6605527 Dennison et al. Aug 2003 B2
6605821 Lee et al. Aug 2003 B1
6607974 Harshfield Aug 2003 B2
6613604 Maimon et al. Sep 2003 B2
6617192 Lowrey et al. Sep 2003 B1
6621095 Chiang et al. Sep 2003 B2
6625054 Lowrey et al. Sep 2003 B2
6627530 Li et al. Sep 2003 B2
6639849 Takahashi et al. Oct 2003 B2
6673700 Dennison et al. Jan 2004 B2
6674115 Hudgens et al. Jan 2004 B2
6696355 Dennison Feb 2004 B2
6744088 Dennison Jun 2004 B1
6750079 Lowrey et al. Jun 2004 B2
6750101 Lung et al. Jun 2004 B2
6764894 Lowrey Jul 2004 B2
6791102 Johnson et al. Sep 2004 B2
6797979 Chiang et al. Sep 2004 B2
6805563 Ohashi et al. Oct 2004 B2
6815704 Chen Nov 2004 B1
6838692 Lung et al. Jan 2005 B1
6850432 Lu et al. Feb 2005 B2
6859389 Idehara et al. Feb 2005 B2
6861267 Xu et al. Mar 2005 B2
6864500 Gilton Mar 2005 B2
6864503 Lung et al. Mar 2005 B2
6867638 Saiki et al. Mar 2005 B2
6888750 Walker et al. May 2005 B2
6894304 Moore May 2005 B2
6894305 Yi et al. May 2005 B2
6897467 Doan et al. May 2005 B2
6900517 Tanaka et al. May 2005 B2
6903362 Wyeth et al. Jun 2005 B2
6909107 Rodgers et al. Jun 2005 B2
6910907 Layadi et al. Jun 2005 B2
6927410 Chen Aug 2005 B2
6928022 Cho et al. Aug 2005 B2
6933516 Xu Aug 2005 B2
6936544 Huang et al. Aug 2005 B2
6936840 Sun et al. Aug 2005 B2
6937507 Chen Aug 2005 B2
6943365 Lowrey et al. Sep 2005 B2
6969866 Lowrey et al. Nov 2005 B1
6972428 Maimon Dec 2005 B2
6972430 Casagrande et al. Dec 2005 B2
6977181 Raberg et al. Dec 2005 B1
6992932 Cohen et al. Jan 2006 B2
7009694 Hart et al. Mar 2006 B2
7018911 Lee et al. Mar 2006 B2
7023009 Kostylev et al. Apr 2006 B2
7033856 Lung et al. Apr 2006 B2
7038230 Chen et al. May 2006 B2
7038231 Hart et al. May 2006 B2
7038938 Kang et al. May 2006 B2
7042001 Kim et al. May 2006 B2
7067864 Nishida et al. Jun 2006 B2
7067865 Lung et al. Jun 2006 B2
7078273 Matsuoka et al. Jul 2006 B2
7082051 Ha et al. Jul 2006 B2
7115927 Hideki et al. Oct 2006 B2
7122281 Pierrat Oct 2006 B2
7122824 Khouri et al. Oct 2006 B2
7126149 Iwasaki et al. Oct 2006 B2
7126847 Ha et al. Oct 2006 B2
7132675 Gilton Nov 2006 B2
7149103 Ahn Dec 2006 B2
7154774 Bedeschi et al. Dec 2006 B2
7164147 Lee et al. Jan 2007 B2
7166533 Happ Jan 2007 B2
7169635 Kozicki Jan 2007 B2
7170777 Choi et al. Jan 2007 B2
7202493 Lung et al. Apr 2007 B2
7208751 Ooishi et al. Apr 2007 B2
7214958 Happ May 2007 B2
7220983 Lung May 2007 B2
7233017 Yoon et al. Jun 2007 B2
7238994 Chen et al. Jul 2007 B2
7242019 Wicker Jul 2007 B2
7248494 Oh et al. Jul 2007 B2
7251157 Osada et al. Jul 2007 B2
7259040 Pellizer et al. Aug 2007 B2
7269052 Segal et al. Sep 2007 B2
7274586 Choi et al. Sep 2007 B2
7277317 Le Phan et al. Oct 2007 B2
7291556 Choi et al. Nov 2007 B2
7309630 Fan et al. Dec 2007 B2
7321130 Lung et al. Jan 2008 B2
7323708 Lee et al. Jan 2008 B2
7332370 Chang et al. Feb 2008 B2
7336526 Osada et al. Feb 2008 B2
7351648 Furukawa et al. Apr 2008 B2
7359231 Venkataraman et al. Apr 2008 B2
7364935 Lung et al. Apr 2008 B2
7365385 Abbott Apr 2008 B2
7379328 Osada et al. May 2008 B2
7385235 Lung et al. Jun 2008 B2
7394088 Lung Jul 2008 B2
7394089 Doyle et al. Jul 2008 B2
7397060 Lung Jul 2008 B2
7422926 Pellizzer et al. Sep 2008 B2
7423300 Lung et al. Sep 2008 B2
7426134 Happ et al. Sep 2008 B2
7436692 Pellizzer et al. Oct 2008 B2
7485891 Hamann et al. Feb 2009 B2
7504653 Lung Mar 2009 B2
7531378 Peters May 2009 B2
7579613 Lung et al. Aug 2009 B2
7606059 Toda Oct 2009 B2
7623370 Toda et al. Nov 2009 B2
7778063 Brubaker et al. Aug 2010 B2
7868313 Breitwisch et al. Jan 2011 B2
20020042158 Kersch et al. Apr 2002 A1
20020070457 Sun et al. Jun 2002 A1
20020113273 Hwang et al. Aug 2002 A1
20030003647 Dennison et al. Jan 2003 A1
20030021966 Segal et al. Jan 2003 A1
20030036232 Dennison Feb 2003 A1
20030095426 Hush et al. May 2003 A1
20030186481 Lung Oct 2003 A1
20030215978 Maimon et al. Nov 2003 A1
20040026686 Lung Feb 2004 A1
20040051094 Ooishi Mar 2004 A1
20040114317 Chiang et al. Jun 2004 A1
20040165422 Hideki et al. Aug 2004 A1
20040248339 Lung Dec 2004 A1
20040256610 Lung Dec 2004 A1
20050018526 Lee Jan 2005 A1
20050019975 Lee et al. Jan 2005 A1
20050024338 Ye Feb 2005 A1
20050029502 Hudgens Feb 2005 A1
20050030800 Johnson et al. Feb 2005 A1
20050036364 Ha et al. Feb 2005 A1
20050062087 Chen et al. Mar 2005 A1
20050064606 Pellizzer et al. Mar 2005 A1
20050093022 Lung May 2005 A1
20050127347 Choi et al. Jun 2005 A1
20050141261 Ahn Jun 2005 A1
20050145984 Chen et al. Jul 2005 A1
20050152208 Bez et al. Jul 2005 A1
20050184282 Lai et al. Aug 2005 A1
20050191804 Lai et al. Sep 2005 A1
20050195633 Choi et al. Sep 2005 A1
20050201182 Osada et al. Sep 2005 A1
20050212024 Happ Sep 2005 A1
20050215009 Cho Sep 2005 A1
20050265072 Hart et al. Dec 2005 A1
20060001174 Matsui Jan 2006 A1
20060003263 Chang Jan 2006 A1
20060006472 Jiang Jan 2006 A1
20060038221 Lee et al. Feb 2006 A1
20060066156 Dong et al. Mar 2006 A1
20060071204 Happ Apr 2006 A1
20060073642 Yeh et al. Apr 2006 A1
20060073652 Pellizzer et al. Apr 2006 A1
20060077741 Wang et al. Apr 2006 A1
20060091374 Yoon et al. May 2006 A1
20060091476 Pinnow et al. May 2006 A1
20060094154 Lung May 2006 A1
20060108667 Lung May 2006 A1
20060110878 Lung et al. May 2006 A1
20060110888 Cho et al. May 2006 A1
20060113521 Lung Jun 2006 A1
20060118913 Yi et al. Jun 2006 A1
20060124916 Lung Jun 2006 A1
20060126395 Chen et al. Jun 2006 A1
20060131555 Liu et al. Jun 2006 A1
20060138467 Lung Jun 2006 A1
20060145134 Hart et al. Jul 2006 A1
20060154185 Ho et al. Jul 2006 A1
20060157681 Chen et al. Jul 2006 A1
20060158928 Pellizzer et al. Jul 2006 A1
20060163553 Liang Jul 2006 A1
20060169968 Happ Aug 2006 A1
20060176724 Asano et al. Aug 2006 A1
20060181931 Ha et al. Aug 2006 A1
20060215435 Jeong et al. Sep 2006 A1
20060226409 Burr et al. Oct 2006 A1
20060234138 Fehlhaber et al. Oct 2006 A1
20060249369 Marangon et al. Nov 2006 A1
20060249725 Lee Nov 2006 A1
20060278900 Chang et al. Dec 2006 A1
20060279978 Krusin-Elbaum et al. Dec 2006 A1
20060284157 Chen et al. Dec 2006 A1
20060284158 Lung et al. Dec 2006 A1
20060284214 Chen Dec 2006 A1
20060284279 Lung et al. Dec 2006 A1
20060286709 Lung et al. Dec 2006 A1
20060286743 Lung et al. Dec 2006 A1
20060289848 Dennison Dec 2006 A1
20070008786 Scheuerlein Jan 2007 A1
20070020797 Pellizzer et al. Jan 2007 A1
20070030721 Segal et al. Feb 2007 A1
20070037101 Morioka Feb 2007 A1
20070045605 Hsueh Mar 2007 A1
20070045606 Magistretti et al. Mar 2007 A1
20070096162 Happ et al. May 2007 A1
20070108077 Lung et al. May 2007 A1
20070108429 Lung May 2007 A1
20070108430 Lung May 2007 A1
20070108431 Chen et al. May 2007 A1
20070109836 Lung May 2007 A1
20070109843 Lung et al. May 2007 A1
20070111429 Lung May 2007 A1
20070115794 Lung May 2007 A1
20070117315 Lai et al. May 2007 A1
20070121363 Lung May 2007 A1
20070121374 Lung et al. May 2007 A1
20070126040 Lung Jun 2007 A1
20070131922 Lung Jun 2007 A1
20070131980 Lung Jun 2007 A1
20070138458 Lung Jun 2007 A1
20070147105 Lung et al. Jun 2007 A1
20070153563 Nirschl Jul 2007 A1
20070154847 Chen et al. Jul 2007 A1
20070155172 Lai et al. Jul 2007 A1
20070158632 Ho Jul 2007 A1
20070158633 Lai et al. Jul 2007 A1
20070158645 Lung Jul 2007 A1
20070158690 Ho et al. Jul 2007 A1
20070158862 Lung Jul 2007 A1
20070161186 Ho Jul 2007 A1
20070173019 Ho et al. Jul 2007 A1
20070173063 Lung Jul 2007 A1
20070176261 Lung Aug 2007 A1
20070187664 Happ Aug 2007 A1
20070201267 Happ et al. Aug 2007 A1
20070215852 Lung Sep 2007 A1
20070224726 Chen et al. Sep 2007 A1
20070235811 Furukawa et al. Oct 2007 A1
20070236989 Lung Oct 2007 A1
20070246699 Lung Oct 2007 A1
20070249090 Philipp et al. Oct 2007 A1
20070257300 Ho et al. Nov 2007 A1
20070262388 Ho et al. Nov 2007 A1
20070274121 Lung et al. Nov 2007 A1
20070285960 Lung et al. Dec 2007 A1
20070298535 Lung Dec 2007 A1
20080006811 Philipp et al. Jan 2008 A1
20080012000 Harshfield Jan 2008 A1
20080014676 Lung et al. Jan 2008 A1
20080025089 Scheuerlein et al. Jan 2008 A1
20080043520 Chen Feb 2008 A1
20080094871 Parkinson Apr 2008 A1
20080101110 Happ et al. May 2008 A1
20080116441 Raghuram et al. May 2008 A1
20080137400 Chen et al. Jun 2008 A1
20080164453 Breitwisch et al. Jul 2008 A1
20080165569 Chen et al. Jul 2008 A1
20080165570 Happ et al. Jul 2008 A1
20080165572 Lung Jul 2008 A1
20080166875 Lung Jul 2008 A1
20080179582 Burr et al. Jul 2008 A1
20080180990 Lung Jul 2008 A1
20080186755 Lung et al. Aug 2008 A1
20080191187 Lung et al. Aug 2008 A1
20080192534 Lung Aug 2008 A1
20080224119 Burr et al. Sep 2008 A1
20080225489 Cai et al. Sep 2008 A1
20090148980 Yu Jun 2009 A1
20090298223 Cheek et al. Dec 2009 A1
20100193763 Chen et al. Aug 2010 A1
20100291747 Lung et al. Nov 2010 A1
20110034003 Lung Feb 2011 A1
Foreign Referenced Citations (4)
Number Date Country
1462478 Dec 2003 CN
0552681 Sep 2003 TW
WO-0079539 Dec 2000 WO
WO-0145108 Jun 2001 WO
Related Publications (1)
Number Date Country
20090194758 A1 Aug 2009 US