The invention relates to a high electron mobility transistor (HEMT) and method for fabricating the same.
High electron mobility transistor (HEMT) fabricated from GaN-based materials have various advantages in electrical, mechanical, and chemical aspects of the field. For instance, advantages including wide band gap, high break down voltage, high electron mobility, high elastic modulus, high piezoelectric and piezoresistive coefficients, and chemical inertness. All of these advantages allow GaN-based materials to be used in numerous applications including high intensity light emitting diodes (LEDs), power switching devices, regulators, battery protectors, display panel drivers, and communication devices.
According to an embodiment of the present invention, a method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a barrier layer on the buffer layer; forming a hard mask on the barrier layer; performing an implantation process through the hard mask to form a doped region in the barrier layer and the buffer layer; removing the hard mask and the barrier layer to form a first trench; forming a gate dielectric layer on the hard mask and into the first trench; forming a gate electrode on the gate dielectric layer; and forming a source electrode and a drain electrode adjacent to two sides of the gate electrode.
According to another aspect of the present invention, a high electron mobility transistor (HEMT) includes: a buffer layer on a substrate; a barrier layer on the buffer layer; a gate electrode on the barrier layer; a gate dielectric layer between the barrier layer and the gate electrode; a hard mask between the gate dielectric layer and the barrier layer; and a source electrode and a drain electrode adjacent to two sides of the gate electrode on the buffer layer.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Referring to the
Next, a buffer layer 14 is formed on the substrate 12. According to an embodiment of the present invention, the buffer layer 14 is preferably made of III-V semiconductors such as gallium nitride (GaN), in which a thickness of the buffer layer 14 could be between 0.5 microns to 10 microns. According to an embodiment of the present invention, the formation of the buffer layer 14 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next, a barrier layer 16 is formed on the surface of the buffer layer 14. In this embodiment, the barrier layer 16 is preferably made of III-V semiconductor such as aluminum gallium nitride (AlxGa1-xN), in which 0<x<1 and the barrier layer 16 preferably includes an epitaxial layer formed through epitaxial growth process. Similar to the buffer layer 14, the formation of the barrier layer 16 on the buffer layer 14 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next, a hard mask 18 is formed on the barrier layer 16 to cover the surface of the barrier layer 16 entirely, and a patterned mask 20 such as a patterned resist is formed on the hard mask 18, in which the patterned mask 20 includes an opening 22 exposing part of the hard mask 18 surface. Next, an ion implantation process 24 is conducted by using the patterned mask 20 as mask to inject fluorine ions into the barrier layer 16 and the buffer layer 14 through the hard mask 18. This forms a doped region 26 in the barrier layer 16 and the buffer layer 14. In this embodiment, the bottom or bottommost surface of the doped region 26 preferably made of fluorine is slightly lower than the bottom surface of the barrier layer 16 or the top surface of the buffer layer 14 and the concentration of fluorine within the doped region 26 preferably decreases from barrier layer 16 toward the buffer layer 14. In other words, the doped region 26 closer to the boundary between the barrier layer 16 and the hard mask 18 preferably includes higher concentration of fluorine ions while the doped region 26 closer to the boundary between the barrier layer 16 and the buffer layer 14 includes lower concentration of fluorine ions.
Next, as shown in
Next, as shown in
Next, as shown in
In this embodiment, the gate electrode 32, the source electrode 34, and the drain electrode 36 are all made of metal material, in which the source electrode 34 and drain electrode 36 are preferably made of same material while the source electrode 34 and the drain electrode 36 and the gate electrode 32 could be made of same material or different materials. According to an embodiment of the present invention, each of the gate electrode 32, source electrode 34 and drain electrode 36 could include gold (Au), silver (Ag), platinum (Pt), titanium (Ti), aluminum (Al), tungsten (W), palladium (Pd), or combination thereof. According to other embodiments of the present invention, it would be desirable to conduct an electroplating process, sputtering process, resistance heating evaporation process, electron beam evaporation process, physical vapor deposition (PVD) process, chemical vapor deposition (CVD) process, or combination thereof to form an electrode material in the aforementioned trench and on the surface of the hard mask 30, and then pattern the electrode material through single or multiple etching processes to form the gate electrode 32, the source electrode 34, and the drain electrode 36 respectively.
Next, as shown in
Referring to
In this embodiment, the buffer layer 14 preferably includes III-V semiconductors such as gallium nitride (GaN), the barrier layer 16 preferably includes III-V semiconductor such as aluminum gallium nitride (AlxGa1-xN), and the hard mask 18 and the gate dielectric layer 30 are preferably made of different materials, in which the hard mask 18 preferably includes silicon nitride (SiN) but could also include other dielectric materials including but not limited to for example silicon oxide, silicon oxynitride (SiON), or silicon carbon nitride (SiCN), and the gate dielectric layer 30 preferably includes metal nitrides such as aluminum nitride (AlN) but could also include other dielectric material including but not limited to for example silicon oxide (SiO2), silicon nitride (SiN), a high-k dielectric layer, or combination thereof. The doped region 26 preferably includes fluorine and the concentration of fluorine within the doped region 26 preferably decreases from barrier layer 16 toward the buffer layer 14. In other words, the doped region 26 closer to the boundary between the barrier layer 16 and the hard mask 18 preferably includes higher concentration of fluorine ions while the doped region 26 closer to the boundary between the barrier layer 16 and the buffer layer 14 includes lower concentration of fluorine ions.
Viewing from a more detailed perspective, the gate dielectric layer 30 preferably includes a U-shape 42 or U-shaped portion and a first horizontal portion 44 and second horizontal portion 46 connecting the U-shape 42, in which the hard mask 18 is disposed between the first horizontal portion 44 and the barrier layer 16 and the second horizontal portion 46 and the barrier layer 16. Preferably, the source electrode 34 and drain electrode 36 contact the gate dielectric layer 30 and the hard mask 18 directly, the top surfaces of the source electrode 34, drain electrode 36, and gate electrode 32 coplanar while the bottom surfaces of the source electrode 34 and drain electrode 36 are slightly lower than the bottom surface of the gate electrode 32, and a sidewall or sidewalls of the hard mask 18 is aligned with sidewalls of the doped region 26 under the source electrode 34 and drain electrode 36. It should be noted that even though the bottom surfaces of the source electrode 34 and drain electrode 36 are even with the bottom surface of the barrier layer 16, according to other embodiments of the present the bottom surfaces of the source electrode 34 and drain electrode 36 could also be slightly higher than or lower than the bottom surface of the barrier layer 16, which are all within the scope of the present invention.
Referring to
Typically, a heterojunction is formed at the interface between the buffer layer and barrier layer as a result of the bandgap difference between the two layers. Essentially a quantum well is formed in the banding portion of the conduction band of the heterojunction to constrain the electrons generated by piezoelectricity so that a channel region or two-dimensional electron gas (2DEG) is formed at the junction between the buffer layer and barrier layer to form conductive current.
Conventional approach of switching a Normally-on operation to a Normally-off operation in HEMT could be accomplished by first forming a hard mask on the barrier layer patterning the hard mask to form an opening exposing the surface of the barrier layer, and then inject fluorine ions directly into the barrier layer through ion implantation, in which the injected fluorine ions preferably attract free electrons and then become negative fixed charged for adjusting local potentials thereby depleting 2DEG. Since the doped region formed by implanting ions directly into the barrier layer in current process often includes an excessive depth thereby affecting resistance of the device, the present invention preferably injects fluorine ions into the barrier layer and buffer layer through the hard mask preferably made of silicon nitride without removing or patterning the hard mask. By using the hard mask as a barrier or buffer structure it would be desirable to eliminate the use of additional mask for patterning the hard mask and also prevent the doped region formed from having excessive depth to affect the performance of the device.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
108124137 | Jul 2019 | TW | national |
This application is a division of U.S. application Ser. No. 16/533,812, filed on Aug. 7, 2019, now issued U.S. Pat. No. 11,264,492. The content of the application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
8455920 | Bridger | Jun 2013 | B2 |
8916908 | Beach et al. | Dec 2014 | B2 |
9728470 | Heider | Aug 2017 | B1 |
10084074 | Yang | Sep 2018 | B1 |
10388753 | Armstrong | Aug 2019 | B1 |
10629681 | Mishra | Apr 2020 | B2 |
10790375 | Yao | Sep 2020 | B2 |
10892358 | Chang | Jan 2021 | B1 |
20060060871 | Beach | Mar 2006 | A1 |
20070249119 | Saito | Oct 2007 | A1 |
20100258843 | Lidow | Oct 2010 | A1 |
20110089467 | Chang | Apr 2011 | A1 |
20110263102 | Heikman | Oct 2011 | A1 |
20120313106 | He | Dec 2012 | A1 |
20130175539 | Choi | Jul 2013 | A1 |
20130256679 | Yao | Oct 2013 | A1 |
20130264579 | Bridger | Oct 2013 | A1 |
20130320349 | Saunier | Dec 2013 | A1 |
20140042446 | Chiang | Feb 2014 | A1 |
20140091364 | Imanishi | Apr 2014 | A1 |
20140273482 | Tsuchiya | Sep 2014 | A1 |
20140346525 | Minoura | Nov 2014 | A1 |
20140353722 | Zhang | Dec 2014 | A1 |
20150255547 | Yuan | Sep 2015 | A1 |
20150303291 | Makiyama | Oct 2015 | A1 |
20150349064 | Azize | Dec 2015 | A1 |
20150349124 | Lu | Dec 2015 | A1 |
20160190294 | Okamoto | Jun 2016 | A1 |
20160293723 | Chiu | Oct 2016 | A1 |
20170025507 | Fan | Jan 2017 | A1 |
20170170306 | Nakayama | Jun 2017 | A1 |
20170271492 | Chiu | Sep 2017 | A1 |
20170309712 | Yamada | Oct 2017 | A1 |
20170345812 | Chou | Nov 2017 | A1 |
20170345921 | Feng | Nov 2017 | A1 |
20180069090 | Morancho | Mar 2018 | A1 |
20180158940 | Shibib | Jun 2018 | A1 |
20180175186 | Chen | Jun 2018 | A1 |
20180350944 | Huang | Dec 2018 | A1 |
20180358431 | Kagawa | Dec 2018 | A1 |
20190097001 | Laroche | Mar 2019 | A1 |
20190206994 | Huang | Jul 2019 | A1 |
20190206998 | Huang | Jul 2019 | A1 |
20190207012 | Lin | Jul 2019 | A1 |
20190207019 | Tsai | Jul 2019 | A1 |
20190221660 | Dasgupta | Jul 2019 | A1 |
20190237588 | Mudholkar | Aug 2019 | A1 |
20190280111 | Shimizu | Sep 2019 | A1 |
20190393210 | Then | Dec 2019 | A1 |
20200020681 | Boles | Jan 2020 | A1 |
20200219772 | Ramaswamy | Jul 2020 | A1 |
20200227407 | Radosavljevic | Jul 2020 | A1 |
20200227469 | Then | Jul 2020 | A1 |
20200227470 | Then | Jul 2020 | A1 |
20200227544 | Then | Jul 2020 | A1 |
20200227545 | Then | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2013-140835 | Jul 2013 | JP |
201810663 | Mar 2018 | TW |
2007116238 | Oct 2007 | WO |
2018004660 | Jan 2018 | WO |
Entry |
---|
Hongwei Chen et al., Enhancement-Mode AlGaN/GaN HEMTs Fabricated by Standard Fluorine Ion Implantation with a Si3N4 Energy-Absorbing Layer, Mar. 14, 2011, Electrochemical and Solid-State Letters, vol. 14, No. 6, pp. H229-H231 (Year: 2011). |
Hongwei Chen et al., Enhancement-Mode AlGaN/GaN HEMTs Fabricated by Standard Fluorine Ion Implantation with a Si3N4 Energy-Absorbing Layer, Electrochemical and Solid-State Letters, Mar. 14, 2011, vol. 14, No. 6, pp. H229-H231 (Year: 2011). |
Chen et al., “Self-aligned Enhancement-mode AlGaN/GaN HEMTs Using 25 keV Fluorine Ion Implantation”, IEEE, 2010, pp. 137-138 ,2010. |
Hongwei Chen et al., Enhancement-mode AIGaN/GaN HEMTs Fabricated by Standard Fluorine Ion Implantation, CS Mantech Conference, May 2010, pp. 145-148. ,2010. |
Hongwei Chen et al., Enhancement-Mode AlGaN/GaN HEMTs Fabricated by Standard Fluorine Ion Implantation with a Si3N4 Energy-Absorbing Layer, Electrochemical and Solid-State Letters, vol. 14, No. 6, Mar. 14, 2011, cover letter + pp. H229-H231. ,2011. |
Yong Cai et al., Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode, IEEE Transactions on Electron Devices, vol. 53, No. 9, Sep. 2006, pp. 2207-2215. ,2006. |
Yong Cai et al., Monolithically Integrated Enhancement/Depletion-Mode AlGaN/GaN HEMT Inverters and Ring Oscillators Using CF4 Plasma Treatment, IEEE Transactions on Electron Devices, vol. 53, No. 9, Sep. 2006, pp. 2223-2230. ,2006. |
Maojun Wang et al., Source Injection Induced Off-State Breakdown and Its Improvement by Enhanced Back Barrier with Fluorine Ion Implantation in AlGaN/GaN HEMTs, 2008 IEEE International Electron Devices Meeting, Dec. 2008, pp. 1-4. ,2008. |
Number | Date | Country | |
---|---|---|---|
20220140124 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16533812 | Aug 2019 | US |
Child | 17575655 | US |