The present invention relates to systems and methods for creating high density circuit modules.
The well-known DIMM (Dual In-line Memory Module) board has been used for years, in various forms, to provide memory expansion. A typical DIMM includes a conventional PCB (printed circuit board) with memory devices and supporting digital logic devices mounted on both sides. The DIMM is typically mounted in the host computer system by inserting a contact-bearing edge of the DIMM into a card edge connector. Systems that employ DIMMs provide, however, very limited profile space for such devices and conventional DIMM-based solutions have typically provided only a moderate amount of memory expansion.
As bus speeds have increased, fewer devices per channel can be reliably addressed with a DIMM-based solution. For example, 288 ICs or devices per channel may be addressed using the SDRAM-100 bus protocol with an unbuffered DIMM. Using the DDR-200 bus protocol, approximately 144 devices may be address per channel. With the DDR2-400 bus protocol, only 72 devices per channel may be addressed. This constraint has led to the development of the fully-buffered DIMM (FB-DIMM) with buffered C/A and data in which 288 devices per channel may be addressed. With the FB-DIMM, not only has capacity increased, pin count has declined to approximately 69 from the approximately 240 pins previously required.
The FB-DIMM circuit solution is expected to offer practical motherboard memory capacities of up to about 192 gigabytes with six channels and eight DIMMs per channel and two ranks per DIMM using one gigabyte DRAMs. This solution should also be adaptable to next generation technologies and should exhibit significant downward compatibility.
This great improvement has, however, come with some cost and will eventually be self-limiting. The basic principle of systems that employ FB-DIMM relies upon a point-to-point or serial addressing scheme rather than the parallel multi-drop interface that dictates non-buffered DIMM addressing. That is, one DIMM is in point-to-point relationship with the memory controller and each DIMM is in point-to-point relationship with adjacent DIMMs. Consequently, as bus speeds increase, the number of DIMMs on a bus will decline as the discontinuities caused by the chain of point to point connections from the controller to the “last” DIMM become magnified in effect as speeds increase. Consequently, methods to increase the capacity of a single DIMM find value in contemporary memory and computing systems.
There are several known methods to improve the limited capacity of a DIMM or other circuit board. In one strategy, for example, small circuit boards (daughter cards) are connected to the DIMM to provide extra mounting space. The additional connection may cause, however, flawed signal integrity for the data signals passing from the DIMM to the daughter card and the additional thickness of the daughter card(s) increases the profile of the DIMM.
Multiple die packages (MDP) are also used to increase DIMM capacity while preserving profile conformity. This scheme increases the capacity of the memory devices on the DIMM by including multiple semiconductor die in a single device package. The additional heat generated by the multiple die typically requires, however, additional cooling capabilities to operate at maximum operating speed. Further, the MDP scheme may exhibit increased costs because of increased yield loss from packaging together multiple die that are not fully pre-tested.
Stacked packages are yet another strategy used to increase circuit board capacity. This scheme increases capacity by stacking packaged integrated circuits to create a high-density circuit module for mounting on the circuit board. In some techniques, flexible conductors are used to selectively interconnect packaged integrated circuits. Staktek Group L.P. has developed numerous systems for aggregating CSP (chipscale packaged) devices in space saving topologies. The increased component height of some stacking techniques may alter, however, system requirements such as, for example, required cooling airflow or the minimum spacing around a circuit board on its host system.
Another trend to increase DIMM capacity is the use of larger capacity ICs such as, for example, 512 Mega-bit, 1 Giga-bit, and 2 Giga-bit or larger DRAM devices. The trend indicates that larger devices are forthcoming. Such larger devices may necessitate packages with larger dimensions until technological advances provide smaller feature sizes. For example, some high-capacity DRAM devices may be too big for a 30 mm DIMM.
Another problem associated with some such high-capacity is that their thickness may be greater than the specified thickness for many standard DIMM designs. For example, many JEDEC DIMM thickness specifications require a 1 mm package thickness to allow DIMMs with stacked devices to fit in specified dimensions with adequate airflow. Some new high-capacity devices may have a greater thickness than the specified 1 mm. Such thickness may lead to stacked DIMMs would exceed the maximum specified thickness.
What is needed, therefore, are methods to fit provide thin DIMM modules with high capacity. What is needed also needed are methods and structures for increasing the flexibility of FB-DIMMs.
Multiple DIMM circuits or instantiations are combined in a single module to provide on a single module circuitry that is substantially the functional equivalent of two or more DIMMs but avoids some of the drawbacks associated with having two discrete DIMMs. In one embodiment, registered DIMM circuits are used. In another, FB-DIMM circuits are used.
In a preferred embodiment, integrated circuits (preferably memory CSPs) and accompanying AMBs are arranged in two ranks in two fields on each side of a flexible circuit. The flexible circuit has expansion contacts disposed along one side. The flexible circuit is disposed about a supporting substrate or board to place at least one FB-DIMM instantiation on each side of the constructed module. In alternative, but also preferred embodiments, the ICs on the side of the flexible circuit closest to the substrate are disposed, at least partially, in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. Other embodiments may only populate one side of the flexible circuit or may only remove enough substrate material to reduce but not eliminate the entire substrate contribution to overall profile. Other embodiments may connect the constituent devices in a way that creates a FB-DIMM circuit or instantiation with the devices on the upper half of the module while another FB-DIMM instantiation is created with the devices on the lower half of the module. Other embodiments may, for example, combine selected circuitry from one side of the module (memory CSPs for example) with circuitry on the other side of the module (an AMB, for example) in creating one of plural FB-DIMM instantiations on a single module. Other embodiments employ stacks to provide multiple FB-DIMM circuits or instantiations on a low profile module. The flexible circuit may exhibit one or two or more conductive layers, and may have changes in the layered structure or have split layers. Other embodiments may stagger or offset the ICs or include greater numbers of ICs.
ICs 18 on flexible circuit 12 are, in this embodiment, chip-scale packaged memory devices of small scale. For purposes of this disclosure, the term chip-scale or “CSP” shall refer to integrated circuitry of any function with an array package providing connection to one or more die through contacts (often embodied as “bumps” or “balls” for example) distributed across a major surface of the package or die. CSP does not refer to leaded devices that provide connection to an integrated circuit within the package through leads emergent from at least one side of the periphery of the package such as, for example, a TSOP.
Embodiments of the present invention may be employed with leaded or CSP devices or other devices in both packaged and unpackaged forms but where the term CSP is used, the above definition for CSP should be adopted. Consequently, although CSP excludes leaded devices, references to CSP are to be broadly construed to include the large variety of array devices (and not to be limited to memory only) and whether die-sized or other size such as BGA and micro BGA as well as flip-chip. As those of skill will understand after appreciating this disclosure, some embodiments of the present invention may be devised to employ stacks of ICs each disposed where an IC 18 is indicated in the exemplar Figs.
Multiple integrated circuit die may be included in a package depicted as a single IC 18. While in this embodiment memory ICs are used to provide a memory expansion board or module, and various embodiments may include a variety of integrated circuits and other components. Such variety may include microprocessors, FPGA's, RF transceiver circuitry, digital logic, as a list of non-limiting examples, or other circuits or systems which may benefit from a high-density circuit board or module capability. Circuit 19 depicted between ICs 18 may be a memory buffer, or controller (“register”) as are used in common DIMMs such as, for example, registered-DIMMs. In a preferred embodiment is the well known advanced memory buffer or “AMB”.
The depiction of
Field F1 of side 8 of flex circuit 12 is shown populated with first plurality of CSPs ICR1 and second plurality of CSPs ICR2 while second field F2 of side 8 of flex circuit 12 is shown populated with first plurality of CSPs ICR1 and second plurality of CSPs ICR2. Those of skill will recognize that the identified pluralities of CSPs are, when disposed in the configurations depicted, typically described as “ranks”. Between the ranks ICR2 of field F1 and ICR2 of field F2, flex circuit 12 bears a plurality of module contacts allocated in this embodiment into two rows (CR1 and CR2) of module contacts 20. When flex circuit 12 is folded as later depicted, side 8 depicted in
Various discrete components such as termination resistors, bypass capacitors, and bias resistors, in addition to the buffers 19 shown on side 8 of flex circuit 12, may be mounted on either or both of sides 8 and 9 of flex 12. Such discrete components are not shown to simplify the drawing. Flex circuit 12 may also depicted with reference to its perimeter edges, two of which are typically long (PElong1 and PElong2) and two of which are typically shorter (PEshort1 and PEshort2) Other embodiments may employ flex circuits 12 that are not rectangular in shape and may be square in which case the perimeter edges would be of equal size or other convenient shape to adapt to manufacturing particulars. Other embodiments may also have fewer or greater numbers of ranks or pluralities of ICs in each field or on a side of a flex circuit.
In this embodiment, flex circuit 12 has module contacts 20 positioned in a manner devised to fit in a circuit board card edge connector or socket and connect to corresponding contacts in the connector (not shown). While module contacts 20 are shown protruding from the surface of flex circuit 12, other embodiments may have flush contacts or contacts below the surface level of flex 12. Substrate 14 supports module contacts 20 from behind flex circuit 12 in a manner devised to provide the mechanical form required for insertion into a socket. In other embodiments, the thickness or shape of substrate 14 in the vicinity of perimeter edge 16A may differ from that in the vicinity of perimeter edge 16B. Substrate 14 in the depicted embodiment is preferably made of a metal such as aluminum or copper, as non-limiting examples, or where thermal management is less of an issue, materials such as FR4 (flame retardant type 4) epoxy laminate, PTFE (poly-tetra-fluoro-ethylene) or plastic. In another embodiment, advantageous features from multiple technologies may be combined with use of FR4 having a layer of copper on both sides to provide a substrate 14 devised from familiar materials which may provide heat conduction or a ground plane.
In this embodiment, there are three layers of flex circuit 12 between the two depicted ICs 181 and 182. Conductive layers 64 and 66 express conductive traces that connect to the ICs and may further connect to other discrete components (not shown). Preferably, the conductive layers are metal such as, for example, copper or alloy 110. Vias such as the exemplar vias 23 connect the two conductive layers 64 and 66 and thereby enable connection between conductive layer 64 and module contacts 20. In this preferred embodiment having a three-layer portion of flex circuit 12, the two conductive layers 64 and 66 may be devised in a manner so that one of them has substantial area employed as a ground plane. The other layer may employ substantial area as a voltage reference plane. The use of plural conductive layers provides advantages and the creation of a distributed capacitance intended to reduce noise or bounce effects that can, particularly at higher frequencies, degrade signal integrity, as those of skill in the art will recognize. If more than two conductive layers are employed, additional conductive layers may be added with insulating layers separating conductive layers. Portions of flex circuit 12 may in some embodiments be rigid portions (rigid-flex). Construction of rigid-flex circuitry is known in the art.
With the construction of an embodiment such as that shown in
The principles of the present invention may, however, be employed where only one IC 18 is resident on a side of a flex circuit 12 or where multiple ranks or pluralities of ICS are resident on a side of flex circuit 12, or, as will be later shown, where multiple ICs 18 are disposed one atop the other to give a single module 10 materially greater.
As shown in
For purposes herein, the term window may refer to an opening all the way through substrate 14 across span “S” which corresponds to the width: or height dimension of packaged IC 18 or, it may also refer to that opening where cutaway areas on each of the two sides of substrate 14 overlap.
Where cutaway areas 250B3 and 250B4 overlap, there are, as depicted, windows all the way through substrate 14. In some embodiments, cutaway areas 250B3 and 250B4 may not overlap or in other embodiments, there may be pockets or cutaway areas only on one side of substrate 14. Those of skill will recognize that cutaway areas such as those identified with references 250B3 and 250B4 may be formed in a variety of ways depending on the material of substrate 14 and need not literally be “cut” away but may be formed by a variety of molding, milling and cutting processes as is understood by those in the field.
Four flex circuits are employed in module 10 as depicted in
In a typical FB-DIMM system employing multiple FB-DIMM circuits, the respective AMB's from one FB-DIMM circuit to another FB-DIMM circuit are separated by what can be conceived of as three impedance discontinuities as represented in the system depicted in
In contrast to the system represented by
The present invention may be employed to advantage in a variety of applications and environment such as, for example, in computers such as servers and notebook computers by being placed in motherboard expansion slots to provide enhanced memory capacity while utilizing fewer sockets. The two high rank embodiments or the single rank high embodiments may both be employed to such advantage as those of skill will recognize after appreciating this specification.
One advantageous methodology for efficiently assembling a circuit module 10 such as described and depicted herein is as follows. In a preferred method of assembling a preferred module assembly 10, flex circuit 12 is placed flat and both sides populated according to circuit board assembly techniques known in the art. Flex circuit 12 is then folded about end 16A of substrate 14. Flex 12 may be laminated or otherwise attached to substrate 14.
In this embodiment, flex circuit 12 is provided with holes 13, which are devised to allow greater flexibility for bending flex circuit 12 to achieve a desired bend radius for curve 25 (
Holes 13 in this embodiment are spaced to allow traces 21 to pass between them at the level of conductive layers of flex 13. While some preferred embodiments have a dielectric solder mask layer partially covering side 8, traces 21 are depicted along side 8 for simplicity. Traces 21 may, of course, be at interior conductive layers of flex circuit 12, as will be described further with regard to later referenced Figures.
In this embodiment, flex circuit 12 is further provided with holes 15. Holes 15 are devised to allow flexibility for bending flex circuit 12 to achieve a desired bend radius for around edge 16A or 16B of substrate 14, for example. Holes 15 may be expressed as voids or partial voids in the various conductive and non-conductive layers of flex circuit 12. Further, a desired bend radius at the portions of flex circuit 12 provided with holes 13 or holes 15 may also be achieved by providing a portion of flex circuit 12 having fewer layers, as described above with reference to
This embodiment of flex circuit 12 is also provided with mounting pads 191 along side 18 of flex circuit 12. Such pads 191 are used for mounting components such as, for example, surface mount resistors 192.
When flex circuit 12 is folded as depicted, side 8 depicted in
The depicted topology and arrangement of flexible circuitry may be used to advantage to create high capacity and thin-profile circuit modules. Such modules include, for example, registered DIMMS and FB-DIMMs. For example, a DIMM may be constructed having double device-mounting surface area for a given DIMM height. Such doubling may allow doubling of the number memory devices or enable larger devices that would not fit on traditional DIMMs.
For example, one preferred embodiment provides a 30 mm 4-GByte RDIMM using 512 Mbit parts. Another embodiment provides a 50 mm 8-GByte RDIMM using 1 Gbit parts. Yet another embodiment provides a 2-GByte SO-DIMM using 512 Mbit parts. DIMM modules may be provided having multiple instantiations of DIMM or FB-DIMM circuits, as further described herein. Also, DIMMs having the usual single instantiation of DIMM circuitry may be provided where the devices employed are too large to fit in the surface area provided by a typical industry DIMM module. Such high-capacity capability may be used to advantage to provide high capacity memory for computer systems having a limited number of motherboard DIMM slots.
Top conductive layer 2101 and the other conductive layers are preferably made of a conductive metal such as, for example, copper or alloy 110. In this arrangement, conductive layers 2101, 2102, and 2104 express signal traces 2112 that make various connections on flex circuit 12. These layers may also express conductive planes for ground, power, or reference voltage. For example, top conductive layer 2101 may also be provided with a flood, or plane, of to provide the VDD to ICs mounted to flex circuit 12.
In this embodiment, inner conductive layer 2102 expresses traces connecting to and among the various devices mounted along the sides of flex circuit 12. The function of any of the depicted conductive layers may, of course, be interchanged with others of the conductive layers. Inner conductive layer 2103 expresses a ground plane, which may be split to provide VDD return for pre-register address signals. Inner conductive layer 2103 may further express other planes and traces. In this embodiment, floods, or planes, at bottom conductive layer 2104 provides VREF and ground in addition to the depicted traces.
Insulative layers 2105 and 2111 are, in this embodiment, dielectric solder mask layers which may be deposited on the adjacent conductive layers. Insulative layers 2107 and 2109 are made of adhesive dielectric. Other embodiments may not have such adhesive dielectric layers. Insulative layers 2106, 2108, and 2110 are preferably flexible dielectric substrate layers made of polyamide. Any other suitable flexible circuit substrate material may be used.
In this embodiment, clock and inverted clock signals CK and CK# enter the depicted topology from a phase-locked-loop (PLL) or delay-locked loop (DLL) output. Construction of PLLs and DLLs is known in the art. The PLL in this embodiment is preferably mounted along one side of flex circuit 12, and the depicted topology routes clock signal CK to DIMM registers 2201 on the same side of flex circuit 12 as the PLL circuitry, as well as to DIMM registers 2201 on the opposing side. Transmission line TL0 branches to two transmission lines TL1, which may be, in some embodiments, disposed at opposite sides of a substrate 14. Each transmission line TL1 branches into two TL4 lines and a TL2 line. Each transmission line TL4 has a termination resistor R1 or a bypass capacitor C1. Transmission line TL2 branches into two TL3 lines. A via through flex circuit 12 may be used at the branchpoint from TL2 to TL3. Preferably, TL2 is relatively short so as to place bypass capacitors C1 relatively close to the branchpoint of TL2 and TL3.
Although the present invention has been described in detail, it will be apparent to those skilled in the art that many embodiments taking a variety of specific forms and reflecting changes, substitutions and alterations can be made without departing from the spirit and scope of the invention. Therefore, the described embodiments illustrate but do not restrict the scope of the claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/007,551, filed Dec. 8, 2004, which application is a continuation-in-part of U.S. patent application Ser. No. 10/934,027, filed Sep. 3, 2004. U.S. patent applications Ser. Nos. 10/934,027 and 11/007,551 are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3372310 | Kantor | Mar 1968 | A |
3436604 | Hyltin | Apr 1969 | A |
3582865 | Franck et al. | Jun 1971 | A |
3654394 | Gordon | Apr 1972 | A |
3704455 | Scarbrough | Nov 1972 | A |
3718842 | Abbott, III et al. | Feb 1973 | A |
3727064 | Bottini | Apr 1973 | A |
3746934 | Stein | Jul 1973 | A |
3766439 | Isaacson | Oct 1973 | A |
3772776 | Weisenburger | Nov 1973 | A |
3981751 | Dashevsky et al. | Sep 1976 | A |
4169642 | Mouissie | Oct 1979 | A |
4288841 | Gogal | Sep 1981 | A |
4342069 | Link | Jul 1982 | A |
4429349 | Zachry | Jan 1984 | A |
4437235 | McIver | Mar 1984 | A |
4513368 | Houseman | Apr 1985 | A |
4547834 | Dumont et al. | Oct 1985 | A |
4567543 | Miniet | Jan 1986 | A |
4587596 | Bunnell | May 1986 | A |
4645944 | Uya | Feb 1987 | A |
4656605 | Clayton | Apr 1987 | A |
4672421 | Lin | Jun 1987 | A |
4682207 | Akasaki et al. | Jul 1987 | A |
4696525 | Coller et al. | Sep 1987 | A |
4709300 | Landis | Nov 1987 | A |
4724611 | Hagihara | Feb 1988 | A |
4727513 | Clayton | Feb 1988 | A |
4733461 | Nakano | Mar 1988 | A |
4739589 | Brehm et al. | Apr 1988 | A |
4763188 | Johnson | Aug 1988 | A |
4771366 | Blake et al. | Sep 1988 | A |
4821007 | Fields et al. | Apr 1989 | A |
4823234 | Konishi et al. | Apr 1989 | A |
4833568 | Berhold | May 1989 | A |
4850892 | Clayton et al. | Jul 1989 | A |
4862249 | Carlson | Aug 1989 | A |
4911643 | Perry et al. | Mar 1990 | A |
4953060 | Lauffer et al. | Aug 1990 | A |
4956694 | Eide | Sep 1990 | A |
4972580 | Nakamura | Nov 1990 | A |
4982265 | Watanabe et al. | Jan 1991 | A |
4983533 | Go | Jan 1991 | A |
4985703 | Kaneyama | Jan 1991 | A |
4992849 | Corbett et al. | Feb 1991 | A |
4992850 | Corbett et al. | Feb 1991 | A |
5014115 | Moser | May 1991 | A |
5014161 | Lee et al. | May 1991 | A |
5016138 | Woodman | May 1991 | A |
5025306 | Johnson et al. | Jun 1991 | A |
5034350 | Marchisi | Jul 1991 | A |
5041015 | Travis | Aug 1991 | A |
5053853 | Haj-Ali-Ahmadi et al. | Oct 1991 | A |
5065277 | Davidson | Nov 1991 | A |
5099393 | Bentlage et al. | Mar 1992 | A |
5104820 | Go et al. | Apr 1992 | A |
5109318 | Funari et al. | Apr 1992 | A |
5117282 | Salatino | May 1992 | A |
5119269 | Nakayama | Jun 1992 | A |
5138430 | Gow, 3rd et al. | Aug 1992 | A |
5138434 | Wood et al. | Aug 1992 | A |
5140405 | King et al. | Aug 1992 | A |
5159535 | Desai et al. | Oct 1992 | A |
5173840 | Kodai et al. | Dec 1992 | A |
5191404 | Wu et al. | Mar 1993 | A |
5208729 | Cipolla et al. | May 1993 | A |
5214845 | King et al. | Jun 1993 | A |
5219377 | Poradish | Jun 1993 | A |
5222014 | Lin | Jun 1993 | A |
5224023 | Smith et al. | Jun 1993 | A |
5229916 | Frankeny et al. | Jul 1993 | A |
5229917 | Harris et al. | Jul 1993 | A |
5239198 | Lin et al. | Aug 1993 | A |
5241454 | Ameen et al. | Aug 1993 | A |
5241456 | Marcinkiewicz et al. | Aug 1993 | A |
5247423 | Lin et al. | Sep 1993 | A |
5252857 | Kane et al. | Oct 1993 | A |
5259770 | Bates et al. | Nov 1993 | A |
5261068 | Gaskins et al. | Nov 1993 | A |
5268815 | Cipolla et al. | Dec 1993 | A |
5276418 | Klosowiak et al. | Jan 1994 | A |
5281852 | Normington | Jan 1994 | A |
5289062 | Wyland | Feb 1994 | A |
5309986 | Itoh | May 1994 | A |
5313097 | Haj-Ali-Ahmadi et al. | May 1994 | A |
5347428 | Carson et al. | Sep 1994 | A |
5375041 | McMahon | Dec 1994 | A |
5386341 | Olson et al. | Jan 1995 | A |
5394300 | Yoshimura | Feb 1995 | A |
5397916 | Normington | Mar 1995 | A |
5400003 | Kledzik | Mar 1995 | A |
5428190 | Stopperan | Jun 1995 | A |
5438224 | Papageorge et al. | Aug 1995 | A |
5448511 | Paurus et al. | Sep 1995 | A |
5477082 | Buckley, III et al. | Dec 1995 | A |
5491612 | Nicewarner, Jr. et al. | Feb 1996 | A |
5502333 | Bertin et al. | Mar 1996 | A |
5523619 | McAllister et al. | Jun 1996 | A |
5523695 | Lin | Jun 1996 | A |
5541812 | Burns | Jul 1996 | A |
5572065 | Burns | Nov 1996 | A |
5600178 | Russell | Feb 1997 | A |
5612570 | Eide et al. | Mar 1997 | A |
5631193 | Burns | May 1997 | A |
5642055 | Difrancesco | Jun 1997 | A |
5644161 | Burns | Jul 1997 | A |
5646446 | Nicewarner et al. | Jul 1997 | A |
5654877 | Burns | Aug 1997 | A |
5661339 | Clayton | Aug 1997 | A |
5686730 | Laudon et al. | Nov 1997 | A |
5708297 | Clayton | Jan 1998 | A |
5714802 | Cloud et al. | Feb 1998 | A |
5717556 | Yanagida | Feb 1998 | A |
5729894 | Rostoker et al. | Mar 1998 | A |
5731633 | Clayton | Mar 1998 | A |
5744862 | Ishii | Apr 1998 | A |
5751553 | Clayton | May 1998 | A |
5754409 | Smith | May 1998 | A |
5764497 | Mizumo | Jun 1998 | A |
5776797 | Nicewarner, Jr. et al. | Jul 1998 | A |
5789815 | Tessier et al. | Aug 1998 | A |
5790447 | Laudon et al. | Aug 1998 | A |
5802395 | Connolly et al. | Sep 1998 | A |
5805422 | Otake et al. | Sep 1998 | A |
5828125 | Burns | Oct 1998 | A |
5835988 | Ishii | Nov 1998 | A |
5869353 | Levy et al. | Feb 1999 | A |
5899705 | Akram | May 1999 | A |
5917709 | Johnson et al. | Jun 1999 | A |
5925934 | Lim | Jul 1999 | A |
5926369 | Ingraham et al. | Jul 1999 | A |
5949657 | Karabatsos | Sep 1999 | A |
5953214 | Dranchak et al. | Sep 1999 | A |
5953215 | Karabatsos | Sep 1999 | A |
5959839 | Gates | Sep 1999 | A |
5963427 | Bollesen | Oct 1999 | A |
5973395 | Suzuki et al. | Oct 1999 | A |
5995370 | Nakamori | Nov 1999 | A |
6002167 | Hatano et al. | Dec 1999 | A |
6002589 | Perino et al. | Dec 1999 | A |
6008538 | Akram et al. | Dec 1999 | A |
6014316 | Eide | Jan 2000 | A |
6021048 | Smith | Feb 2000 | A |
6028352 | Eide | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6034878 | Osaka et al. | Mar 2000 | A |
6038132 | Tokunaga et al. | Mar 2000 | A |
6040624 | Chambers et al. | Mar 2000 | A |
6049975 | Clayton | Apr 2000 | A |
6060339 | Akram et al. | May 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6078515 | Nielsen et al. | Jun 2000 | A |
6084294 | Tomita | Jul 2000 | A |
6091145 | Clayton | Jul 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6111757 | Dell et al. | Aug 2000 | A |
6121676 | Solberg | Sep 2000 | A |
RE36916 | Moshayedi | Oct 2000 | E |
6157541 | Hacke | Dec 2000 | A |
6172874 | Bartilson | Jan 2001 | B1 |
6178093 | Bhatt et al. | Jan 2001 | B1 |
6180881 | Isaak | Jan 2001 | B1 |
6181004 | Koontz et al. | Jan 2001 | B1 |
6187652 | Chou et al. | Feb 2001 | B1 |
6205654 | Burns | Mar 2001 | B1 |
6208521 | Nakatsuka | Mar 2001 | B1 |
6208546 | Ikeda | Mar 2001 | B1 |
6214641 | Akram | Apr 2001 | B1 |
6215181 | Akram et al. | Apr 2001 | B1 |
6215687 | Sugano et al. | Apr 2001 | B1 |
6222737 | Ross | Apr 2001 | B1 |
6222739 | Bhakta et al. | Apr 2001 | B1 |
6225688 | Kim et al. | May 2001 | B1 |
6232659 | Clayton | May 2001 | B1 |
6233650 | Johnson et al. | May 2001 | B1 |
6234820 | Perino et al. | May 2001 | B1 |
6262476 | Vidal | Jul 2001 | B1 |
6262895 | Forthun | Jul 2001 | B1 |
6265660 | Tandy | Jul 2001 | B1 |
6266252 | Karabatsos | Jul 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6288907 | Burns | Sep 2001 | B1 |
6288924 | Sugano et al. | Sep 2001 | B1 |
6300679 | Mukerji et al. | Oct 2001 | B1 |
6316825 | Park et al. | Nov 2001 | B1 |
6323060 | Isaak | Nov 2001 | B1 |
6336262 | Dalal et al. | Jan 2002 | B1 |
6343020 | Lin et al. | Jan 2002 | B1 |
6347394 | Ochoa et al. | Feb 2002 | B1 |
6349050 | Woo et al. | Feb 2002 | B1 |
6351029 | Isaak | Feb 2002 | B1 |
6357023 | Co et al. | Mar 2002 | B1 |
6358772 | Miyoshi | Mar 2002 | B2 |
6360433 | Ross | Mar 2002 | B1 |
6368896 | Farnworth et al. | Apr 2002 | B2 |
6370668 | Garrett, Jr. et al. | Apr 2002 | B1 |
6376769 | Chung | Apr 2002 | B1 |
6392162 | Karabatsos | May 2002 | B1 |
6404043 | Isaak | Jun 2002 | B1 |
6410857 | Gonya | Jun 2002 | B1 |
6426240 | Isaak | Jul 2002 | B2 |
6426549 | Isaak | Jul 2002 | B1 |
6426560 | Kawamura et al. | Jul 2002 | B1 |
6428360 | Hassanzadeh et al. | Aug 2002 | B2 |
6433418 | Fujisawa et al. | Aug 2002 | B1 |
6444921 | Wang et al. | Sep 2002 | B1 |
6446158 | Karabatsos | Sep 2002 | B1 |
6449159 | Haba | Sep 2002 | B1 |
6452826 | Kim et al. | Sep 2002 | B1 |
6459152 | Tomita et al. | Oct 2002 | B1 |
6462412 | Kamei et al. | Oct 2002 | B2 |
6465877 | Farnworth et al. | Oct 2002 | B1 |
6465893 | Khandros et al. | Oct 2002 | B1 |
6472735 | Isaak | Oct 2002 | B2 |
6473308 | Forthun | Oct 2002 | B2 |
6486544 | Hashimoto | Nov 2002 | B1 |
6489687 | Hashimoto | Dec 2002 | B1 |
6502161 | Perego et al. | Dec 2002 | B1 |
6514793 | Isaak | Feb 2003 | B2 |
6521984 | Matsuura | Feb 2003 | B2 |
6528870 | Fukatsu et al. | Mar 2003 | B2 |
6531772 | Akram et al. | Mar 2003 | B2 |
6544815 | Isaak | Apr 2003 | B2 |
6552910 | Moon et al. | Apr 2003 | B1 |
6552948 | Woo et al. | Apr 2003 | B2 |
6560117 | Moon | May 2003 | B2 |
6566746 | Isaak et al. | May 2003 | B2 |
6572387 | Burns et al. | Jun 2003 | B2 |
6573593 | Syri et al. | Jun 2003 | B1 |
6576992 | Cady et al. | Jun 2003 | B1 |
6588095 | Pan | Jul 2003 | B2 |
6590282 | Wang et al. | Jul 2003 | B1 |
6600222 | Levardo | Jul 2003 | B1 |
6614664 | Lee | Sep 2003 | B2 |
6627984 | Bruce et al. | Sep 2003 | B2 |
6629855 | North et al. | Oct 2003 | B1 |
6646936 | Hamamatsu et al. | Nov 2003 | B2 |
6660561 | Forthun | Dec 2003 | B2 |
6661092 | Shibata et al. | Dec 2003 | B2 |
6677670 | Kondo | Jan 2004 | B2 |
6683377 | Shim et al. | Jan 2004 | B1 |
6690584 | Uzuka et al. | Feb 2004 | B2 |
6699730 | Kim et al. | Mar 2004 | B2 |
6720225 | Woo et al. | Apr 2004 | B1 |
6720652 | Akram et al. | Apr 2004 | B2 |
6721181 | Pfeifer et al. | Apr 2004 | B1 |
6721185 | Dong et al. | Apr 2004 | B2 |
6744656 | Sugano et al. | Jun 2004 | B2 |
6751113 | Bhakta et al. | Jun 2004 | B2 |
6756661 | Tsuneda et al. | Jun 2004 | B2 |
6760220 | Canter et al. | Jul 2004 | B2 |
6762942 | Smith | Jul 2004 | B1 |
6768660 | Kong et al. | Jul 2004 | B2 |
6833981 | Suwabe et al. | Dec 2004 | B2 |
6833984 | Belgacem | Dec 2004 | B1 |
6839266 | Garrett, Jr. et al. | Jan 2005 | B1 |
6841868 | Akram et al. | Jan 2005 | B2 |
6850414 | Benisek et al. | Feb 2005 | B2 |
6873534 | Bhakta et al. | Mar 2005 | B2 |
6878571 | Isaak et al. | Apr 2005 | B2 |
6884653 | Larson | Apr 2005 | B2 |
6914324 | Rapport et al. | Jul 2005 | B2 |
6919626 | Burns | Jul 2005 | B2 |
6956284 | Cady et al. | Oct 2005 | B2 |
7053478 | Roper et al. | May 2006 | B2 |
7094632 | Cady et al. | Aug 2006 | B2 |
7180167 | Partridge et al. | Feb 2007 | B2 |
20010001085 | Hassanzadeh et al. | May 2001 | A1 |
20010006252 | Kim et al. | Jul 2001 | A1 |
20010013423 | Dalal et al. | Aug 2001 | A1 |
20010015487 | Forthun | Aug 2001 | A1 |
20010026009 | Tsuneda et al. | Oct 2001 | A1 |
20010028588 | Yamada et al. | Oct 2001 | A1 |
20010035572 | Isaak | Nov 2001 | A1 |
20010040793 | Inaba | Nov 2001 | A1 |
20010052637 | Akram et al. | Dec 2001 | A1 |
20020001216 | Sugano et al. | Jan 2002 | A1 |
20020006032 | Karabatsos | Jan 2002 | A1 |
20020030995 | Shoji | Mar 2002 | A1 |
20020076919 | Peters et al. | Jun 2002 | A1 |
20020094603 | Isaak | Jul 2002 | A1 |
20020101261 | Karabatsos | Aug 2002 | A1 |
20020139577 | Miller | Oct 2002 | A1 |
20020164838 | Moon et al. | Nov 2002 | A1 |
20020180022 | Emoto | Dec 2002 | A1 |
20020185731 | Akram et al. | Dec 2002 | A1 |
20020196612 | Gall et al. | Dec 2002 | A1 |
20030002262 | Benisek et al. | Jan 2003 | A1 |
20030026155 | Yamagata | Feb 2003 | A1 |
20030035328 | Hamamatsu et al. | Feb 2003 | A1 |
20030045025 | Coyle et al. | Mar 2003 | A1 |
20030049886 | Salmon | Mar 2003 | A1 |
20030064548 | Isaak | Apr 2003 | A1 |
20030081387 | Schulz | May 2003 | A1 |
20030081392 | Cady et al. | May 2003 | A1 |
20030089978 | Miyamoto et al. | May 2003 | A1 |
20030090879 | Doblar et al. | May 2003 | A1 |
20030096497 | Moore et al. | May 2003 | A1 |
20030109078 | Takahashi et al. | Jun 2003 | A1 |
20030116835 | Miyamoto et al. | Jun 2003 | A1 |
20030159278 | Peddle | Aug 2003 | A1 |
20030168725 | Warner et al. | Sep 2003 | A1 |
20040000708 | Rapport et al. | Jan 2004 | A1 |
20040012991 | Kozaru | Jan 2004 | A1 |
20040021211 | Damberg | Feb 2004 | A1 |
20040099938 | Kang et al. | May 2004 | A1 |
20040150107 | Cha et al. | Aug 2004 | A1 |
20040197956 | Rapport et al. | Oct 2004 | A1 |
20040229402 | Cady et al. | Nov 2004 | A1 |
20040236877 | Burton | Nov 2004 | A1 |
20040256731 | Mao et al. | Dec 2004 | A1 |
20050073050 | Chen | Apr 2005 | A1 |
20050082663 | Wakiyama et al. | Apr 2005 | A1 |
20050108468 | Hazelzet et al. | May 2005 | A1 |
20050133897 | Baek et al. | Jun 2005 | A1 |
20050242423 | Partridge et al. | Nov 2005 | A1 |
20050259504 | Murtugh et al. | Nov 2005 | A1 |
20050263911 | Igarashi et al. | Dec 2005 | A1 |
20050289287 | Shin et al. | Dec 2005 | A1 |
20060020740 | Bartley et al. | Jan 2006 | A1 |
20060050496 | Goodwin | Mar 2006 | A1 |
20060050497 | Goodwin | Mar 2006 | A1 |
20060053345 | Goodwin | Mar 2006 | A1 |
20060083043 | Cypher | Apr 2006 | A1 |
20060090112 | Cochran et al. | Apr 2006 | A1 |
20060091529 | Wehrly et al. | May 2006 | A1 |
20060095592 | Borkenhagen | May 2006 | A1 |
20060111866 | LeClerg et al. | May 2006 | A1 |
20060125067 | Wehrly et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
122-687 | Oct 1984 | EP |
0 298 211 | Jan 1989 | EP |
1 119049 | Jul 2001 | EP |
2 130 025 | May 1984 | GB |
53-85159 | Jul 1978 | JP |
58-96756 | Jun 1983 | JP |
3-102862 | Apr 1991 | JP |
5-29534 | Feb 1993 | JP |
5-335695 | Dec 1993 | JP |
2821315 | Nov 1998 | JP |
2001077294 | Mar 2001 | JP |
2001085592 | Mar 2001 | JP |
2001332683 | Nov 2001 | JP |
2002009231 | Jan 2002 | JP |
2003037246 | Feb 2003 | JP |
2003086760 | Mar 2003 | JP |
2003086761 | Mar 2003 | JP |
2003309246 | Oct 2003 | JP |
2003347503 | Dec 2003 | JP |
WO03037053 | May 2003 | WO |
WO 03037053 | May 2003 | WO |
WO 2004109802 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060050488 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11007551 | Dec 2004 | US |
Child | 11068688 | US | |
Parent | 10934027 | Sep 2004 | US |
Child | 11007551 | US |