Embodiments of the present disclosure generally relate to apparatuses, systems and methods for processing one or more substrates, and more specifically to apparatuses, systems and methods for process chamber preparation.
Substrate process chambers may be subject to high temperatures above 200° C. and high pressures above 1 bar, which creates a harsh, corrosive environment which can lead to the degrading of the internal components of the process chambers. The internal components are exposed to these high temperature and high pressure environments, especially in combination with process gases introduced to the process chamber during substrate processing. Various coatings and films may be employed to reduce this corrosion, however, those coatings and films may not be robust enough to withstand the processing conditions and may corrode or otherwise degrade during the use of the process chamber. This corrosion can negatively impact the substrate(s) processed, for example, by the corroded surface flaking or peeling or otherwise disassociating and falling on to the substrate and contaminating the substrate.
Thus, there is a need in the art for improved protection of the internal components of process chambers.
Various methods of forming protective films on surfaces including interior surfaces of a process chamber are discussed herein. In one example, the method includes forming, via ALD or CVD, in a process chamber, a protective film on a plurality of interior components comprising a chamber sidewall, a chamber bottom, a substrate support pedestal, a showerhead, and a chamber top; and positioning, subsequent to forming the protective film, a substrate on the substrate support pedestal. The substrate is in contact with a portion of the substrate support pedestal that does not comprise the protective film.
In another example, a method of protecting a process chamber, includes: introducing at least one gas to a process chamber; removing, in response to the positioning of the at least one gas in the process chamber, a first protective film from a plurality of interior components of the process chamber. The method further includes forming, via ALD or CVD, in the process chamber, a second protective film on the plurality of interior components, wherein the second protective film comprises amorphous Si, carbosilane, polysilicon, SiC, SiN, SiO2, Al2O3, AlON, HfO2, or Ni3Al. Furthermore in this example, the method includes positioning, subsequent to forming the second protective film, a substrate on a substrate support pedestal.
In another example, a method of processing a substrate includes introducing at least one gas to a process chamber; removing, in response to the positioning of the at least one gas in the process chamber, a first protective film from a plurality of interior components of the process chamber. The method further includes forming, via ALD or CVD, in the process chamber, a second protective film on the plurality of interior components, wherein the second protective film comprises amorphous Si, carbosilane, polysilicon, SiC, SiN, SiO2, Al2O3, AlON, HfO2, or Ni3Al. The method further includes positioning, subsequent to forming the second protective film, a substrate on a substrate support pedestal.
Systems and methods discussed herein relate to the preparation of substrate process chambers such that the process chambers are able to withstand sustained processing temperatures above 400° C. without corrosion or other degradation of the internal components of the process chamber. The internal components of a process chamber can be formed from aluminum, stainless steel, nickel-based superalloys, or other materials that can be degraded by high temperatures, high pressure, and/or by etchant gases in the process chamber. The degradation of internal components can lead to metallic particulate matter from one or more internal components contaminating one or more substrates positioned in the process chamber. This contamination negatively impacts both the instant processing in the process chamber as well as downstream operations. Furthermore, the degradation of internal process chamber components reduces the life of the internal components, which increases maintenance and downtime costs.
The protective films discussed herein protect the internal components of process chambers from corrosion and erosion, reducing the incidents of contamination of the process chamber and the substrates fabricated therein. The protective films are used to protect process chambers, including high pressure process chambers that operate under a pressure of 1 bar or more, from corrosion. The protective films are formed in-situ inside of an inner chamber body of a process chamber using chemical vapor deposition (CVD) or atomic layer deposition (ALD). The protective films are formed on some or all exposed surfaces of the inner chamber body, including the inner chamber body walls, showerhead, and on at least a portion of a substrate support pedestal. In one example, the showerhead of the process chamber is employed to distribute one or more precursors from which the protective film is formed. In some embodiments, a protective cover is placed on some or all of a top surface of the substrate support pedestal in the process chamber. The protective cover can be positioned on the substrate support pedestal such that an area on the pedestal that is equal to or greater than a diameter of a substrate is not coated by the protective film during deposition. The protective cover can be used to protect the backside of the substrate from contamination from the protective film, which can negatively impact downstream operations. In one example, when a substrate is positioned in the process chamber on the substrate support pedestal after the protective film has been deposited, the substrate is not in contact with the protective film. In alternate embodiments, no protective cover is used. In this example, the entire surface of the substrate support pedestal, including where one or more substrates are positioned for processing, is covered with the protective film.
The protective film may be formed in-situ and removed in-situ after one or more substrates or batches of substrates are processed in the process chamber. In contrast, ex-situ coating of process chambers can have challenges such as downtime from re-coating. The substrate processing in the process chamber that includes the protective film, or in other chambers, subsequent to the formation of the protective film, may include the deposition of one or more layers. The formation of a plurality of features of varying aspect ratios, and/or may in some embodiments include processing substrates with hardmasking, including patterning the hardmask. In an embodiment, the removal of the protective film may be performed using one or more gases, including fluorine (F) gas or nitrogen trifluoride (NF3) gas. The F or NF3 gas can be ionized into a plasma in a remote plasma source (RPS) or in-situ in the process chamber. In one example, an RPS is used to form a NF3 plasma. Subsequent to protective film removal, a new protective film of the same or of a different composition than the previously applied protective film may be applied to the inner chamber body. The protective film is formed from materials including amorphous silicon (a-Si), carbosilane, polysilicon, silicon carbide (SiC), silicon nitride (SiN), silicon dioxide (SiO2), aluminum oxide (Al2O3), aluminum oxynitride (AlON), hafnium oxide (HfO2), nickel aluminide (Ni3Al), or combinations thereof. The use of the protective films discussed herein thus increases the life of the internal components of the process chamber and reduces scrap caused by corrosion of those components.
In an embodiment during operation of the process chamber 100, the process chamber 100 can be pressurized and have the temperature controlled in various manners. In one example, the pressure within a processing space 134 is controlled using a throttle valve 136 situated between inner chamber body 104 and a vacuum pump 138. The temperature at the surface of the chamber walls 122 is controlled using one or more heating elements 128A. The one or more heating elements 128A can be solid or liquid-containing elements that are located in the chamber walls 122 and/or the chamber lid 108 of the inner chamber body 104. In some examples, one or more heating elements 128A are disposed in a substrate support pedestal 106. In one example, the chamber lid 108 can be heated from 100° C. to 300° C. The plurality of heating elements 128A may be disposed in the chamber walls 122 of the inner chamber body 104 and electrically coupled to a power source 128. In the example in
In another example of the process chamber 100, plasma can be generated using a RF source power 140 and an RF bias power 142. Each of the RF source power 140 and the RF bias power 142 is coupled to the process chamber 100 and configured to apply power, and in some examples pulses of power, to the chamber walls 122 and/or the substrate support pedestal 106. A negative bias can also be applied to the substrate support pedestal 106 in some examples. In one example, the gaseous mixture formed inside the processing space 134 from gas sources (not shown) coupled to the gas panel 118 is ignited into plasma by applying RF power from the RF source power 140 to a plurality of antenna segments (not pictured).
Further in the process chamber 100, a showerhead 110 is removably coupled to the process chamber 100 near the chamber top 108A. The showerhead 110 is used to distribute a plurality of gases, for example, gases supplied through the gas panel 118, in the inner chamber body 104. The showerhead 110 can be used to distribute gas and gas mixtures during substrate processing operations, and during the deposition and removal of the protective film discussed herein, or in other cleaning operations performed inside of the process chamber 100. The showerhead 110 may include a plurality of islands 126 and a plurality of spaces 144 formed between each adjacent pair of islands 126. The islands 126 are connected (not shown here) such that gas flows through the showerhead 110 and into the processing space 134, in particular, the gas flows through the showerhead 110 in between the spaces 144 and into the processing space 134. Thus, when a protective film 120 is formed as discussed herein, since the showerhead 110 is used to form the protective film 120, the protective film is formed on surfaces of the showerhead 110 that are exposed to the gaseous components used to form the protective film 120. The protective film 120 is also formed on the exposed surfaces of the inner chamber body 104, including the chamber walls 122. In some examples, which can be combined with other examples herein, one or more of the lid 108A, the substrate support pedestal 106, and the chamber bottom 124, as well as any other exposed surfaces can also have the protective film 120 formed thereon.
In an embodiment, controller 130 is coupled to the process chamber 100 and configured to execute a plurality of instructions. In one example, the plurality of instructions executed by the controller 130 is associated with substrate processing. The substrate processing can include operations such as layer deposition and patterning, as well as chamber cleaning. In another example, the plurality of instructions executed by the controller 130 is associated with forming the protective film 120 on one or more of the chamber walls 122, bottom, 124, top 108A, substrate support pedestal 106, or other exposed surfaces of the inner chamber body 104. In an embodiment, a protective cover (not shown) may be positioned on the substrate support pedestal 106 that covers some or all of a diameter 106A of the substrate support pedestal 106. Thus, optionally, a portion of the substrate support pedestal 106, shown as an uncoated region 106B in this example, is not coated with the protective film 120 and remains exposed. The protective film 120 may be formed on the showerhead 110 as well, and may be formed to an average thickness from 80 nm to 250 nm or from 90 nm to 120 nm. In some examples, an average thickness of the protective film 120 is about 100 nm. In alternate examples, which can be combined with other examples herein, no protective cover is used and the area indicated by the diameter 106A is coated with the protective film 120.
During operation of the process chamber 100, subsequent to forming the protective film 120, the substrate 146 is placed on the substrate support pedestal 106 in the uncoated region 106B of the substrate support pedestal 106. Gaseous components are supplied from a gas panel 118 to the process chamber 100 through the plurality of islands 126 of the showerhead 110, which act as entry ports for the gas. The one or more gaseous components are supplied simultaneously from the gas panel 118, or in an alternating and/or iterative fashion, to form a gaseous mixture in the processing space 134. The protective film 120 can be removed by forming a F or NF3 plasma in the process chamber 100 (or introducing the plasma via the RPS 112) via the showerhead 110 to remove the protective film 120. The removal of the protective film 120 can occur after one or more cycles in the process chamber, for example, after one or more films (not shown here) are formed on the substrate 146, or after a plurality of films are formed, or a plurality of films are patterned, or combinations thereof.
In an embodiment, during substrate 146 processing, the temperature of the substrate 146 positioned in the process chamber 100 is controlled by stabilizing the temperature of the substrate support pedestal 106. Helium or another gas from the gas panel 118 is flowed into a plenum (not shown) defined between the substrate 146 and a support surface 106C of the substrate support pedestal 106. The substrate 146 is seated in the uncoated region 106B. The helium gas is used to facilitate heat transfer between the substrate 146 and the substrate support pedestal 106. During a process in the process chamber 100, which can include an etch process, the substrate 146 is gradually heated by the plasma to a steady state temperature between 200° C. and 600° C. Using thermal control of both the top of the chamber 108A and the substrate support pedestal 106, and in some cases, of the chamber walls 122, the substrate 146 is maintained at a predetermined temperature during processing. When the process chamber 100 is used at high temperatures and/or under high pressures, the inner chamber body 104 is exposed to a harsh environment. The presence of etchant gases in the process chamber 100 can further contribute to the harsh environment experienced by the inner chamber body 104. The protective film 120 thus protects the inner chamber body 104, preventing degradation of one or more of the chamber top 108A, the chamber bottom 124, the chamber walls 122, the showerhead 110, or the substrate support pedestal 106.
At operation 204, subsequent to preparing the process chamber at operation 202, a protective film is formed on a plurality of interior components of the process chamber, which may alternatively be referred to as exposed surfaces. The protective film is formed at operation 204 using precursors as discussed below to a target thickness, which can be from 80 nm to 250 nm. The interior components include at least one of a substrate support pedestal, inner chamber body wall, top, bottom, and on the showerhead features, as discussed in
The protective film formed at operation 204 may be formed to an average thickness from 80 nm to 250 nm. Operations 202 and 204 are executed without a substrate positioned in the process chamber. At operation 206, a substrate or batch of substrates (2 or more) are positioned in the process chamber and subsequently processed at operation 208. The substrate(s) positioned in the process chamber can be positioned on the substrate support pedestal. In an embodiment, processing the substrate(s) at operation 208 includes forming a plurality of features in the substrate(s). During the processing at operation 208, a temperature of the process chamber may be from about 200° C. to about 600° C. or higher, and a pressure of the process chamber may be from 1 bar to about 250 bar.
Subsequent to the processing at operation 208, the substrates are removed from the process chamber at operation 210. In an embodiment, subsequent to the removal of the substrate at operation 210, the protective film formed at operation 204 is removed at operation 212. The removal of the film at operation 212 may be performed using a fluorine-containing plasma or other suitable cleaning agents. The showerhead of the process chamber can be used to distribute these components. During the removal of the film at operation 210, the process chamber can be purged with an inert gas after the cleaning agent(s) are used. The protective film guards the interior of the process chamber from corrosion, which can not only degrade the integrity of the process chamber's components from a performance standpoint during processing operations such as those of operation 208. However, protective films can also pose a contamination risk during substrate processing, for example, if portions of the films flake or otherwise fall off on to the substrate. The film formed at operation 204 can thus be formed and removed after each substrate or batch of substrates processed at operation 208. Using the systems and methods discussed herein, protective films of differing compositions and thicknesses can be formed on the same chamber components. In an embodiment, more than one substrate or batch of substrates may be processed and removed at operations 208-210 before the film is removed at operation 212.
In-situ coating, where a device or apparatus such as the process chambers discussed herein is coated from inside of the process chamber, is used herein to provide a protective coating of uniform thickness. In some examples, the protective coatings discussed herein can be formed on interior components of process chambers used for high-pressure applications of 1 bar or higher. This is in contrast to ex-situ coating, which, for corrosive, high pressure applications, can flake or otherwise detach from the coated component. This degradation of the protective coating can lead to frequent re-coating operations.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims priority to U.S. Provisional Patent Application No. 62/679,410, “In-Situ CVD and ALD Coating of Chamber to Control Metal Contamination,” filed Jun. 1, 2018, incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
4524587 | Kantor | Jun 1985 | A |
5050540 | Lindberg | Sep 1991 | A |
5114513 | Hosokawa et al. | May 1992 | A |
5149378 | Ohmi et al. | Sep 1992 | A |
5175123 | Vasquez et al. | Dec 1992 | A |
5319212 | Tokoro | Jun 1994 | A |
5366905 | Mukai | Nov 1994 | A |
5590695 | Siegele et al. | Jan 1997 | A |
5620524 | Fan et al. | Apr 1997 | A |
5808245 | Wiese et al. | Sep 1998 | A |
5858051 | Komiyama et al. | Jan 1999 | A |
5879756 | Fathi et al. | Mar 1999 | A |
5880041 | Ong | Mar 1999 | A |
5940985 | Kamikawa et al. | Aug 1999 | A |
6082950 | Altwood et al. | Jul 2000 | A |
6136664 | Economikos et al. | Oct 2000 | A |
6150286 | Sun et al. | Nov 2000 | A |
6164412 | Allman | Dec 2000 | A |
6242368 | Holmer et al. | Jun 2001 | B1 |
6251751 | Chu et al. | Jun 2001 | B1 |
6299753 | Chao et al. | Oct 2001 | B1 |
6319766 | Bakli et al. | Nov 2001 | B1 |
6334266 | Moritz et al. | Jan 2002 | B1 |
6368412 | Gomi | Apr 2002 | B1 |
6442980 | Preston et al. | Sep 2002 | B2 |
6500603 | Shioda | Dec 2002 | B1 |
6583497 | Xia et al. | Jun 2003 | B2 |
6619304 | Worm | Sep 2003 | B2 |
6797336 | Garvey et al. | Sep 2004 | B2 |
7055333 | Leitch et al. | Jun 2006 | B2 |
7111630 | Mizobata et al. | Sep 2006 | B2 |
7114517 | Sund et al. | Oct 2006 | B2 |
7282458 | Gates et al. | Oct 2007 | B2 |
7361231 | Fury et al. | Apr 2008 | B2 |
7460760 | Cho et al. | Dec 2008 | B2 |
7491658 | Nguyen et al. | Feb 2009 | B2 |
7503334 | Shrinivasan et al. | Mar 2009 | B1 |
7521089 | Hillman et al. | Apr 2009 | B2 |
7521378 | Fucsko et al. | Apr 2009 | B2 |
7541297 | Mallick et al. | Jun 2009 | B2 |
7576441 | Yin et al. | Aug 2009 | B2 |
7650965 | Thayer et al. | Jan 2010 | B2 |
7651959 | Fukazawa et al. | Jan 2010 | B2 |
7655532 | Chen et al. | Feb 2010 | B1 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7825042 | Mandal | Nov 2010 | B2 |
7867923 | Mallick et al. | Jan 2011 | B2 |
7891228 | Ding et al. | Feb 2011 | B2 |
8027089 | Hayashi | Sep 2011 | B2 |
8318584 | Li et al. | Nov 2012 | B2 |
8349085 | Tahara et al. | Jan 2013 | B2 |
8449942 | Li et al. | May 2013 | B2 |
8466073 | Wang et al. | Jun 2013 | B2 |
8481123 | Kim et al. | Jul 2013 | B2 |
8536065 | Seamons et al. | Sep 2013 | B2 |
8557712 | Antonelli et al. | Oct 2013 | B1 |
8563445 | Liang et al. | Oct 2013 | B2 |
8647992 | Liang et al. | Feb 2014 | B2 |
8741788 | Liang et al. | Jun 2014 | B2 |
8871656 | Mallick et al. | Oct 2014 | B2 |
8906761 | Kim et al. | Dec 2014 | B2 |
8936834 | Kim et al. | Jan 2015 | B2 |
9121515 | Yamamoto et al. | Sep 2015 | B2 |
9153442 | Wang et al. | Oct 2015 | B2 |
9157730 | Rajagopalan et al. | Oct 2015 | B2 |
9257314 | Rivera et al. | Feb 2016 | B1 |
9306026 | Toriumi et al. | Apr 2016 | B2 |
9362107 | Thadani et al. | Jun 2016 | B2 |
9484406 | Sun et al. | Nov 2016 | B1 |
9570551 | Balakrishnan et al. | Feb 2017 | B1 |
10083834 | Thompson et al. | Sep 2018 | B2 |
20010029108 | Tometsuka | Oct 2001 | A1 |
20010041122 | Kroeker | Nov 2001 | A1 |
20010050096 | Costantini et al. | Dec 2001 | A1 |
20020073922 | Frankel | Jun 2002 | A1 |
20020122885 | Ahn | Sep 2002 | A1 |
20020134439 | Kawasaki et al. | Sep 2002 | A1 |
20020148492 | Yamagata et al. | Oct 2002 | A1 |
20020151128 | Lane et al. | Oct 2002 | A1 |
20030030945 | Heinonen et al. | Feb 2003 | A1 |
20030101938 | Ronsse et al. | Jun 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030148631 | Kuo et al. | Aug 2003 | A1 |
20030207593 | Derderian et al. | Nov 2003 | A1 |
20040025908 | Douglas et al. | Feb 2004 | A1 |
20040060519 | Beauchaine et al. | Apr 2004 | A1 |
20040112409 | Schilling | Jun 2004 | A1 |
20040219800 | Tognetti | Nov 2004 | A1 |
20040248392 | Narwankar et al. | Dec 2004 | A1 |
20050003655 | Cathey et al. | Jan 2005 | A1 |
20050051194 | Sakashita et al. | Mar 2005 | A1 |
20050136684 | Mukai et al. | Jun 2005 | A1 |
20050191828 | Al-Bayati et al. | Sep 2005 | A1 |
20050198971 | Leitch et al. | Sep 2005 | A1 |
20050250347 | Bailey et al. | Nov 2005 | A1 |
20050269291 | Kent | Dec 2005 | A1 |
20060003596 | Fucsko et al. | Jan 2006 | A1 |
20060124613 | Kumar et al. | Jun 2006 | A1 |
20060207633 | Kim et al. | Sep 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060279025 | Heidari et al. | Dec 2006 | A1 |
20060290017 | Yanagisawa | Dec 2006 | A1 |
20070012402 | Sneh | Jan 2007 | A1 |
20070187386 | Kim et al. | Aug 2007 | A1 |
20070204797 | Fischer | Sep 2007 | A1 |
20070212850 | Ingle et al. | Sep 2007 | A1 |
20070243317 | Du Bois et al. | Oct 2007 | A1 |
20070256559 | Chen et al. | Nov 2007 | A1 |
20080074658 | Davis et al. | Mar 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080210273 | Joe | Sep 2008 | A1 |
20090081884 | Yokota et al. | Mar 2009 | A1 |
20090148965 | Kim et al. | Jun 2009 | A1 |
20090180847 | Guo et al. | Jul 2009 | A1 |
20090186481 | Suzuki et al. | Jul 2009 | A1 |
20090233449 | Lebouitz et al. | Sep 2009 | A1 |
20090243126 | Washiya et al. | Oct 2009 | A1 |
20100006211 | Wolk et al. | Jan 2010 | A1 |
20100012292 | Yamazaki | Jan 2010 | A1 |
20100022068 | Chen et al. | Jan 2010 | A1 |
20100173495 | Thakur et al. | Jul 2010 | A1 |
20100304027 | Lee et al. | Dec 2010 | A1 |
20100320459 | Umeda et al. | Dec 2010 | A1 |
20100327422 | Lee et al. | Dec 2010 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110165781 | Liang et al. | Jul 2011 | A1 |
20110198736 | Shero et al. | Aug 2011 | A1 |
20120048304 | Kitajima et al. | Mar 2012 | A1 |
20120056173 | Pieralisi | Mar 2012 | A1 |
20120060868 | Gray | Mar 2012 | A1 |
20120142192 | Li et al. | Jun 2012 | A1 |
20120175822 | Inamiya et al. | Jul 2012 | A1 |
20120252210 | Tohnoe | Oct 2012 | A1 |
20120285492 | Lee et al. | Nov 2012 | A1 |
20120304485 | Hayashi et al. | Dec 2012 | A1 |
20130194350 | Watanabe et al. | Aug 2013 | A1 |
20130233170 | Spiegelman et al. | Sep 2013 | A1 |
20130330042 | Nara et al. | Dec 2013 | A1 |
20130337171 | Sasagawa | Dec 2013 | A1 |
20140023320 | Lee et al. | Jan 2014 | A1 |
20140045300 | Chen et al. | Feb 2014 | A1 |
20140076494 | Miyashita et al. | Mar 2014 | A1 |
20140134827 | Swaminathan et al. | May 2014 | A1 |
20140138802 | Starostine et al. | May 2014 | A1 |
20140183743 | Matsumoto et al. | Jul 2014 | A1 |
20140231384 | Underwood et al. | Aug 2014 | A1 |
20140235068 | Ashihara et al. | Aug 2014 | A1 |
20140239291 | Son et al. | Aug 2014 | A1 |
20140264237 | Chen et al. | Sep 2014 | A1 |
20140268080 | Beasley et al. | Sep 2014 | A1 |
20140284821 | Hubbard | Sep 2014 | A1 |
20140322921 | Ahmad et al. | Oct 2014 | A1 |
20150000870 | Hosotani et al. | Jan 2015 | A1 |
20150050807 | Wu et al. | Feb 2015 | A1 |
20150056819 | Wong et al. | Feb 2015 | A1 |
20150091009 | Yamazaki et al. | Apr 2015 | A1 |
20150099342 | Tsai et al. | Apr 2015 | A1 |
20150159272 | Yoon et al. | Jun 2015 | A1 |
20150179501 | Jhaveri et al. | Jun 2015 | A1 |
20150255581 | Lin et al. | Sep 2015 | A1 |
20150292736 | Hirson et al. | Oct 2015 | A1 |
20150309073 | Mirkin et al. | Oct 2015 | A1 |
20150322286 | Cabrini et al. | Nov 2015 | A1 |
20150364348 | Park et al. | Dec 2015 | A1 |
20160027887 | Yuan et al. | Jan 2016 | A1 |
20160035600 | Rivera et al. | Feb 2016 | A1 |
20160064209 | Lee et al. | Mar 2016 | A1 |
20160064482 | Hashemi et al. | Mar 2016 | A1 |
20160076149 | Yamazaki et al. | Mar 2016 | A1 |
20160111272 | Girard et al. | Apr 2016 | A1 |
20160118391 | Zhao et al. | Apr 2016 | A1 |
20160163540 | Liao et al. | Jun 2016 | A1 |
20160208414 | Odawara et al. | Jul 2016 | A1 |
20160260526 | Otto | Sep 2016 | A1 |
20160273758 | Fujimura | Sep 2016 | A1 |
20160274454 | Beasley et al. | Sep 2016 | A1 |
20160334162 | Kim et al. | Nov 2016 | A1 |
20160353522 | Rathi et al. | Dec 2016 | A1 |
20170005204 | Hosoba et al. | Jan 2017 | A1 |
20170011932 | Pethe et al. | Jan 2017 | A1 |
20170104062 | Bi et al. | Apr 2017 | A1 |
20170140996 | Lin et al. | May 2017 | A1 |
20170160012 | Kobayashi et al. | Jun 2017 | A1 |
20170194430 | Wood et al. | Jul 2017 | A1 |
20170253968 | Yahata | Sep 2017 | A1 |
20170263702 | Chan et al. | Sep 2017 | A1 |
20170314125 | Fenwick et al. | Nov 2017 | A1 |
20170358483 | Roy et al. | Dec 2017 | A1 |
20180019249 | Zhang et al. | Jan 2018 | A1 |
20180023192 | Chandra et al. | Jan 2018 | A1 |
20180261480 | Liang et al. | Sep 2018 | A1 |
20180350563 | Manna et al. | Dec 2018 | A1 |
20190259625 | Nemani et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
101871043 | Oct 2010 | CN |
104047676 | Sep 2014 | CN |
104089491 | Oct 2014 | CN |
H07048489 | May 1995 | JP |
2001110729 | Apr 2001 | JP |
2003-51474 | Feb 2003 | JP |
2004127958 | Apr 2004 | JP |
2005064269 | Mar 2005 | JP |
2005-333015 | Dec 2005 | JP |
2007242791 | Sep 2007 | JP |
2008073611 | Apr 2008 | JP |
2010-205854 | Sep 2010 | JP |
2012-503883 | Feb 2012 | JP |
2012-204656 | Oct 2012 | JP |
2013-105777 | May 2013 | JP |
2013516788 | May 2013 | JP |
2013-179244 | Sep 2013 | JP |
2014019912 | Feb 2014 | JP |
20070075383 | Jul 2007 | KR |
20090011463 | Feb 2009 | KR |
1020090040867 | Apr 2009 | KR |
20140003776 | Jan 2014 | KR |
20140135744 | Nov 2014 | KR |
20150006587 | Jan 2015 | KR |
20150122432 | Nov 2015 | KR |
200529284 | Sep 2005 | TW |
200721316 | Jun 2007 | TW |
201507174 | Feb 2015 | TW |
2008089178 | Jul 2008 | WO |
2011103062 | Aug 2011 | WO |
2012133583 | Oct 2012 | WO |
2016065219 | Apr 2016 | WO |
Entry |
---|
Pedestal definition from Dictionary.com, printed on Feb. 10, 2020 (Year: 2020). |
International Search Report and Written Opinion for PCT/US2018/021715 dated Jun. 22, 2018. |
International Search Report and Written Opinion from PCT/US2018/034036 dated Aug. 24, 2018. |
International Search Report and Written Opinion dated Aug. 24, 2018 for Application No. PCT/US2018/034284. |
International Search Report, Application No. PCT/US2018/028258 dated Aug. 9, 2018. |
International Search Report and Written Opinion for PCT/US2018/035210 dated Aug. 24, 2018. |
International Search Report and Written Opinion for PCT/US2018/037539 dated Oct. 5, 2018. |
International Search Report and Written Opinion for PCT/US2018/038822 dated Oct. 26, 2018. |
Chen, Yang et al., “Analysis of Supercritical Carbon Dioxide Heat Exchangers in Cooling Process”, International Refrigeration and Air Conditioning Conference at Purdue, Jul. 17-20, 2006, pp. 1-8. |
Kato, T. et al., “Heat Transfer Characteristics of a Plate-Fin Type Supercritical/Liquid Helium Heat Exchanger”, ICEC 14 Proceedings Supplement, 1992, pp. 260-263. |
Lee, Ho-Saeng et al., “The cooling heat transfer characteristics of the supercritical CO2 in mico-fin tube”, Springer, Oct. 2, 2012, pp. 173-184. |
International Search Report and Written Opinion dated Nov. 30, 2018 for Application No. PCT/US2018/041688. |
International Search Report and Written Opinion for PCT/US2018/043160 dated Jan. 31, 2019. |
International Search Report and Written Opinion dated Jan. 31, 2019 for Application No. PCT/US2018/042760. |
International Search Report and Written Opinion for PCT/US2018/059643 dated Feb. 26, 2019. |
International Search Report and Written Opinion from PCT/US2019/012161 dated Apr. 30, 2019. |
International Search Report and Written Opinion for PCT/US2019/014759 dated May 14, 2019. |
International Search Report and Written Opinion for PCT/US2019/015332 dated May 15, 2019. |
International Search Report and Written Opinion for PCT/US2018/059676 dated May 23, 2019. |
International Search Report and Written Opinion for PCT/US2019/023431 dated Jul. 5, 2019. |
Haskel Pressure on Demand, Pneumatic and Hydraulic Driven Gas Boosters, Apr. 30, 2016, 36 pp. |
Taiwan Office Action dated Jul. 3, 2019 for Application No. 107136181. |
International Search Report and Written Opinion for International Application No. PCT/US2019/029602 dated Aug. 14, 2019. |
Taiwan Office Action dated Jun. 11, 2019 for Application No. 107138905. |
Taiwan Office Action dated Nov. 19, 2019 for Application No. 108103415. |
Office Action for Japanese Application No. 2018-517285 dated Oct. 23, 2019. |
Office Action for Taiwan Patent Application No. 108111501 dated Nov. 14, 2019. |
Office Action for Japanese Application No. 2018-546484 dated Oct. 8, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/040195 dated Oct. 25, 2019. |
Number | Date | Country | |
---|---|---|---|
20190368035 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62679410 | Jun 2018 | US |