High voltage filter assembly

Information

  • Patent Grant
  • 11508554
  • Patent Number
    11,508,554
  • Date Filed
    Friday, March 15, 2019
    5 years ago
  • Date Issued
    Tuesday, November 22, 2022
    a year ago
Abstract
Embodiments described herein are applicable for use in all types of plasma assisted or plasma enhanced processing chambers and also for methods of plasma assisted or plasma enhanced processing of a substrate. More specifically, embodiments of this disclosure include a broadband filter assembly, also referred to herein as a filter assembly, that is configured to reduce and/or prevent RF leakage currents from being transferred from one or more RF driven components to a ground through other electrical components that are directly or indirectly electrically coupled to the RF driven components and ground with high input impedance (low current loss) making it compatible with shaped DC pulse bias applications.
Description
FIELD

Embodiments described herein generally relate to plasma processing chambers used in semiconductor manufacturing.


BACKGROUND
Description of the Related Art

Reliably producing high aspect ratio features is one of the key technology challenges for the next generation of very large scale integration (VLSI) and ultra large scale integration (ULSI) of semiconductor devices. One method of forming high aspect ratio features uses a plasma assisted etching process, such as a reactive ion etch (RIE) plasma process, to form high aspect ratio openings in a material layer, such as a dielectric layer, of a substrate. In a typical RIE plasma process, a plasma is formed in an RIE processing chamber and ions from the plasma are accelerated towards a surface of a substrate to form openings in a material layer disposed beneath a mask layer formed on the surface of the substrate.


A challenge for current plasma processing chambers and processes includes controlling critical dimension uniformity during plasma processing, which requires heating of the electrostatic chuck assembly in a controlled way. A multi-zone heating assembly embedded in dielectric material is used to heat electrostatic chuck assembly. A typical Reactive Ion Etch (RIE) plasma processing chamber includes a radio frequency (RF) bias generator, which supplies an RF voltage to a “power electrode”, a metal baseplate embedded into the substrate support assembly, more commonly referred to as the “cathode”. The power RF biased electrode is capacitively coupled to the multi-zone electrostatic chuck heating assembly via a layer of dielectric material (e.g., ceramic material), which is a part of the ESC assembly. The strong capacitive coupling between power electrode and the multi-zone electrostatic chuck heating provides a path for flow of significant RF currents to ground, which results in loading of the RF biased waveform and loss of RF power. An undesirably large flow of RF current from the RF driven components to the grounded hardware components can cause many undesirable effects, which include a reduction in the amount of RF power that can effectively be provided to the power electrode (i.e., reduces the RF transfer efficiency), can create personnel safety issues and can cause unwanted damage to ancillary electrical and hardware components. The ability to prevent these undesirable effects becomes even harder to accomplish when the RF power provided to the power electrode includes a broad range of RF frequencies. Most traditional RF filtering techniques are tuned to block the narrow range of frequencies that are provided from the RF power supply to prevent the generated RF energy from damaging external and ancillary electrical components that are connected to the RF driven circuit. As semiconductor device aspect ratios become higher, higher ion energy is required to etch these features. To achieve higher ion energy, the trend is to move to lower frequency and higher power, which makes filter design even more challenging. In particular, shaped DC pulse can be used which is low frequency and has a broad frequency spectrum, which is the most difficult to filter using conventional filtering designs.


Therefore, there is a need for an apparatus and method of minimizing and/or preventing undesirably large RF currents from being delivered to ground through one or more grounded chamber hardware components.


SUMMARY

In one example, a filter assembly is disclosed. The filter assembly includes a plurality of impedance producing elements that are electrically coupled in series between an input end and an output end of the filter assembly. The filter assembly further includes a first grounded impedance producing element. The filter assembly further includes a second grounded impedance producing element. The impedance producing elements are electrically coupled together in series by a first conductive lead and a second conductive lead. The impedance producing elements each comprise a common mode choke that is formed by winding the first and second conductive leads around a toroid shaped core. The first grounded impedance producing element is coupled to the first conductive lead at a point between two adjacently positioned series connected impedance producing elements and to ground. The second grounded impedance producing element is coupled to the second conductive lead at a point between the two adjacently positioned series connected impedance producing elements and to ground.


In another embodiment, a plasma processing chamber is disclosed. The plasma processing chamber includes a biasing electrode disposed within a substrate support. The biasing electrode is configured to be driven by a power generator. The plasma processing chamber further includes a conductive element disposed within the substrate support and positioned a distance from the biasing electrode. The plasma processing chamber further includes a filter assembly. The filter assembly includes a plurality of impedance producing elements that are electrically coupled in series between an input end and an output end of the filter assembly. The filter assembly further includes a first grounded impedance producing element. The filter assembly further includes a second grounded impedance producing element. The impedance producing elements are electrically coupled together in series by a first conductive lead and a second conductive lead. The impedance producing elements each comprise a common mode choke that is formed by winding the first and second conductive leads around a toroid shaped core. The first grounded impedance producing element is coupled to the first conductive lead at a point between two adjacently positioned series connected impedance producing elements and to ground. The second grounded impedance producing element is coupled to the second conductive lead at a point between the two adjacently positioned series connected impedance producing elements and to the ground. The first conductive lead and the second conductive lead connect the conductive element to an external electrical component.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.



FIG. 1 is a schematic cross-sectional view of an example processing chamber configured to practice methods described herein, according to one embodiment.



FIG. 2 is a schematic cross-sectional view of an example of a substrate support assembly, according to one embodiment.



FIG. 3 is a schematic diagram of a filter assembly coupled to one or more electrical components disposed within a plasma processing chamber, according to one embodiment.



FIG. 4 is a schematic diagram of a filter assembly coupled to one or more electrical components disposed within a pulsed direct current power delivery system disposed within a plasma processing chamber, according to one embodiment.





To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.


DETAILED DESCRIPTION

Embodiments described herein are applicable for use in all types of plasma assisted or plasma enhanced processing chambers and also for methods of plasma assisted or plasma enhanced processing of a substrate. More specifically, embodiments of this disclosure include a broadband frequency filter assembly, also referred to herein as a filter assembly, that is configured to reduce and/or prevent RF leakage currents from being transferred from one or more RF driven components to a ground through other electrical components that are directly or indirectly electrically coupled to the RF driven components and ground.



FIG. 1 is a schematic cross-sectional view of a processing chamber 100 configured to perform a plasma process within a processing volume 106 of the process chamber 100 by use of a source assembly 140, according to one embodiment. In this embodiment, the processing chamber 100 is a plasma processing chamber, such as a reactive ion etch (RIE) plasma chamber. In some other embodiments, the processing chamber is a plasma-enhanced deposition chamber, for example a plasma-enhanced chemical vapor deposition (PECVD) chamber, a plasma enhanced physical vapor deposition (PEPVD) chamber, or a plasma-enhanced atomic layer deposition (PEALD) chamber. In some other embodiments, the processing chamber is a plasma treatment chamber, or a plasma based ion implant chamber, for example a plasma doping (PLAD) chamber. Herein, as shown in FIG. 1, the processing chamber 100 includes a source assembly 140 that includes an inductively coupled plasma (ICP) source electrically coupled to a radio frequency (RF) power supply 142 through an RF matching circuit 141. In other embodiments, the source assembly 140 is a capacitively coupled plasma (CCP) source, such as a source electrode (not shown) disposed in the processing volume 106 facing the substrate support 111, wherein the source electrode is electrically coupled to an RF power supply (not shown).


The processing chamber 100 includes a chamber body 102 which includes a chamber lid 123, one or more sidewalls 122, and a chamber base 124 which define a processing volume 106. A gas inlet 116 disposed through the chamber lid 123 is used to provide one or more processing gases to the processing volume 106 from a processing gas source 120 in fluid communication therewith. Herein, the power supply 142 is configured to ignite and maintain a processing plasma 107 from the processing gases includes one or more inductive coils 104 disposed proximate to the chamber lid 123 outside of the processing volume 106. The power supply 142 is used to ignite and maintain a plasma 107 using the processing gases and electromagnetic field generated by the inductive coils 104 and RF power supply 142. The processing volume 106 is fluidly coupled to one or more dedicated vacuum pumps, through a vacuum outlet 127, which maintain the processing volume 106 at sub-atmospheric conditions and evacuate processing, and/or other gases, therefrom. A substrate support assembly 117, disposed in the processing volume 106, is disposed on a support shaft 138 sealingly extending through the chamber base 124.


The substrate 110 is loaded into, and removed from, the processing volume 106 through an opening (not shown) in one of the one or more sidewalls 122, which is sealed with a door or a valve (not shown) during plasma processing of the substrate 110. Herein, the substrate 110 is transferred to and from a receiving surface 115 (e.g., substrate supporting surface) of a substrate support 111, which can include an ESC substrate support 111A using a lift pin system (not shown).


The substrate support 111 includes a support base 111B and the ESC substrate support 111A that is thermally coupled to, and disposed on, the support base 111B. The support base 111B is electrically isolated from the chamber base 124 by an insulator plate 111C, and a ground plate 137 that is interposed between the insulator plate 111C and the chamber base 124. Typically, the support base 111B is used to regulate the temperature of the ESC substrate support 111A, and the substrate 110 disposed on the ESC substrate support 111A, during substrate processing. In some embodiments, the support base 111B includes one or more cooling channels (not shown) disposed therein that are fluidly coupled to, and in fluid communication with, a coolant source (not shown), such as a refrigerant source or water source having relatively high electrical resistance. Herein, the support base 111B is formed of a corrosion resistant thermally conductive material, such as a corrosion resistant metal, for example aluminum, aluminum alloy, or stainless steel and is coupled to the substrate support with an adhesive or by mechanical means.


Typically, the ESC substrate support 111A is formed of a dielectric material, such as a bulk sintered ceramic material, such as a corrosion resistant metal oxide or metal nitride material, for example aluminum oxide (Al2O3), aluminum nitride (AlN), titanium oxide (TiO), titanium nitride (TiN), yttrium oxide (Y2O3), mixtures thereof, or combinations thereof. In some embodiments herein, the ESC substrate support 111A further includes a biasing electrode 112 embedded in the dielectric material thereof. In one configuration, the biasing electrode 112 is a chucking pole used to secure (chuck) the substrate 110 to the receiving surface 115 of the ESC substrate support 111A and to bias the substrate 110 with respect to the processing plasma 107. Typically, the biasing electrode 112 is formed of one or more electrically conductive parts, such as one or more metal meshes, foils, plates, or combinations thereof. Herein, the biasing electrode 112 is electrically coupled to a high voltage module 155 which provides a chucking voltage thereto, such as static DC voltage between about −5000 V and about 5000 V, using an electrical conductor, such as the transmission line 151.


In some embodiments, the ESC substrate support 111A includes a heater element 113, such as a resistive heating element embedded in the dielectric material of the ESC substrate support 111A. The heater element 113 is used to generate heat within the ESC substrate support 111A due to resistive heating created by the delivery of AC power through one or more conductive elements 114, which are embedded within the material used to form the ESC substrate support 111A, by use of an AC power supply 165. In one embodiment, the one or more conductive elements 114 are spaced a distance from the biasing electrode 112, and thus are not directly connected to the biasing electrode 112. As will be discussed further in conjunction with FIG. 2, the heater element 113 may include a plurality of heating zones, such as an inner heater zone 113A that includes a first conductive element 114A and outer heater zone 113B that includes a second conductive element 114B.


In one embodiment of the processing chamber 100, a filter assembly 160 is disposed between the AC power supply 165 and the one or more conductive elements 114 to prevent any RF leakage, which is provided from an RF biased biasing electrode 112 to the one or more conductive elements 114, from flowing into the AC power supply 165 and damaging its internal components and/or creating an unsafe condition for a user of the processing tool. The configuration of the filter assembly 160 is discussed in more detail below.


The biasing electrode 112 is spaced apart from the substrate receiving surface 115 of the ESC substrate support 111A, and thus from the substrate 110, by a layer of dielectric material of the ESC substrate support 111A. Typically, the layer of dielectric material has a thickness between about 0.1 mm and about 1 mm, such as between about 0.1 mm and about 0.5 mm, for example about 0.3 mm. Herein, the biasing electrode 112 is electrically coupled to the power generator 150 using the external conductor, such as the transmission line 151. The power generator 150 can be direct current (DC) power generator, a low frequency RF power generator or a shaped pulsed DC bias power generator. A version of the pulsed direct current (DC) power generator is described further below. The dielectric material and layer thickness formed between biasing electrode 112 and the substrate receiving surface 115 can be selected so that the capacitance C3 (FIG. 2) of the layer of dielectric material is between about 5 nF and about 12 nF, such as between about 7 and about 10 nF, for example.


The processing chamber 100 further includes a system controller 134. The system controller 134 herein includes a central processing unit (CPU), a memory, and support circuits. The system controller 134 is used to control the process sequence used to process the substrate 110 including the substrate biasing methods described herein. The CPU is a general purpose computer processor configured for use in an industrial setting for controlling processing chamber and sub-processors related thereto. The memory described herein may include random access memory, read only memory, floppy or hard disk drive, or other suitable forms of digital storage, local or remote. The support circuits are conventionally coupled to the CPU and comprise cache, clock circuits, input/output subsystems, power supplies, and the like, and combinations thereof. Software instructions and data can be coded and stored within the memory for instructing a processor within the CPU. A program (or computer instructions) readable by the system controller 134 determines which tasks are performable by the components in the processing chamber 100. Preferably, the program, which is readable by the system controller 134, includes code, which when executed by the processor, perform tasks relating to the monitoring and execution of the electrode biasing scheme described herein. The program will include instructions that are used to control the various hardware and electrical components within the processing chamber 100 to perform the various process tasks and various process sequences used to implement the electrode biasing scheme described herein.



FIG. 2 is a schematic side cross-sectional view of portions of the substrate support 111 and various supporting electrical components illustrated in FIG. 1. As previously discussed, the heater element 113, which is embedded within ESC substrate support 111A, includes a plurality of heating zones, such as an inner heater zone 113A that includes a first conductive element 114A and outer heater zone 113B that includes a second conductive element 114B. A first side of the first conductive element 114A is coupled to a first conductive lead 211 and a second side of the first conductive element 114A is coupled to a second conductive lead 212. The first conductive lead 211 and the second conductive leads 212 are connected to a first power supply 165A through a first filter assembly 160A. Similarly, a first side of the second conductive element 114B is coupled to a first conductive lead 221 and a second side of the second conductive element 114B is coupled to a second conductive lead 222. The first conductive lead 221 and the second conductive lead 222 are connected to a second power supply 165B through a second filter assembly 160B. While FIG. 2 includes a first power supply 165A and a second power supply 165B this configuration is not intended to limit the scope of the disclosure provided herein since any number of power delivering elements could be used to separately control the power delivered to the first and second heating elements 114A and 114B. The power supply 165, or power supplies 165A and 165B, and conductive element 114, or first conductive element 114A and second conductive element 114B, are typically configured to generate between about 5000 watts and about 15,000 watts of power to heat the substrate support 111 to a desirable temperature. Therefore, in one example, the power supply 165, or power supplies 165A and 165B, are configured to deliver between about 5000 watts and about 15000 watts of power at a voltage of 208 volts, and thus the conductive leads 211, 212, 221 and 222 typically require a large gauge wire, such as at least a 10 AWG to 14 AWG shielded wire. In one embodiment, the conductive leads 211, 212, 221 and 222 include a wire that has cross-sectional area that is greater than or equal to a 14 AWG wire.


During operation the power generator 150 is configured to provide nano-second DC pulses, or in some configurations RF power, to the biasing electrode 112 which is capacitively coupled to the plasma 107 through a plurality of series capacitances that can include an ESC capacitance C3 and a substrate capacitance C2. The plasma 107 will generally have an impedance Zp that includes a series of complex impedances due to the formed plasma and plasma sheaths formed at the chamber walls and over the substrate 110. The dielectric layer in the electrostatic chuck and the substrate 110 (e.g., a 0.8 mm thick doped-silicon slab with the capacitance C2 of >10 nF) separate the biasing electrode 112 from the plasma 107 and are represented in the circuits in FIG. 2 by capacitors C3 and C2. Since the substrate capacitance C2 is typically very large (>10 nF), or substrate may be conductive (infinite capacitance), the series capacitance is determined primarily by the actual ESC capacitance C3 (e.g., ˜6.8 nF). The biasing electrode 112 will also be capacitively coupled to the first conductive element 114A and second conductive element 114B, as represented by the capacitances C4 and C5 in FIG. 2, respectively. The capacitive coupling of the biasing electrode 112 to the first conductive element 114A and second conductive element 114B will cause RF leakage currents (or also referred to herein as noise currents) to travel through the conductive leads 211, 212, 221 and 222 to their respective first and second filter assemblies 160A and 160B. The first and second filter assemblies 160A and 160B are thus positioned and configured to filter out these unwanted RF leakage currents so as to prevent the generated RF currents from damaging either of the power supplies 165A and 165B and/or causing a personnel safety issue.



FIG. 3 is a schematic diagram of a filter assembly 160 (FIG. 1) that is coupled between a conductive element 114 and a power supply 165 that is disposed within a plasma processing chamber, according to one embodiment. FIG. 4 is a schematic diagram of the filter assembly 160 that is coupled between the conductive element 114 and the power supply 165 that is disposed within a plasma processing chamber 100, according to one embodiment. As discussed above, the filter assembly 160 is positioned and configured to prevent the RF leakage current passing from the biasing electrode 112 to the conductive element 114 from reaching the power supply 165. The filter assembly 160 includes a plurality of impedance producing elements Zi that are connected together between an input end 201 and an output end 202, via the conductive leads 211 and 212. The filter assembly 160 also includes a grounded impedance element 305 that is connected to a conductive lead 211 or 212 at a point positioned between the last two of the connected impedance producing elements, such as impedance producing elements Z4 and Z5 in FIG. 3, and ground.


In one embodiment, as shown in FIGS. 3 and 4, the plurality of impedance producing elements include five impedance producing elements Z1, Z2, Z3, Z4 and Z5 that are connected in series via the conductive leads 211 and 212. In general, the plurality of impedance producing elements includes at least two impedance producing elements that each at least include an inductive element (L). As illustrated in FIG. 4, each of the impedance producing elements includes a “real” inductive element (L) that includes a resistance (R) of the wire in the windings and has a self-capacitance (C). The grounded impedance elements 305 will includes a capacitive element (C) and a resistive element (R) that are connect in series between one of the conductive leads 211 or 212 and ground. One will note that the inductance (L17) found in the grounded impedance element 305 shown in FIG. 4 has been added for modeling purposes to account for the windings of the wiring connecting the capacitive element and resistive element, and thus is not an added discrete element. In one embodiment, the impedance of each of the plurality of impedance producing elements increases from the first impedance producing element Z1 near the input end 201 to the impedance producing element before the grounded impedance element 305 (e.g., impedance producing element Z4 in FIG. 3). In one example, the impedance of the impedance producing elements increase (e.g., inductive elements L1<L2<L3<L4), while the last impedance producing element Z5 has an impedance that is higher than the impedance of element 305. In one embodiment, the inductive element (L) in each of the impedance producing elements increase, such that L10<L11<L12<L13, as shown in FIG. 4.


In another embodiment, the impedances of at least two of the series connected impedance producing elements have the same value of impedance. In one example, a first impedance producing element Z1 and a second impedance producing element Z2 each have a first impedance value, and a third impedance producing element Z3 and a forth impedance producing element Z4 each have a second impedance value that is different from the first impedance value. In this example, the first impedance value is preferably less than the second impedance value.


In some embodiments, the impedance producing elements Zi each comprise a common mode choke that is formed by winding the conductive leads 211 and 212 around a toroid shaped core that is wound in a “Common Mode” configuration. In one example, the toroid shaped core is a toroid shaped ferrite containing core, but the core could also be made of other high magnetic permeability materials. In a common mode winding configuration, the RF leakage current (noise current) travels on both conductive leads 211 and 212 in the same direction (i.e., from the input end 201 to the output end 202) and the AC current, provided from the power supply 165 to generate heat in the conductive element 114, flows in opposing directions relative to the winding direction of the conductive leads 211 and 212 on the toroid. The two or more windings in the common mode choke are arranged such that the common mode current creates a magnetic field that opposes any increase in the common mode current. In one embodiment, the impedance of the impedance producing elements are adjusted by altering the number of turns of the windings, selecting a toroid that contain materials that have a different permeability (μ) and/or both. It is believed that by including a plurality of impedance producing elements that each have a different impedance with the filter assembly 160, the noise currents (RF leakage currents) that travel along the conductive leads 211 and 212 can be effectively eliminated or minimized so that the attached electrical components (e.g., power supply 165) are not affected by the RF leakage. The differing impedance of the impedance producing elements is used to block RF leakage currents that have different frequencies. In one example, a filter assembly 160 that has impedance producing elements that each have an increasing inductance (L) will tend to block the higher frequency noise currents first and then incrementally block noise currents having decreasing frequencies as the noise current passes from the input end 201 to the output end 202 through each successive impedance producing element Zi.


The grounded impedance element 305 is configured to have a desired RC value and the last impedance element (e.g., Z5) is sized such they will cause any remaining noise current(s) flowing on the conductive leads 211 or 212 to flow to ground. In one embodiment, the last impedance element (e.g., Z5) is a common mode choke that includes a toroid core that is formed from a high permeability material that has a higher permeability (μ) than the permeability (μ) of the material used to form the toroid core in at least the first impedance producing element Z1. In general, by selecting a desired number of impedance producing elements and their impedances to effectively block all of the RF leakage current(s) provided across a range of frequencies, the amount of current that flows through the grounded impedance element 305 to ground will be small and thus avoid any issues of a leakage current being provided to ground. In one embodiment, the combination of a desired number of impedance producing elements and the configuration of the grounded impedance element(s) 305 is used to limit the output current, which passes through a grounded impedance element 305, to less than 150 mA.


As noted above, FIG. 4 is a schematic diagram of the filter assembly 160 that is coupled between the conductive element 114 and the power supply 165 that is disposed within a plasma processing chamber 100. In this example, the power generator 150 is a pulsed bias generator that is used to establish a pulsed voltage waveform at the biasing electrode 112 to alter characteristics of the plasma 107. The biasing electrode 112 is separated from the substrate by a thin layer of a dielectric material within the ESC assembly (e.g., thin dielectric layer that forms the capacitance C3). The power generator 150 is configured to generate a pulsed voltage biasing scheme that enables maintaining a nearly constant plasma sheath voltage over the substrate 110 for up to about 90% of the substrate processing time, which results in a single (narrow) peak ion energy distribution function (IEDF).


An example of a pulsed voltage biasing scheme provided from the power generator 150 can include delivering an output voltage (V0) having a magnitude Vm during the time interval when an internal power generator switch S is in the closed (On) position, and a substantially constant positive output voltage (equal to Vm) is maintained. The voltage (Vm) can be as high as several kilovolts (e.g., 0.1-10 kV). The time interval during which the switch remains in the closed (On) position and the substantially constant positive output voltage is maintained is referred to as the “pulse width”, τp, and it can be as long as several tens of nanoseconds (e.g., 10-100 ns). In turn, the time interval after the switch S has transferred to the closed (On) position and the voltage (Vm) is achieved is referred to as the “rise time”, τrise, and it can also be several tens of nanoseconds (e.g., 25-50 ns). As the switch transitions from the open to the closed position, the output voltage of the nanosecond pulse generator gradually increases until it reaches the voltage Vm. Finally, the length of time between the two consecutive transitions from the switch S transferring from an open (Off) position to the closed (On) position (or vice versa) is referred to as the “period”, T, and it is equal to the inverse of the pulse repetition frequency, which can be as high as 400 kHz, for example.


The broadband frequency filter assembly disclosed herein has a significant advantage over conventional filter designs, since it is configured to filter out and minimize the transfer of leakage currents provided at a wide range of frequencies. The configurations disclosed herein will also minimize the distortion of pulses provided to a biasing electrode, minimize the leakage current delivered to ground at the output end of the filter assembly to a value less than 150 mA, and the amount of heat generated by the various impedance producing elements will be significantly lower than conventional filter designs that are similarly connected in the same plasma processing apparatus due to the configuration of the impedance producing elements. As discussed above, some of the desirable impedance producing element configuration details will include, but are not limited to the orientation of the serially connected impedance producing elements relative to the input end of the filter assembly, the wiring types and winding configurations of each of the impedance producing elements, and the selection of the materials that the toroidal cores in each of the impedance producing elements are formed from.

Claims
  • 1. A filter assembly for minimizing RF interference with an AC power supply, comprising: a first conductive lead and a second conductive lead;an output end of the filter assembly wherein the first conductive lead and a second conductive lead are configured to be electrically coupled to an AC power supply;an input end of the filter assembly;a first impedance producing element electrically coupled to the first conductive lead and the second conductive lead at the output end of the filter assembly;a plurality of second impedance producing elements electrically coupled in series between the first impedance producing element and the input end of the filter assembly, each impedance producing element of the plurality of second impedance producing elements comprising:a portion of the first conductive lead wound around a portion of a toroid shaped core; anda portion of the second conductive lead wound around a portion of the toroid shaped core, wherein an inductance for each series coupled second impedance producing element of the plurality of second impedance producing elements increases from the input end to a point disposed between the plurality of second impedance producing elements and the first impedance producing element;a first grounded impedance producing element, the first grounded impedance producing element is coupled to the first conductive lead at the point disposed between the plurality of second impedance producing elements and the first impedance producing element; anda second grounded impedance producing element, the second grounded impedance producing element is coupled to the second conductive lead at the point disposed between the plurality of second impedance producing elements and the first impedance producing element, whereinthe first impedance producing element comprises a first inductance element,the first grounded impedance producing element and the second grounded impedance producing element each comprise a capacitance element, andan impedance of the first inductance element on the first conductive lead is greater than an impedance produced by the capacitance element of the first grounded impedance producing element and an impedance of the first inductance element on the second conductive lead is greater than an impedance produced by the capacitance element of the second grounded impedance producing element at an interfering radio frequency (RF).
  • 2. The filter assembly of claim 1, wherein the portion of the first conductive lead wound around the portion of the toroid shaped core and the portion of the second conductive lead wound around the portion of the toroid shaped core are wound in a common mode choke configuration.
  • 3. The filter assembly of claim 1, wherein the input end is electrically coupled to a resistive heating element.
  • 4. The filter assembly of claim 3, wherein the output end is coupled to an AC power supply.
  • 5. The filter assembly of claim 1, wherein the first conductive lead is coupled to a first side of a resistive heating element and the second conductive lead is coupled to a second side of the resistive heating element.
  • 6. The filter assembly of claim 5, wherein an AC power supply is configured to provide an AC current to the first conductive lead and receive a returning AC current on the second conductive lead.
  • 7. The filter assembly of claim 1, wherein the first conductive lead and the second conductive lead comprise a wire that has cross-sectional area that is greater than or equal to a 14 AWG wire.
  • 8. The filter assembly of claim 1, wherein the toroid shaped core in a first impedance element of the plurality of second impedance producing elements comprises a first material that has a first permeability, andthe toroid shaped core in a second impedance element of the plurality of second impedance producing elements comprises a second material that has a second permeability that is greater than the first permeability, andthe first impedance element of the plurality of second impedance producing elements is positioned closer to the input end of the filter assembly and the second impedance element of the plurality of second impedance producing elements is positioned closer to the output end of the filter assembly.
  • 9. The filter assembly of claim 1, wherein the portion of the first conductive lead wound around the portion of the toroid shaped core and the portion of the second conductive lead wound around the portion of the toroid shaped core are wound in opposing directions around the toroidal shaped core.
  • 10. A plasma processing chamber, comprising: a biasing electrode disposed within a substrate support, wherein the biasing electrode is configured to be driven by a power generator;a conductive element disposed within the substrate support and positioned a distance from the biasing electrode;a filter assembly that comprises:a first conductive lead and a second conductive lead;an output end of the filter assembly wherein the first conductive lead and a second conductive lead are configured to be electrically coupled to a power supply;an input end of the filter assembly;a first impedance producing element electrically coupled to the first conductive lead and the second conductive lead at the output end of the filter assembly;a plurality of second impedance producing elements electrically coupled in series between the first impedance producing element and the input end of the filter assembly, each second impedance producing element of the plurality of second impedance producing elements comprising:a portion of the first conductive lead wound around a portion of a toroid shaped core; anda portion of the second conductive lead wound around a portion of the toroid shaped core, wherein an impedance for each series coupled second impedance producing element of the plurality of second impedance producing elements increases from the input end to a point disposed between the plurality of second impedance producing elements and the first impedance producing element;a first grounded impedance producing element, the first grounded impedance producing element is coupled to the first conductive lead at the point disposed between the plurality of second impedance producing elements and the first impedance producing element; anda second grounded impedance producing element, the second grounded impedance producing element is coupled to the second conductive lead at the point disposed between the plurality of second impedance producing elements and the first impedance producing element, whereinthe first impedance producing element comprises a first inductance element,the first grounded impedance producing element and the second grounded impedance producing element each comprise a capacitance element, andan impedance of the first inductance element on the first conductive lead is greater than an impedance produced by the capacitance element of the first grounded impedance producing element and an impedance of the first inductance element on the second conductive lead is greater than an impedance produced by the capacitance element of the second grounded impedance producing element at an operating radio frequency (RF) applied to the bias electrode.
  • 11. The plasma processing chamber of claim 10, wherein the portion of the first conductive lead wound around the portion of the toroid shaped core and the portion of the second conductive lead wound around the portion of the toroid shaped core are wound in a common mode choke configuration.
  • 12. The plasma processing chamber of claim 10, wherein the conductive element comprises a resistive heating element.
  • 13. The plasma processing chamber of claim 12, wherein conductive element is coupled to an AC power supply.
  • 14. The plasma processing chamber of claim 10, wherein the first conductive lead and the second conductive lead comprise a wire that has cross-sectional area that is greater than or equal to a 14 AWG wire.
  • 15. The plasma processing chamber of claim 10, wherein the toroid shaped core in a first impedance element of the plurality of second impedance producing elements comprises a first material that has a first permeability, andthe toroid shaped core in a second impedance element of the plurality of second impedance producing elements comprises a second material that has a second permeability that is greater than the first permeability, andthe first impedance element of the plurality of second impedance producing elements is positioned closer to the input end of the filter assembly and the second impedance element of the plurality of second impedance producing elements is positioned closer to the output end of the filter assembly.
  • 16. The plasma processing chamber of claim 10, wherein the portion of the first conductive lead wound around the portion of the toroid shaped core and the portion of the second conductive lead wound around the portion of the toroid shaped core are wound in opposing directions around the toroidal shaped core.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Patent Application Ser. No. 62/796,542, filed Jan. 24, 2019, which application is hereby incorporated by reference herein.

US Referenced Citations (693)
Number Name Date Kind
4070589 Martinkovic Jan 1978 A
4340462 Koch Jul 1982 A
4464223 Gorin Aug 1984 A
4504895 Steigerwald Mar 1985 A
4585516 Corn et al. Apr 1986 A
4683529 Bucher, II Jul 1987 A
4931135 Horiuchi et al. Jun 1990 A
4992919 Lee et al. Feb 1991 A
5099697 Agar Mar 1992 A
5140510 Myers Aug 1992 A
5449410 Chang et al. Sep 1995 A
5451846 Peterson et al. Sep 1995 A
5464499 Moslehi et al. Nov 1995 A
5554959 Tang Sep 1996 A
5565036 Westendorp et al. Oct 1996 A
5595627 Inazawa et al. Jan 1997 A
5597438 Grewal et al. Jan 1997 A
5610452 Shimer et al. Mar 1997 A
5698062 Sakamoto et al. Dec 1997 A
5716534 Tsuchiya et al. Feb 1998 A
5770023 Sellers Jun 1998 A
5796598 Nowak et al. Aug 1998 A
5810982 Sellers Sep 1998 A
5830330 Lantsman Nov 1998 A
5882424 Taylor et al. Mar 1999 A
5928963 Koshiishi Jul 1999 A
5933314 Lambson et al. Aug 1999 A
5935373 Koshimizu Aug 1999 A
5948704 Benjamin et al. Sep 1999 A
5997687 Koshimizu Dec 1999 A
6043607 Roderick Mar 2000 A
6051114 Yao et al. Apr 2000 A
6055150 Clinton et al. Apr 2000 A
6074518 Imafuku et al. Jun 2000 A
6089181 Suemasa et al. Jul 2000 A
6099697 Hausmann Aug 2000 A
6110287 Arai et al. Aug 2000 A
6117279 Smolanoff et al. Sep 2000 A
6125025 Howald et al. Sep 2000 A
6133557 Kawanabe et al. Oct 2000 A
6136387 Koizumi Oct 2000 A
6187685 Hopkins et al. Feb 2001 B1
6197151 Kaji et al. Mar 2001 B1
6198616 Dahimene et al. Mar 2001 B1
6201208 Wendt et al. Mar 2001 B1
6214162 Koshimizu Apr 2001 B1
6232236 Shan et al. May 2001 B1
6252354 Collins et al. Jun 2001 B1
6253704 Savas Jul 2001 B1
6277506 Okamoto Aug 2001 B1
6309978 Donohoe et al. Oct 2001 B1
6313583 Arita et al. Nov 2001 B1
6355992 Via Mar 2002 B1
6358573 Raoux et al. Mar 2002 B1
6392187 Johnson May 2002 B1
6395641 Savas May 2002 B2
6423192 Wada et al. Jul 2002 B1
6433297 Kojima et al. Aug 2002 B1
6435131 Koizumi Aug 2002 B1
6451389 Amann et al. Sep 2002 B1
6456010 Yamakoshi et al. Sep 2002 B2
6483731 Isurin et al. Nov 2002 B1
6535785 Johnson et al. Mar 2003 B2
6621674 Zahringer et al. Sep 2003 B1
6664739 Kishinevsky et al. Dec 2003 B1
6733624 Koshiishi et al. May 2004 B2
6740842 Johnson et al. May 2004 B2
6741446 Ennis May 2004 B2
6777037 Sumiya et al. Aug 2004 B2
6808607 Christie Oct 2004 B2
6818103 Scholl et al. Nov 2004 B1
6818257 Amann et al. Nov 2004 B2
6830595 Reynolds, III Dec 2004 B2
6830650 Roche et al. Dec 2004 B2
6849154 Nagahata et al. Feb 2005 B2
6861373 Aoki et al. Mar 2005 B2
6863020 Mitrovic et al. Mar 2005 B2
6896775 Chistyakov May 2005 B2
6902646 Mahoney et al. Jun 2005 B2
6917204 Mitrovic et al. Jul 2005 B2
6947300 Pai et al. Sep 2005 B2
6962664 Mitrovic Nov 2005 B2
6970042 Glueck Nov 2005 B2
7016620 Maess et al. Mar 2006 B2
7046088 Ziegler May 2006 B2
7104217 Himori et al. Sep 2006 B2
7115185 Gonzalez et al. Oct 2006 B1
7126808 Koo et al. Oct 2006 B2
7147759 Chistyakov Dec 2006 B2
7151242 Schuler Dec 2006 B2
7166233 Johnson et al. Jan 2007 B2
7206189 Reynolds, III Apr 2007 B2
7218503 Howald May 2007 B2
7218872 Shimomura May 2007 B2
7226868 Mosden et al. Jun 2007 B2
7265963 Hirose Sep 2007 B2
7274266 Kirchmeier Sep 2007 B2
7305311 van Zyl Dec 2007 B2
7312974 Kuchimachi Dec 2007 B2
7408329 Wiedemuth et al. Aug 2008 B2
7415940 Koshimizu et al. Aug 2008 B2
7440301 Kirchmeier et al. Oct 2008 B2
7452443 Gluck et al. Nov 2008 B2
7479712 Richert Jan 2009 B2
7509105 Ziegler Mar 2009 B2
7512387 Glueck Mar 2009 B2
7535688 Yokouchi et al. May 2009 B2
7586099 Eyhorn et al. Sep 2009 B2
7586210 Wiedemuth et al. Sep 2009 B2
7588667 Cerio, Jr. Sep 2009 B2
7601246 Kim et al. Oct 2009 B2
7609740 Glueck Oct 2009 B2
7618686 Colpo Nov 2009 B2
7633319 Arai Dec 2009 B2
7645341 Kennedy et al. Jan 2010 B2
7651586 Moriya et al. Jan 2010 B2
7652901 Kirchmeier et al. Jan 2010 B2
7692936 Richter Apr 2010 B2
7700474 Cerio, Jr. Apr 2010 B2
7705676 Kirchmeier et al. Apr 2010 B2
7706907 Hiroki Apr 2010 B2
7712436 Yamazawa May 2010 B2
7718538 Kim et al. May 2010 B2
7740704 Strang Jun 2010 B2
7758764 Dhindsa et al. Jul 2010 B2
7761247 van Zyl Jul 2010 B2
7782100 Steuber et al. Aug 2010 B2
7791912 Walde Sep 2010 B2
7795817 Nitschke Sep 2010 B2
7808184 Chistyakov Oct 2010 B2
7821767 Fujii Oct 2010 B2
7825719 Roberg et al. Nov 2010 B2
7858533 Liu et al. Dec 2010 B2
7888240 Hamamjy et al. Feb 2011 B2
7898238 Wiedemuth et al. Mar 2011 B2
7929261 Wiedemuth Apr 2011 B2
RE42362 Schuler May 2011 E
7977256 Liu et al. Jul 2011 B2
7988816 Koshiishi et al. Aug 2011 B2
7995313 Nitschke Aug 2011 B2
8044595 Nitschke Oct 2011 B2
8052798 Moriya et al. Nov 2011 B2
8055203 Choueiry et al. Nov 2011 B2
8083961 Chen et al. Dec 2011 B2
8110992 Nitschke Feb 2012 B2
8128831 Sato et al. Mar 2012 B2
8129653 Kirchmeier et al. Mar 2012 B2
8133347 Gluck et al. Mar 2012 B2
8133359 Nauman et al. Mar 2012 B2
8140292 Wendt Mar 2012 B2
8217299 Ilic et al. Jul 2012 B2
8221582 Patrick et al. Jul 2012 B2
8236109 Moriya et al. Aug 2012 B2
8284580 Wilson Oct 2012 B2
8313612 McMillin et al. Nov 2012 B2
8333114 Hayashi Dec 2012 B2
8361906 Lee et al. Jan 2013 B2
8382999 Agarwal et al. Feb 2013 B2
8383001 Mochiki et al. Feb 2013 B2
8384403 Zollner et al. Feb 2013 B2
8391025 Walde et al. Mar 2013 B2
8399366 Takaba Mar 2013 B1
8419959 Bettencourt et al. Apr 2013 B2
8422193 Tao et al. Apr 2013 B2
8441772 Yoshikawa et al. May 2013 B2
8456220 Thome et al. Jun 2013 B2
8460567 Chen Jun 2013 B2
8466622 Knaus Jun 2013 B2
8542076 Maier Sep 2013 B2
8551289 Nishimura et al. Oct 2013 B2
8568606 Ohse et al. Oct 2013 B2
8603293 Koshiishi et al. Dec 2013 B2
8632537 McNall, III et al. Jan 2014 B2
8641916 Yatsuda et al. Feb 2014 B2
8685267 Yatsuda et al. Apr 2014 B2
8704607 Yuzurihara et al. Apr 2014 B2
8716114 Ohmi et al. May 2014 B2
8716984 Mueller et al. May 2014 B2
8735291 Ranjan et al. May 2014 B2
8796933 Hermanns Aug 2014 B2
8809199 Nishizuka Aug 2014 B2
8821684 Ui et al. Sep 2014 B2
8828883 Rueger Sep 2014 B2
8845810 Hwang Sep 2014 B2
8852347 Lee et al. Oct 2014 B2
8884523 Winterhalter et al. Nov 2014 B2
8884525 Hoffman et al. Nov 2014 B2
8889534 Ventzek et al. Nov 2014 B1
8895942 Liu et al. Nov 2014 B2
8907259 Kasai et al. Dec 2014 B2
8916056 Koo et al. Dec 2014 B2
8926850 Singh et al. Jan 2015 B2
8963377 Ziemba et al. Feb 2015 B2
8979842 McNall, III et al. Mar 2015 B2
8993943 Pohl et al. Mar 2015 B2
9011636 Ashida Apr 2015 B2
9039871 Nauman et al. May 2015 B2
9042121 Walde et al. May 2015 B2
9053908 Sriraman et al. Jun 2015 B2
9059178 Matsumoto et al. Jun 2015 B2
9087798 Ohtake et al. Jul 2015 B2
9101038 Singh et al. Aug 2015 B2
9105447 Brouk et al. Aug 2015 B2
9105452 Jeon et al. Aug 2015 B2
9123762 Lin et al. Sep 2015 B2
9129776 Finley et al. Sep 2015 B2
9139910 Lee et al. Sep 2015 B2
9147555 Richter Sep 2015 B2
9150960 Nauman et al. Oct 2015 B2
9159575 Ranjan et al. Oct 2015 B2
9208992 Brouk et al. Dec 2015 B2
9209032 Zhao et al. Dec 2015 B2
9209034 Kitamura et al. Dec 2015 B2
9210790 Hoffman et al. Dec 2015 B2
9224579 Finley et al. Dec 2015 B2
9226380 Finley Dec 2015 B2
9228878 Haw et al. Jan 2016 B2
9254168 Palanker Feb 2016 B2
9263241 Larson et al. Feb 2016 B2
9287086 Brouk et al. Mar 2016 B2
9287092 Brouk et al. Mar 2016 B2
9287098 Finley Mar 2016 B2
9306533 Mavretic Apr 2016 B1
9309594 Hoffman et al. Apr 2016 B2
9313872 Yamazawa Apr 2016 B2
9355822 Yamada et al. May 2016 B2
9362089 Brouk et al. Jun 2016 B2
9373521 Mochiki et al. Jun 2016 B2
9384992 Narishige et al. Jul 2016 B2
9396960 Ogawa et al. Jul 2016 B2
9404176 Parkhe et al. Aug 2016 B2
9412613 Manna et al. Aug 2016 B2
9435029 Brouk et al. Sep 2016 B2
9483066 Finley Nov 2016 B2
9490107 Kim et al. Nov 2016 B2
9495563 Ziemba et al. Nov 2016 B2
9496150 Mochiki et al. Nov 2016 B2
9503006 Pohl et al. Nov 2016 B2
9520269 Finley et al. Dec 2016 B2
9530667 Rastogi et al. Dec 2016 B2
9536713 Van Zyl et al. Jan 2017 B2
9544987 Mueller et al. Jan 2017 B2
9558917 Finley et al. Jan 2017 B2
9564287 Ohse et al. Feb 2017 B2
9570313 Ranjan et al. Feb 2017 B2
9576810 Deshmukh et al. Feb 2017 B2
9576816 Rastogi et al. Feb 2017 B2
9577516 Van Zyl Feb 2017 B1
9583357 Long et al. Feb 2017 B1
9601283 Ziemba et al. Mar 2017 B2
9601319 Bravo et al. Mar 2017 B1
9607843 Rastogi et al. Mar 2017 B2
9620340 Finley Apr 2017 B2
9620376 Kamp et al. Apr 2017 B2
9620987 Alexander et al. Apr 2017 B2
9637814 Bugyi et al. May 2017 B2
9644221 Kanamori et al. May 2017 B2
9651957 Finley May 2017 B1
9655221 Ziemba et al. May 2017 B2
9663858 Nagami et al. May 2017 B2
9666446 Tominaga et al. May 2017 B2
9666447 Rastogi et al. May 2017 B2
9673027 Yamamoto et al. Jun 2017 B2
9673059 Raley et al. Jun 2017 B2
9685297 Carter et al. Jun 2017 B2
9706630 Miller et al. Jul 2017 B2
9711331 Mueller et al. Jul 2017 B2
9711335 Christie Jul 2017 B2
9728429 Ricci et al. Aug 2017 B2
9734992 Yamada et al. Aug 2017 B2
9741544 Van Zyl Aug 2017 B2
9754768 Yamada et al. Sep 2017 B2
9761419 Nagami Sep 2017 B2
9761459 Long et al. Sep 2017 B2
9767988 Brouk et al. Sep 2017 B2
9786503 Raley et al. Oct 2017 B2
9799494 Chen et al. Oct 2017 B2
9805916 Konno et al. Oct 2017 B2
9805965 Sadjadi et al. Oct 2017 B2
9812305 Pelleymounter Nov 2017 B2
9831064 Konno et al. Nov 2017 B2
9837285 Tomura et al. Dec 2017 B2
9840770 Klimczak et al. Dec 2017 B2
9852889 Kellogg et al. Dec 2017 B1
9852890 Mueller et al. Dec 2017 B2
9865471 Shimoda et al. Jan 2018 B2
9865893 Esswein et al. Jan 2018 B2
9870898 Urakawa et al. Jan 2018 B2
9872373 Shimizu Jan 2018 B1
9881820 Wong et al. Jan 2018 B2
9922802 Hirano et al. Mar 2018 B2
9922806 Tomura et al. Mar 2018 B2
9929004 Ziemba et al. Mar 2018 B2
9941097 Yamazawa et al. Apr 2018 B2
9941098 Nagami Apr 2018 B2
9960763 Miller et al. May 2018 B2
9972503 Tomura et al. May 2018 B2
9997374 Takeda et al. Jun 2018 B2
10020800 Prager et al. Jul 2018 B2
10026593 Alt et al. Jul 2018 B2
10027314 Prager et al. Jul 2018 B2
10041174 Matsumoto et al. Aug 2018 B2
10042407 Grede et al. Aug 2018 B2
10063062 Voronin et al. Aug 2018 B2
10074518 Van Zyl Sep 2018 B2
10085796 Podany Oct 2018 B2
10090191 Tomura et al. Oct 2018 B2
10102321 Povolny et al. Oct 2018 B2
10109461 Yamada et al. Oct 2018 B2
10115567 Hirano et al. Oct 2018 B2
10115568 Kellogg et al. Oct 2018 B2
10176970 Nitschke Jan 2019 B2
10176971 Nagami Jan 2019 B2
10181392 Leypold et al. Jan 2019 B2
10199246 Koizumi et al. Feb 2019 B2
10217618 Larson et al. Feb 2019 B2
10217933 Nishimura et al. Feb 2019 B2
10224822 Miller et al. Mar 2019 B2
10229819 Hirano et al. Mar 2019 B2
10249498 Ventzek et al. Apr 2019 B2
10268846 Miller et al. Apr 2019 B2
10269540 Carter et al. Apr 2019 B1
10276420 Ito et al. Apr 2019 B2
10282567 Miller et al. May 2019 B2
10290506 Ranjan et al. May 2019 B2
10297431 Zelechowski et al. May 2019 B2
10304661 Ziemba et al. May 2019 B2
10304668 Coppa et al. May 2019 B2
10312048 Dorf et al. Jun 2019 B2
10320373 Prager et al. Jun 2019 B2
10332730 Christie Jun 2019 B2
10340123 Ohtake Jul 2019 B2
10348186 Schuler et al. Jul 2019 B2
10354839 Alt et al. Jul 2019 B2
10373755 Prager et al. Aug 2019 B2
10373804 Koh et al. Aug 2019 B2
10373811 Christie et al. Aug 2019 B2
10381237 Takeda et al. Aug 2019 B2
10382022 Prager et al. Aug 2019 B2
10387166 Preston et al. Aug 2019 B2
10388544 Ui et al. Aug 2019 B2
10389345 Ziemba et al. Aug 2019 B2
10410877 Takashima et al. Sep 2019 B2
10431437 Gapi{right arrow over (n)}ski et al. Oct 2019 B2
10438797 Cottle et al. Oct 2019 B2
10446453 Coppa et al. Oct 2019 B2
10447174 Porter, Jr. et al. Oct 2019 B1
10448494 Dorf et al. Oct 2019 B1
10448495 Dorf et al. Oct 2019 B1
10453656 Carducci et al. Oct 2019 B2
10460910 Ziemba et al. Oct 2019 B2
10460911 Ziemba et al. Oct 2019 B2
10460916 Boyd, Jr. et al. Oct 2019 B2
10483089 Ziemba et al. Nov 2019 B2
10483100 Ishizaka et al. Nov 2019 B2
10510575 Kraus et al. Dec 2019 B2
10522343 Tapily et al. Dec 2019 B2
10535502 Carducci et al. Jan 2020 B2
10546728 Carducci et al. Jan 2020 B2
10553407 Nagami et al. Feb 2020 B2
10555412 Dorf et al. Feb 2020 B2
10580620 Carducci et al. Mar 2020 B2
10593519 Yamada et al. Mar 2020 B2
10607813 Fairbairn et al. Mar 2020 B2
10607814 Ziemba et al. Mar 2020 B2
10658189 Hatazaki et al. May 2020 B2
10659019 Slobodov et al. May 2020 B2
10665434 Matsumoto et al. May 2020 B2
10666198 Prager et al. May 2020 B2
10672589 Koshimizu et al. Jun 2020 B2
10672596 Brcka Jun 2020 B2
10672616 Kubota Jun 2020 B2
10685807 Dorf et al. Jun 2020 B2
10707053 Urakawa et al. Jul 2020 B2
10707054 Kubota Jul 2020 B1
10707055 Shaw et al. Jul 2020 B2
10707086 Yang et al. Jul 2020 B2
10707090 Takayama et al. Jul 2020 B2
10707864 Miller et al. Jul 2020 B2
10714372 Chua et al. Jul 2020 B2
10720305 Van Zyl Jul 2020 B2
10734906 Miller et al. Aug 2020 B2
10748746 Kaneko et al. Aug 2020 B2
10755894 Hirano et al. Aug 2020 B2
10763150 Lindley et al. Sep 2020 B2
10773282 Coppa et al. Sep 2020 B2
10774423 Janakiraman et al. Sep 2020 B2
10777388 Ziemba et al. Sep 2020 B2
10790816 Ziemba et al. Sep 2020 B2
10791617 Dorf et al. Sep 2020 B2
10796887 Prager et al. Oct 2020 B2
10804886 Miller et al. Oct 2020 B2
10811227 Van Zyl et al. Oct 2020 B2
10811228 Van Zyl et al. Oct 2020 B2
10811229 Van Zyl et al. Oct 2020 B2
10811230 Ziemba et al. Oct 2020 B2
10811296 Cho et al. Oct 2020 B2
10847346 Ziemba et al. Nov 2020 B2
10892140 Ziemba et al. Jan 2021 B2
10892141 Ziemba et al. Jan 2021 B2
10896807 Fairbairn et al. Jan 2021 B2
10896809 Ziemba et al. Jan 2021 B2
10903047 Ziemba et al. Jan 2021 B2
10904996 Koh et al. Jan 2021 B2
10916408 Dorf et al. Feb 2021 B2
10923321 Dorf et al. Feb 2021 B2
10923367 Lubomirsky et al. Feb 2021 B2
10923379 Liu et al. Feb 2021 B2
10971342 Engelstaedter et al. Apr 2021 B2
10978274 Kubota Apr 2021 B2
10978955 Ziemba et al. Apr 2021 B2
10985740 Prager et al. Apr 2021 B2
10991553 Ziemba et al. Apr 2021 B2
10991554 Zhao et al. Apr 2021 B2
10998169 Ventzek et al. May 2021 B2
11004660 Prager et al. May 2021 B2
11075058 Ziemba et al. Jul 2021 B2
11095280 Ziemba et al. Aug 2021 B2
11101108 Slobodov et al. Aug 2021 B2
20010003298 Shamouilian et al. Jun 2001 A1
20010009139 Shan et al. Jul 2001 A1
20010033755 Ino et al. Oct 2001 A1
20020069971 Kaji et al. Jun 2002 A1
20020078891 Chu et al. Jun 2002 A1
20030026060 Hiramatsu et al. Feb 2003 A1
20030029859 Knoot et al. Feb 2003 A1
20030049558 Aoki et al. Mar 2003 A1
20030052085 Parsons Mar 2003 A1
20030079983 Long et al. May 2003 A1
20030091355 Jeschonek et al. May 2003 A1
20030137791 Arnet et al. Jul 2003 A1
20030151372 Tsuchiya et al. Aug 2003 A1
20030165044 Yamamoto Sep 2003 A1
20030201069 Johnson Oct 2003 A1
20040040665 Mizuno et al. Mar 2004 A1
20040040931 Koshiishi et al. Mar 2004 A1
20040066601 Larsen Apr 2004 A1
20040223284 Iwami et al. Nov 2004 A1
20050022933 Howard Feb 2005 A1
20050024809 Kuchimachi Feb 2005 A1
20050039852 Roche et al. Feb 2005 A1
20050092596 Kouznetsov May 2005 A1
20050098118 Amann et al. May 2005 A1
20050151544 Mahoney et al. Jul 2005 A1
20050152159 Isurin et al. Jul 2005 A1
20050286916 Nakazato et al. Dec 2005 A1
20060075969 Fischer Apr 2006 A1
20060130767 Herchen Jun 2006 A1
20060139843 Kim Jun 2006 A1
20060158823 Mizuno et al. Jul 2006 A1
20060171848 Roche et al. Aug 2006 A1
20060219178 Asakura Oct 2006 A1
20060278521 Stowell Dec 2006 A1
20070113787 Higashiura et al. May 2007 A1
20070114981 Vasquez et al. May 2007 A1
20070196977 Wang et al. Aug 2007 A1
20070284344 Todorov Dec 2007 A1
20070285869 Howald Dec 2007 A1
20070297118 Fujii Dec 2007 A1
20080012548 Gerhardt et al. Jan 2008 A1
20080037196 Yonekura et al. Feb 2008 A1
20080048498 Wiedemuth et al. Feb 2008 A1
20080106842 Ito et al. May 2008 A1
20080135401 Kadlec et al. Jun 2008 A1
20080160212 Koo Jul 2008 A1
20080210545 Kouznetsov Sep 2008 A1
20080236493 Sakao Oct 2008 A1
20080252225 Kurachi et al. Oct 2008 A1
20080272706 Kwon et al. Nov 2008 A1
20080289576 Lee et al. Nov 2008 A1
20090016549 French et al. Jan 2009 A1
20090059462 Mizuno et al. Mar 2009 A1
20090078678 Kojima Mar 2009 A1
20090133839 Yamazawa May 2009 A1
20090236214 Janakiraman et al. Sep 2009 A1
20090295295 Shannon et al. Dec 2009 A1
20100018648 Collins et al. Jan 2010 A1
20100025230 Ehiasarian et al. Feb 2010 A1
20100029038 Murakawa Feb 2010 A1
20100072172 Ui et al. Mar 2010 A1
20100101935 Chistyakov et al. Apr 2010 A1
20100118464 Matsuyama May 2010 A1
20100193491 Cho et al. Aug 2010 A1
20100271744 Ni et al. Oct 2010 A1
20100276273 Heckman et al. Nov 2010 A1
20100321047 Zollner et al. Dec 2010 A1
20100326957 Maeda et al. Dec 2010 A1
20110096461 Yoshikawa et al. Apr 2011 A1
20110100807 Matsubara et al. May 2011 A1
20110143537 Lee et al. Jun 2011 A1
20110157760 Willwerth et al. Jun 2011 A1
20110177669 Lee et al. Jul 2011 A1
20110177694 Chen et al. Jul 2011 A1
20110259851 Brouk et al. Oct 2011 A1
20110281438 Lee et al. Nov 2011 A1
20110298376 Kanegae Dec 2011 A1
20120000421 Miller et al. Jan 2012 A1
20120052599 Brouk et al. Mar 2012 A1
20120081350 Sano et al. Apr 2012 A1
20120088371 Ranjan et al. Apr 2012 A1
20120097908 Willwerth et al. Apr 2012 A1
20120171390 Nauman Jul 2012 A1
20120319584 Brouk et al. Dec 2012 A1
20130059448 Marakhtanov Mar 2013 A1
20130087447 Bodke et al. Apr 2013 A1
20130175575 Ziemba et al. Jul 2013 A1
20130213935 Liao et al. Aug 2013 A1
20130214828 Valcore, Jr. et al. Aug 2013 A1
20130340938 Tappan et al. Dec 2013 A1
20130344702 Nishizuka Dec 2013 A1
20140057447 Yang Feb 2014 A1
20140062495 Carter et al. Mar 2014 A1
20140077611 Young et al. Mar 2014 A1
20140109886 Singleton et al. Apr 2014 A1
20140125315 Kirchmeier et al. May 2014 A1
20140154819 Gaff et al. Jun 2014 A1
20140177123 Thach et al. Jun 2014 A1
20140238844 Chistyakov Aug 2014 A1
20140262755 Deshmukh et al. Sep 2014 A1
20140263182 Chen et al. Sep 2014 A1
20140273487 Deshmukh Sep 2014 A1
20140302256 Chen Oct 2014 A1
20140305905 Yamada et al. Oct 2014 A1
20140356984 Ventzek et al. Dec 2014 A1
20140361690 Yamada et al. Dec 2014 A1
20150002018 Lill et al. Jan 2015 A1
20150043123 Cox Feb 2015 A1
20150076112 Sriraman et al. Mar 2015 A1
20150084509 Yuzurihara et al. Mar 2015 A1
20150111394 Hsu Apr 2015 A1
20150116889 Yamasaki et al. Apr 2015 A1
20150130354 Leray et al. May 2015 A1
20150130525 Miller et al. May 2015 A1
20150170952 Subramani et al. Jun 2015 A1
20150181683 Singh et al. Jun 2015 A1
20150235809 Ito Aug 2015 A1
20150256086 Miller et al. Sep 2015 A1
20150303914 Ziemba et al. Oct 2015 A1
20150315698 Chistyakov Nov 2015 A1
20150318846 Prager et al. Nov 2015 A1
20150325413 Kim et al. Nov 2015 A1
20150366004 Nangoy et al. Dec 2015 A1
20160004475 Beniyama et al. Jan 2016 A1
20160020072 Brouk et al. Jan 2016 A1
20160027678 Parkhe et al. Jan 2016 A1
20160056017 Kim et al. Feb 2016 A1
20160064189 Tandou et al. Mar 2016 A1
20160196958 Leray et al. Jul 2016 A1
20160241234 Mavretic Aug 2016 A1
20160284514 Hirano Sep 2016 A1
20160314946 Pelleymounter Oct 2016 A1
20160322242 Nguyen et al. Nov 2016 A1
20160327029 Ziemba et al. Nov 2016 A1
20160351375 Valcore, Jr. et al. Dec 2016 A1
20160358755 Long et al. Dec 2016 A1
20170011887 Deshmukh et al. Jan 2017 A1
20170018411 Sriraman et al. Jan 2017 A1
20170022604 Christie et al. Jan 2017 A1
20170029937 Chistyakov et al. Feb 2017 A1
20170069462 Kanarik et al. Mar 2017 A1
20170076962 Engelhardt Mar 2017 A1
20170098527 Kawasaki et al. Apr 2017 A1
20170098549 Agarwal Apr 2017 A1
20170110335 Yang et al. Apr 2017 A1
20170110358 Sadjadi et al. Apr 2017 A1
20170113355 Genetti et al. Apr 2017 A1
20170115657 Trussell et al. Apr 2017 A1
20170117172 Genetti et al. Apr 2017 A1
20170154726 Prager et al. Jun 2017 A1
20170162417 Ye et al. Jun 2017 A1
20170163254 Ziemba et al. Jun 2017 A1
20170169996 Ui et al. Jun 2017 A1
20170170449 Alexander et al. Jun 2017 A1
20170178917 Kamp et al. Jun 2017 A1
20170221682 Nishimura et al. Aug 2017 A1
20170236688 Caron et al. Aug 2017 A1
20170236741 Angelov et al. Aug 2017 A1
20170236743 Severson et al. Aug 2017 A1
20170243731 Ziemba et al. Aug 2017 A1
20170250056 Boswell et al. Aug 2017 A1
20170263478 McChesney et al. Sep 2017 A1
20170278665 Carter et al. Sep 2017 A1
20170287791 Coppa et al. Oct 2017 A1
20170311431 Park Oct 2017 A1
20170316935 Tan et al. Nov 2017 A1
20170330734 Lee et al. Nov 2017 A1
20170330786 Genetti et al. Nov 2017 A1
20170334074 Genetti et al. Nov 2017 A1
20170358431 Dorf et al. Dec 2017 A1
20170366173 Miller et al. Dec 2017 A1
20170372912 Long et al. Dec 2017 A1
20180019100 Brouk et al. Jan 2018 A1
20180076032 Wang et al. Mar 2018 A1
20180102769 Prager et al. Apr 2018 A1
20180139834 Nagashima et al. May 2018 A1
20180166249 Dorf et al. Jun 2018 A1
20180189524 Miller et al. Jul 2018 A1
20180190501 Ueda Jul 2018 A1
20180204708 Tan et al. Jul 2018 A1
20180205369 Prager et al. Jul 2018 A1
20180218905 Park et al. Aug 2018 A1
20180226225 Koh et al. Aug 2018 A1
20180226896 Miller et al. Aug 2018 A1
20180253570 Miller et al. Sep 2018 A1
20180286636 Ziemba et al. Oct 2018 A1
20180294566 Wang et al. Oct 2018 A1
20180309423 Okunishi et al. Oct 2018 A1
20180331655 Prager et al. Nov 2018 A1
20180350649 Gomm Dec 2018 A1
20180366305 Nagami et al. Dec 2018 A1
20180374672 Hayashi et al. Dec 2018 A1
20190027344 Okunishi et al. Jan 2019 A1
20190080884 Ziemba et al. Mar 2019 A1
20190096633 Pankratz et al. Mar 2019 A1
20190157041 Zyl et al. May 2019 A1
20190157042 Van Zyl et al. May 2019 A1
20190157044 Ziemba et al. May 2019 A1
20190172685 Van Zyl et al. Jun 2019 A1
20190172688 Ueda Jun 2019 A1
20190180982 Brouk et al. Jun 2019 A1
20190198333 Tokashiki Jun 2019 A1
20190267218 Wang et al. Aug 2019 A1
20190277804 Prager et al. Sep 2019 A1
20190295769 Prager et al. Sep 2019 A1
20190295819 Okunishi et al. Sep 2019 A1
20190318918 Saitoh et al. Oct 2019 A1
20190333741 Nagami et al. Oct 2019 A1
20190341232 Thokachichu et al. Nov 2019 A1
20190348258 Koh et al. Nov 2019 A1
20190348263 Okunishi Nov 2019 A1
20190363388 Esswein et al. Nov 2019 A1
20190385822 Marakhtanov et al. Dec 2019 A1
20190393791 Ziemba et al. Dec 2019 A1
20200016109 Feng et al. Jan 2020 A1
20200020510 Shoeb et al. Jan 2020 A1
20200024330 Chan-Hui et al. Jan 2020 A1
20200035457 Ziemba et al. Jan 2020 A1
20200035458 Ziemba et al. Jan 2020 A1
20200035459 Ziemba et al. Jan 2020 A1
20200036367 Slobodov et al. Jan 2020 A1
20200037468 Ziemba et al. Jan 2020 A1
20200051785 Miller et al. Feb 2020 A1
20200051786 Ziemba et al. Feb 2020 A1
20200058475 Engelstaedter et al. Feb 2020 A1
20200066497 Engelstaedter et al. Feb 2020 A1
20200066498 Engelstaedter et al. Feb 2020 A1
20200075293 Ventzek et al. Mar 2020 A1
20200090905 Brouk et al. Mar 2020 A1
20200106137 Murphy et al. Apr 2020 A1
20200126760 Ziemba et al. Apr 2020 A1
20200126837 Kuno et al. Apr 2020 A1
20200144030 Prager et al. May 2020 A1
20200161091 Ziemba et al. May 2020 A1
20200161098 Cui et al. May 2020 A1
20200161155 Rogers et al. May 2020 A1
20200162061 Prager et al. May 2020 A1
20200168436 Ziemba et al. May 2020 A1
20200168437 Ziemba et al. May 2020 A1
20200176221 Prager et al. Jun 2020 A1
20200227230 Ziemba et al. Jul 2020 A1
20200234922 Dorf Jul 2020 A1
20200234923 Dorf Jul 2020 A1
20200243303 Mishra et al. Jul 2020 A1
20200251371 Kuno et al. Aug 2020 A1
20200266022 Dorf et al. Aug 2020 A1
20200266035 Nagaiwa Aug 2020 A1
20200294770 Kubota Sep 2020 A1
20200328739 Miller et al. Oct 2020 A1
20200352017 Dorf et al. Nov 2020 A1
20200357607 Ziemba et al. Nov 2020 A1
20200373114 Prager et al. Nov 2020 A1
20200389126 Prager et al. Dec 2020 A1
20200407840 Hayashi et al. Dec 2020 A1
20200411286 Koshimizu et al. Dec 2020 A1
20210005428 Shaw et al. Jan 2021 A1
20210013006 Nguyen et al. Jan 2021 A1
20210013011 Prager et al. Jan 2021 A1
20210013874 Miller et al. Jan 2021 A1
20210027990 Ziemba et al. Jan 2021 A1
20210029815 Bowman et al. Jan 2021 A1
20210043472 Koshimizu et al. Feb 2021 A1
20210051792 Dokan et al. Feb 2021 A1
20210066042 Ziemba et al. Mar 2021 A1
20210082669 Koshiishi et al. Mar 2021 A1
20210091759 Prager et al. Mar 2021 A1
20210125812 Ziemba et al. Apr 2021 A1
20210130955 Nagaike et al. May 2021 A1
20210140044 Nagaike et al. May 2021 A1
20210151295 Ziemba et al. May 2021 A1
20210152163 Miller et al. May 2021 A1
20210210313 Ziemba et al. Jul 2021 A1
20210210315 Ziemba et al. Jul 2021 A1
20210249227 Bowman et al. Aug 2021 A1
Foreign Referenced Citations (38)
Number Date Country
101707186 Feb 2012 CN
104752134 Jul 2015 CN
106206234 Dec 2016 CN
104752134 Feb 2017 CN
H08236602 Sep 1996 JP
2748213 May 1998 JP
H11025894 Jan 1999 JP
2002-313899 Oct 2002 JP
2002299322 Oct 2002 JP
4418424 Feb 2010 JP
2011035266 Feb 2011 JP
5018244 Sep 2012 JP
6741461 Aug 2020 JP
20160042429 Apr 2016 KR
2000017920 Mar 2000 WO
2002059954 Aug 2002 WO
2008050619 May 2008 WO
2012076630 Jun 2012 WO
2014124857 May 2015 WO
2015134398 Sep 2015 WO
2015198854 Dec 2015 WO
2016002547 Jan 2016 WO
2015073921 May 2016 WO
2016131061 Aug 2016 WO
2017172536 Oct 2017 WO
2018048925 Mar 2018 WO
2018170010 Sep 2018 WO
2019036587 Feb 2019 WO
2019040949 Feb 2019 WO
2019099870 May 2019 WO
2019185423 Oct 2019 WO
2019225184 Nov 2019 WO
2019239872 Dec 2019 WO
2019245729 Dec 2019 WO
2020004048 Jan 2020 WO
2020017328 Jan 2020 WO
2020051064 Mar 2020 WO
2020121819 Jun 2020 WO
Non-Patent Literature Citations (25)
Entry
International Search Report and Written Opinion for PCT/US2019/052067 dated Jan. 21, 2020.
Wang, S.B., et al.—“Control of ion energy distribution at substrates during plasma processing,” Journal of Applied Physics, vol. 88, No. 2, Jul. 15, 2000, pp. 643-646.
Eagle Harbor Technologies presentation by Dr. Kenneth E. Miller—“The EHT Integrated Power Module (IPM): An IGBT-Based, High Current, Ultra-Fast, Modular, Programmable Power Supply Unit,” Jun. 2013, 21 pages.
Eagle Harbor Technologies webpage—“EHT Integrator Demonstration at DIII-D,” 2015, 1 page.
Eagle Harbor Technologies webpage—“High Gain and Frequency Ultra-Stable Integrators for ICC and Long Pulse ITER Applications,” 2012, 1 page.
Eagle Harbor Technologies webpage—High Gain and Frequency Ultra-Stable Integrators for Long Pulse and/or High Current Applications, 2018, 1 page.
Eagle Harbor Technologies webpage—“In Situ Testing of EHT Integrators on a Tokamak,” 2015, 1 page.
Eagle Harbor Technologies webpage—“Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics,” 2016, 1 page.
Kamada, Keiichi, et al., Editors—“New Developments of Plasma Science with Pulsed Power Technology,” Research Report, NIFS-PROC-82, presented at National Institute for Fusion Science, Toki, Gifu, Japan, Mar. 5-6, 2009, 109 pages.
Prager, J.R., et al.—“A High Voltage Nanosecond Pulser with Variable Pulse Width and Pulse Repetition Frequency Control for Nonequilibrium Plasma Applications,” IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS), pp. 1-6, 2014.
Semiconductor Components Industries, LLC (SCILLC)—“Switch-Mode Power Supply” Reference Manual, SMPSRM/D, Rev. 4, Apr. 2014, ON Semiconductor, 73 pages.
Sunstone Circuits—“Eagle Harbor Tech Case Study,” date unknown, 4 pages.
Electrical 4 U webpage—“Clamping Circuit,” Aug. 29, 2018, 1 page.
Kyung Chae Yang et al., A study on the etching characteristics of magnetic tunneling junction materials using DC pulse-biased inductively coupled plasmas, Japanese Journal of Applied Physics, vol. 54, 01AE01, Oct. 29, 2014, 6 pages.
Eagle Harbor Technologies presentation by Dr. Kenneth E. Miller—“The EHT Long Pulse Integrator Program,” ITPA Diagnostic Meeting, General Atomics, Jun. 4-7, 2013, 18 pages.
Richard Barnett et al. A New Plasma Source for Next Generation MEMS Deep Si Etching: Minimal Tilt, Improved Profile Uniformity and Higher Etch Rates, SPP Process Technology Systems. 2010.
Lin, Jianliang, et al.,—“Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses,” Surface & Coatings Technology 258, 2014, published by Elsevier B.V., pp. 1212-1222.
Yiting Zhang et al. “Investigation of feature orientation and consequences of ion tilting during plasma etching with a three-dimensional feature profile simulator”, Nov. 22, 2016.
S.B. Wang et al. “Ion Bombardment Energy and SiO 2/Si Fluorocarbon Plasma Etch Selectivity”, Journal of Vacuum Science & Technology A 19, 2425 (2001).
Zhen-hua Bi et al., A brief review of dual-frequency capacitively coupled discharges, Current Applied Physics, vol. 11, Issue 5, Supplement, 2011, pp. S2-S8.
Chang, Bingdong, “Oblique angled plasma etching for 3D silicon structures with wiggling geometries” 31(8), [085301]. https://doi.org/10.1088/1361-6528/ab53fb. DTU Library. 2019.
Michael A. Lieberman, “A short course of the principles of plasma discharges and materials processing”, Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720.
Dr. Steve Sirard, “Introduction to Plasma Etching”, Lam Research Corporation. 64 pages.
Zhuoxing Luo, B.S., M.S, “RF Plasma Etching With A DC Bias” A Dissertation in Physics. Dec. 1994.
Michael A. Lieberman, “Principles of Plasma Discharges and Material Processing”, A Wiley Interscience Publication. 1994.
Related Publications (1)
Number Date Country
20200243303 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62796542 Jan 2019 US