Integrated power module with improved isolation and thermal conductivity

Information

  • Patent Grant
  • 9536803
  • Patent Number
    9,536,803
  • Date Filed
    Tuesday, September 8, 2015
    8 years ago
  • Date Issued
    Tuesday, January 3, 2017
    7 years ago
Abstract
An integrated power module having a depletion mode device and an enhancement mode device that is configured to prevent an accidental on-state condition for the depletion mode device during a gate signal loss is disclosed. In particular, the disclosed integrated power module is structured to provide improved isolation and thermal conductivity. The structure includes a substrate having a bottom drain pad for the depletion mode device disposed on the substrate and an enhancement mode device footprint-sized cavity that extends through the substrate to the bottom drain pad. A thermally conductive and electrically insulating slug substantially fills the cavity to provide a higher efficient thermal path between the enhancement mode device and the bottom drain pad for the depletion mode device.
Description
FIELD OF THE DISCLOSURE

The present disclosure is directed to power electronics. In particular, the present disclosure provides an integrated power module with improved electrical isolation and improved thermal conductivity.


BACKGROUND

There are at least three standard methods of packaging multi-chip power modules. One popular method incorporates direct bonded copper (DBC) substrates that comprise a ceramic tile with copper bonded to top and/or bottom sides of the ceramic tile. Alumina (Al2O3), aluminum nitride (AlN), and beryllium oxide (BeO) are materials that are usable as the ceramic tile. DBC substrates are known for their high thermal conductivity and excellent electrical isolation. DBC substrates comprising AlN and copper have a thermal conductivity of at least 150 Watts per meter Kelvin (W/mK). However, DBC substrates have disadvantages of high cost, large design rules, and a limitation of only one electrical conductor routing layer.


Another multi-chip packaging method utilizes leadframe technology with either DBC isolation or a cascode-stacked die technique. However, present leadframe technology not well suited for multiple die structures that are coplanar. In particular, present leadframe technology can be compromised thermally and/or mechanically when attempted to be used for coplanar multi-chip structures.


Yet another standard multi-chip packaging technology incorporates laminate printed circuit board (PCB) technology. An advantage of laminate PCB technology is low cost, integration flexibility, and electrical conductor routing. However, a significant disadvantage of PCB technology is low thermal performance if there are multiple dies requiring high power dissipation that cannot utilize electrically conducting thermal vias due to unequal electrical potentials on both sides of the vias.


What is needed is an integrated power module with improved electrical isolation and improved thermal conductivity that is structured to realize the advantages of each of the above multi-chip packaging methods while avoiding the discussed limitations of those methods.


SUMMARY

An integrated power module having a depletion mode device and an enhancement mode device that is configured to prevent an accidental on-state condition for the depletion mode device during a gate signal loss is disclosed. In particular, the disclosed integrated power module is structured to provide improved isolation and thermal conductivity. The structure includes a substrate having a bottom drain pad for the depletion mode device disposed on the substrate and an enhancement mode device footprint-sized cavity that extends through the substrate to the bottom drain pad. A thermally conductive and electrically insulating slug substantially fills the cavity to provide a higher efficient thermal path between the enhancement mode device and the bottom drain pad for the depletion mode device.


In at least one exemplary embodiment, a depletion mode device footprint-sized cavity in the substrate is substantially filled with a thermally conductive and electrically conductive slug that provides a higher efficient thermal path between the depletion mode device and the bottom drain pad for the depletion mode device. In yet another exemplary embodiment, the depletion mode device footprint-sized cavity is substantially filled with a thermally conductive and electrically insulating slug that provides a higher efficient thermal path between the depletion mode device and the bottom drain pad for the depletion mode device. In this case electrical connectivity is established with vias from a top-side depletion mode device drain pad to the bottom drain pad for the depletion mode device.


Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 is an electrical schematic for a cascode topology for an integrated power module of the present disclosure that incorporates an enhancement mode device to ensure that a depletion mode device maintains an off-state in the event of a gate signal failure.



FIG. 2 is a top x-ray view of an exemplary embodiment of the integrated power module of the present disclosure that has improved electrical isolation and improved thermal conductivity.



FIG. 3 is a backside view of the exemplary embodiment of FIG. 1.



FIG. 4 is a cross-sectional view of FIGS. 2 and 3.



FIG. 5 is a cross-sectional view of another exemplary embodiment that uses direct bonded copper (DBC) slugs to transfer heat away from the depletion mode device and the enhancement mode device.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


It will be understood that when an element such as a layer, region, or substrate is referred to as being “over,” “on,” “in,” or extending “onto” another element, it can be directly over, directly on, directly in, or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over,” “directly on,” “directly in,” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.


Discrete high voltage and high power semiconductor devices are predominantly normally-off, meaning that they are enhancement mode devices. The reason enhancement mode devices are favored is due to safety since an enhancement mode device will not accidently turn during a gate signal failure. However, high performance depletion mode devices have recently been developed. As a result of the nature of the depletion mode, high performance depletion mode devices are inherently normally-on and can present a danger in an event of gate signal failure such as the gate signal falling to a voltage less than needed to maintain the off-state of the depletion mode device. For example, the depletion mode device would accidently turn on if its gate voltage were to inadvertently drop to zero volts while in an off-state. As such, high performance depletion mode devices require auxiliary components and/or topologies to maintain a normally-off condition in the event of gate signal failure.



FIG. 1 is an electrical schematic of a cascode topology for an integrated power module 10 of the present disclosure that ensures that a depletion mode device 12 maintains an off-state in the event of a gate signal failure. In this case, an enhancement mode device 14 maintains control of an off-state for the depletion mode device 12 in the event of gate signal failure. Specifically, an off-state for the enhancement mode device 14 maintains a drain to source voltage drop across the depletion mode device 12 that is reflected across a gate-source junction of the of the enhancement mode device 14, which in turn pinches the depletion mode device 12 to an off-state. In the exemplary embodiment of FIG. 1, the depletion mode device 12 is typically a gallium nitride (GaN) on silicon (Si) high electron mobility transistor (HEMT). The enhancement mode device 12 is typically a low voltage Si metal oxide semiconductor field effect transistor (MOSFET).


Typically, discrete transistors have three leads, which are a gate lead, a source lead, and a drain lead. It is desirable that the integrated power module 10 also adhere to this three lead convention. As such, the topology of the integrated power module 10 is configured to convert six internal connections into a conventional three leaded external topology that provides gate, source, and drain leads. However, adhering to the conventional three leaded external topology presents a problem of providing maximum heat transfer from inside the integrated power module 10 to external the integrated power module 10. Simply put, a three leaded device conversion of a six leaded multi-chip device cannot transfer as much heat as a single chip three leaded device of the same size because significant thermal paths are disrupted in a six leaded multi-chip device.


The disruption of thermal paths inside the integrated power module 10 is due to a need for electrical isolation between parts of the depletion mode device 12 and parts of the enhancement mode device 14 that are at different voltage potentials. This thermal challenge is most pronounced for lateral devices such as devices with a GaN on silicon carbide (SiC) die and a GaN on Si die, both of which need backside electrical isolation. Moreover, it is desirable that a first die comprising the depletion mode device 12 and a second die comprising the enhancement mode device 14 be substantially coplanar.



FIG. 2 is a top x-ray view of an exemplary embodiment of the integrated power module 10 of the present disclosure that has improved electrical isolation and improved thermal conductivity. The integrated power module 10 includes a substrate 16 that supports the depletion mode device 12 and the enhancement mode device 14. The substrate 16 is a printed circuit type laminate that typically includes copper traces that route power and signals to and from the depletion mode device 12 and the enhancement mode device 14. In at least one embodiment, the substrate 16 is made of material formulated to provide substantially low dielectric losses for gigahertz radio frequency operation of the depletion mode device 12 and the enhancement mode device 14.


A top-side depletion device (top d-drain) pad 18 is disposed onto a top-side of the substrate 16 to which a drain contact (drain-1) of the depletion mode device 12 is electrically coupled. Further still, a top-side enhancement device (top e-drain) pad 20 is also disposed onto the top-side of the substrate 16 to which a drain contact (drain-2) of the enhancement mode device 14 is electrically coupled. The top e-drain pad 20 is spaced from the top d-drain pad 18 to electrically isolate the top d-drain pad 18 from the top e-drain pad 20. Inter-device bond wires 24 couple selected terminals between the depletion mode device 12 and enhancement mode device 14. Extra-device bond wires 26 couple gate and source contacts on the enhancement mode device 14 to gate and source leads disposed onto the substrate 16.



FIG. 3 depicts a bottom-side depletion device drain (bottom d-drain) pad 22 to which a thermally and electrically conductive slug (TECS) 28 is bonded to create a higher efficient thermal path between the depletion mode device 12 and the bottom d-drain pad 22. An external heatsink (not shown) can be coupled to the bottom d-drain pad 22 using a fastener and a paste type thermal compound.


In the exemplary embodiment of FIG. 2 and FIG. 3, the substrate 16 includes a first cavity wherein the TECS 28 is inserted. In at least one embodiment, the TECS 28 has a thermal resistivity that is at least 10 times lower than the thermal resistivity of the substrate 16 and an electrical resistivity that is substantially equal to or less than the electrical resistivity of the bottom d-drain pad 22. In the exemplary embodiment of the integrated power module 10 depicted in FIG. 2 and FIG. 3, the TECS 28 is made of a material such as copper that is both thermally and electrically conductive.



FIG. 4 is a cross-sectional view of the integrated power module 10 depicted in FIG. 2 and FIG. 3. This cross-sectional view shows the TECS 28 embedded within the substrate 16 and bonded to the substrate 16 using non-conductive epoxy 32. A first plating 34 that is electrically conductive is disposed over the top d-drain pad 18 to electrically and thermally couple the drain of the depletion mode device 12 to the top d-drain pad 18 after the TECS 28 is embedded within the substrate 16. The drain contact drain-1 of the depletion mode device 12 is soldered or welded to the first plating 34 at a location substantially centered over the TECS 28. Bonding of the TECS 28 to the bottom d-drain pad 22 is achieved using soldering or welding. Moreover, in the exemplary embodiment, the TECS 28 has an area that is at least equal to an area taken up by the largest surface of the depletion mode device 12. However, it is to be understood that the TECS 28 can have a slightly smaller surface area than area taken up by the largest surface of the depletion mode device without deviating from scope of the present disclosure.


A second cavity is provided within the substrate 16 wherein a thermally conductive only slug (TCOS) 30 is inserted. Typically, the TCOS 30 has a thermal resistivity that is at least 2 times lower than the thermal resistivity of the substrate 16 that is bonded between the e-drain pad 20 and the enhancement mode device 14. The TCOS 30 is bonded to the substrate 16 with the second cavity using a non-conductive epoxy 32. Once securely embedded within the substrate 16, the TCOS 30 provides a highly efficient thermal path between the enhancement mode device 14 and the bottom d-drain pad 22. A second plating 36 that is electrically conductive is disposed over the top e-drain pad 20 to electrically and thermally couple the drain contact (drain-2) of the enhancement mode device 14 to the e-drain pad 20 after the TECS 28 is embedded within the substrate 16.


In the exemplary case of FIGS. 2-4, the TCOS 30 is electrically isolating, yet also thermally conductive. A second drain contact drain-2 of the enhancement mode device 14 is soldered or welded to the second plating 36 at a location substantially centered over the TCOS 30. In this and other embodiments, the first cavity and second cavity can be rectangular holes that are routed within the substrate 16. However, other geometries such as ovals and rounded rectangles are also usable as cavity shapes without deviating from the objectives of the present disclosure.


In at least some embodiments, the TCOS 30 is a direct bonded copper (DBC structure) having a ceramic substrate 38 with top-side copper 40 and bottom-side copper 42 as best seen in FIG. 4. The ceramic substrate 26 can be, but is not limited materials such as Alumina (Al2O3), aluminum nitride (AlN), and Beryllium oxide (BeO). Vias 44 provide electrical connections source and gate leads disposed on the top-side and bottom-side of the substrate 16.



FIG. 5 is a cross-sectional view of an exemplary embodiment of another integrated power module 46 of the present disclosure that has improved electrical isolation and improved thermal conductivity. This exemplary embodiment replaces the TECS 28 of the integrated power module 10 with another TCOS 30. In this case, vias 48 provide electrical connections between the top d-drain pad 18 and the bottom d-drain pad 22.


Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. An integrated power module having a depletion mode device and an enhancement mode device that is configured to prevent an accidental on-state condition for the depletion mode device during a gate signal loss comprising: a substrate having a bottom drain pad for the depletion mode device disposed on the substrate and an enhancement mode device footprint-sized cavity that extends through the substrate to the bottom drain pad; anda thermally conductive and electrically insulating slug substantially fills the cavity.
  • 2. The integrated power module of claim 1 wherein non-conductive epoxy fills gaps within the cavity between the thermally conductive and electrically insulating slug and the substrate.
  • 3. The integrated power module of claim 1 further including a top drain pad for the enhancement mode device wherein the top drain pad is substantially centered over the cavity.
  • 4. The integrated power module of claim 3 further including electrically conductive plating disposed over the top drain pad and the thermally conductive and electrically insulating slug.
  • 5. The integrated power module of claim 1 wherein the substrate includes a depletion mode device footprint-sized cavity that extends through the substrate to the bottom drain pad.
  • 6. The integrated power module of claim 5 further including a thermally conductive and electrically conductive slug that substantially fills the depletion mode device footprint-sized cavity.
  • 7. The integrated power module of claim 6 wherein the thermally conductive and electrically conductive slug has a thermal conductivity of at least 150 Watts per meter Kelvin (W/mK).
  • 8. The integrated power module of claim 7 wherein the thermally conductive and electrically conductive slug is made of copper.
  • 9. The integrated power module of claim 6 wherein non-conductive epoxy fills gaps within the depletion mode device footprint-sized cavity between the thermally conductive and electrically conductive slug and the substrate.
  • 10. The integrated power module of claim 9 further including a top drain pad for the depletion mode device wherein the top drain pad is substantially centered over the depletion mode device footprint-sized cavity.
  • 11. The integrated power module of claim 5 further including a thermally conductive and electrically isolating slug that substantially fills the depletion mode device footprint-sized cavity.
  • 12. The integrated power module of claim 11 wherein non-conductive epoxy fills gaps within the depletion mode device footprint-sized cavity between the thermally conductive and electrically isolating slug and the substrate.
  • 13. The integrated power module of claim 12 further including a top drain pad to which a drain of the depletion mode device is electrically coupled.
  • 14. The integrated power module of claim 13 further including electrically conductive vias between the top drain pad and the bottom drain pad.
  • 15. The integrated power module of claim 14 further including electrically conductive plating that covers the top drain pad and the thermally conductive and electrically isolating slug and the substrate.
  • 16. The integrated power module of claim 1 wherein the thermally conductive and electrically insulating slug is direct bonded copper (DBC) with a ceramic substrate.
  • 17. The integrated power module of claim 16 wherein the ceramic substrate is made of alumina (Al2O3).
  • 18. The integrated power module of claim 16 wherein the ceramic substrate is made of aluminum nitride (AlN).
  • 19. The integrated power module of claim 16 wherein the ceramic substrate is made of beryllium oxide (BeO).
  • 20. The integrated power module of claim 16 wherein the thermal conductivity of the DBC has a thermal conductivity of at least 150 Watts per meter Kelvin (W/m K).
RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application No. 62/046,236, filed Sep. 5, 2014, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (236)
Number Name Date Kind
4236119 Battjes Nov 1980 A
4317055 Yoshida et al. Feb 1982 A
4540954 Apel Sep 1985 A
4543535 Ayasli Sep 1985 A
4620207 Calviello Oct 1986 A
4788511 Schindler Nov 1988 A
5028879 Kim Jul 1991 A
5046155 Beyer et al. Sep 1991 A
5047355 Huber et al. Sep 1991 A
5107323 Knolle et al. Apr 1992 A
5118993 Yang Jun 1992 A
5208547 Schindler May 1993 A
5227734 Schindler et al. Jul 1993 A
5306656 Williams et al. Apr 1994 A
5361038 Allen et al. Nov 1994 A
5365197 Ikalainen Nov 1994 A
5389571 Takeuchi et al. Feb 1995 A
5406111 Sun Apr 1995 A
5414387 Nakahara et al. May 1995 A
5485118 Chick Jan 1996 A
5608353 Pratt Mar 1997 A
5629648 Pratt May 1997 A
5698870 Nakano et al. Dec 1997 A
5742205 Cowen et al. Apr 1998 A
5764673 Kawazu et al. Jun 1998 A
5834326 Miyachi et al. Nov 1998 A
5843590 Miura et al. Dec 1998 A
5864156 Juengling Jan 1999 A
5874747 Redwing et al. Feb 1999 A
5880640 Dueme Mar 1999 A
5914501 Antle et al. Jun 1999 A
5949140 Nishi et al. Sep 1999 A
6049250 Kintis et al. Apr 2000 A
6064082 Kawai et al. May 2000 A
6110757 Udagawa Aug 2000 A
6130579 Iyer et al. Oct 2000 A
6133589 Krames et al. Oct 2000 A
6177685 Teraguchi et al. Jan 2001 B1
6191656 Nadler Feb 2001 B1
6229395 Kay May 2001 B1
6265943 Dening et al. Jul 2001 B1
6271727 Schmukler Aug 2001 B1
6285239 Iyer et al. Sep 2001 B1
6306709 Miyagi et al. Oct 2001 B1
6307364 Augustine Oct 2001 B1
6313705 Dening et al. Nov 2001 B1
6329809 Dening et al. Dec 2001 B1
6333677 Dening Dec 2001 B1
6342815 Kobayashi Jan 2002 B1
6356150 Spears et al. Mar 2002 B1
6369656 Dening et al. Apr 2002 B2
6369657 Dening et al. Apr 2002 B2
6373318 Dohnke et al. Apr 2002 B1
6376864 Wang Apr 2002 B1
6377125 Pavio et al. Apr 2002 B1
6384433 Barratt et al. May 2002 B1
6387733 Holyoak et al. May 2002 B1
6392487 Alexanian May 2002 B1
6400226 Sato Jun 2002 B2
6404287 Dening et al. Jun 2002 B2
6418174 Benedict Jul 2002 B1
6448793 Barratt et al. Sep 2002 B1
6455877 Ogawa et al. Sep 2002 B1
6455925 Laureanti Sep 2002 B1
6475916 Lee et al. Nov 2002 B1
6477682 Cypher Nov 2002 B2
6521998 Teraguchi et al. Feb 2003 B1
6525611 Dening et al. Feb 2003 B1
6528983 Augustine Mar 2003 B1
6560452 Shealy May 2003 B1
6566963 Yan et al. May 2003 B1
6589877 Thakur Jul 2003 B1
6593597 Sheu Jul 2003 B2
6608367 Gibson et al. Aug 2003 B1
6614281 Baudelot et al. Sep 2003 B1
6621140 Gibson et al. Sep 2003 B1
6624452 Yu et al. Sep 2003 B2
6627552 Nishio et al. Sep 2003 B1
6633073 Rezvani et al. Oct 2003 B2
6633195 Baudelot et al. Oct 2003 B2
6639470 Andrys et al. Oct 2003 B1
6656271 Yonehara et al. Dec 2003 B2
6657592 Dening et al. Dec 2003 B2
6660606 Miyabayashi et al. Dec 2003 B2
6701134 Epperson Mar 2004 B1
6701138 Epperson et al. Mar 2004 B2
6706576 Ngo et al. Mar 2004 B1
6720831 Dening et al. Apr 2004 B2
6723587 Cho et al. Apr 2004 B2
6724252 Ngo et al. Apr 2004 B2
6727762 Kobayashi Apr 2004 B1
6748204 Razavi et al. Jun 2004 B1
6750158 Ogawa et al. Jun 2004 B2
6750482 Seaford et al. Jun 2004 B2
6759907 Orr et al. Jul 2004 B2
6802902 Beaumont et al. Oct 2004 B2
6815722 Lai et al. Nov 2004 B2
6815730 Yamada Nov 2004 B2
6822842 Friedrichs et al. Nov 2004 B2
6861677 Chen Mar 2005 B2
6943631 Scherrer et al. Sep 2005 B2
7015512 Park et al. Mar 2006 B2
7026665 Smart et al. Apr 2006 B1
7033961 Smart et al. Apr 2006 B1
7042150 Yasuda May 2006 B2
7052942 Smart et al. May 2006 B1
7135747 Allen et al. Nov 2006 B2
7211822 Nagahama et al. May 2007 B2
7408182 Smart et al. Aug 2008 B1
7449762 Singh Nov 2008 B1
7459356 Smart et al. Dec 2008 B1
7557421 Shealy et al. Jul 2009 B1
7719055 McNutt et al. May 2010 B1
7768758 Maier et al. Aug 2010 B2
7804262 Schuster et al. Sep 2010 B2
7923826 Takahashi Apr 2011 B2
7935983 Saito et al. May 2011 B2
7968391 Smart et al. Jun 2011 B1
7974322 Ueda et al. Jul 2011 B2
8017981 Sankin et al. Sep 2011 B2
8110915 Fowlkes Feb 2012 B2
8237198 Wu et al. Aug 2012 B2
8405068 O'Keefe Mar 2013 B2
8502258 O'Keefe Aug 2013 B2
8530978 Chu et al. Sep 2013 B1
8633518 Suh et al. Jan 2014 B2
8692294 Chu et al. Apr 2014 B2
8729680 Kobayashi May 2014 B2
8785976 Nakajima et al. Jul 2014 B2
8988097 Ritenour Mar 2015 B2
9070761 Johnson Jun 2015 B2
9082836 Senda Jul 2015 B2
9093420 Kobayashi et al. Jul 2015 B2
9124221 Vetury et al. Sep 2015 B2
9129802 Ritenour Sep 2015 B2
9136341 Kobayashi et al. Sep 2015 B2
20010040246 Ishii Nov 2001 A1
20010054848 Baudelot et al. Dec 2001 A1
20020005528 Nagahara Jan 2002 A1
20020031851 Linthicum et al. Mar 2002 A1
20020048302 Kimura Apr 2002 A1
20020079508 Yoshida Jun 2002 A1
20030003630 Iimura et al. Jan 2003 A1
20030122139 Meng et al. Jul 2003 A1
20030160307 Gibson et al. Aug 2003 A1
20030160317 Sakamoto et al. Aug 2003 A1
20030206440 Wong Nov 2003 A1
20030209730 Gibson et al. Nov 2003 A1
20030218183 Micovic et al. Nov 2003 A1
20040070003 Gaska et al. Apr 2004 A1
20040130037 Mishra et al. Jul 2004 A1
20040144991 Kikkawa Jul 2004 A1
20040227211 Saito et al. Nov 2004 A1
20040241916 Chau et al. Dec 2004 A1
20050110042 Saito et al. May 2005 A1
20050139868 Anda Jun 2005 A1
20050189559 Saito et al. Sep 2005 A1
20050189562 Kinzer et al. Sep 2005 A1
20050194612 Beach Sep 2005 A1
20050212049 Onodera Sep 2005 A1
20050225912 Pant et al. Oct 2005 A1
20050271107 Murakami et al. Dec 2005 A1
20050274977 Saito et al. Dec 2005 A1
20060043385 Wang et al. Mar 2006 A1
20060043501 Saito et al. Mar 2006 A1
20060054924 Saito et al. Mar 2006 A1
20060068601 Lee et al. Mar 2006 A1
20060124960 Hirose et al. Jun 2006 A1
20060205161 Das et al. Sep 2006 A1
20060243988 Narukawa et al. Nov 2006 A1
20060246680 Bhattacharyya Nov 2006 A1
20060249750 Johnson et al. Nov 2006 A1
20060255377 Tu Nov 2006 A1
20070026676 Li et al. Feb 2007 A1
20070093009 Baptist et al. Apr 2007 A1
20070138545 Lin et al. Jun 2007 A1
20070158692 Nakayama et al. Jul 2007 A1
20070164326 Okamoto et al. Jul 2007 A1
20070205433 Parikh et al. Sep 2007 A1
20070295985 Weeks, Jr. et al. Dec 2007 A1
20080023706 Saito et al. Jan 2008 A1
20080073752 Asai et al. Mar 2008 A1
20080112448 Ueda et al. May 2008 A1
20080121875 Kim May 2008 A1
20080142837 Sato et al. Jun 2008 A1
20080179737 Haga et al. Jul 2008 A1
20080190355 Chen et al. Aug 2008 A1
20080217753 Otani Sep 2008 A1
20080272382 Kim et al. Nov 2008 A1
20080272422 Min Nov 2008 A1
20080283821 Park et al. Nov 2008 A1
20080308813 Suh et al. Dec 2008 A1
20090072269 Suh et al. Mar 2009 A1
20090090984 Khan et al. Apr 2009 A1
20090146185 Suh et al. Jun 2009 A1
20090146186 Kub et al. Jun 2009 A1
20090166677 Shibata et al. Jul 2009 A1
20090200576 Saito et al. Aug 2009 A1
20090273002 Chiou et al. Nov 2009 A1
20090278137 Sheridan et al. Nov 2009 A1
20100025657 Nagahama et al. Feb 2010 A1
20100025737 Ishikura Feb 2010 A1
20100133567 Son Jun 2010 A1
20100187575 Baumgartner et al. Jul 2010 A1
20100207164 Shibata et al. Aug 2010 A1
20100230656 O'Keefe Sep 2010 A1
20100230717 Saito Sep 2010 A1
20100258898 Lahreche Oct 2010 A1
20110017972 O'Keefe Jan 2011 A1
20110025422 Marra et al. Feb 2011 A1
20110031633 Hsu et al. Feb 2011 A1
20110095337 Sato Apr 2011 A1
20110101300 O'Keefe May 2011 A1
20110108887 Fareed et al. May 2011 A1
20110115025 Okamoto May 2011 A1
20110127586 Bobde et al. Jun 2011 A1
20110163342 Kim et al. Jul 2011 A1
20110175142 Tsurumi et al. Jul 2011 A1
20110199148 Iwamura Aug 2011 A1
20110211289 Kosowsky et al. Sep 2011 A1
20110242921 Tran et al. Oct 2011 A1
20110290174 Leonard et al. Dec 2011 A1
20120018735 Ishii Jan 2012 A1
20120086497 Vorhaus Apr 2012 A1
20120126240 Won May 2012 A1
20120199875 Bhalla et al. Aug 2012 A1
20120199955 Sun Aug 2012 A1
20120211802 Tamari Aug 2012 A1
20120218783 Imada Aug 2012 A1
20120262220 Springett Oct 2012 A1
20130032897 Narayanan et al. Feb 2013 A1
20130277687 Kobayashi et al. Oct 2013 A1
20130280877 Kobayashi et al. Oct 2013 A1
20140117559 Zimmerman et al. May 2014 A1
20140264266 Li et al. Sep 2014 A1
20140264454 Banerjee et al. Sep 2014 A1
Foreign Referenced Citations (10)
Number Date Country
1187229 Mar 2002 EP
1826041 Aug 2007 EP
H10242584 Sep 1998 JP
2000031535 Jan 2000 JP
2003332618 Nov 2003 JP
2008148511 Jun 2008 JP
2008258419 Oct 2008 JP
20070066051 Jun 2007 KR
2004051707 Jun 2004 WO
2011162243 Dec 2011 WO
Non-Patent Literature Citations (116)
Entry
Author Unknown, “CGHV1J006D: 6 W, 18.0 GHz, GaN HEMT Die,” Cree, Inc., 2014, 9 pages.
Boutros, K.S., et al., “5W GaN MMIC for Millimeter-Wave Applications,” 2006 Compound Semiconductor Integrated circuit Symposium, Nov. 2006, pp. 93-95.
Chang, S.J. et al., “Improved ESD protection by combining InGaN—GaN MQW LEDs with GaN Schottky diodes,” IEEE Electron Device Letters, Mar. 2003, vol. 24, No. 3, pp. 129-131.
Chao, C-H., et al., “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals,” Applied Physics Letters, vol. 89, 2006, 4 pages.
Cho, H., et al., “High Density Plasma Via Hole Etching in SiC,” Journal of Vacuum Science & Technology A: Surfaces and Films, vol. 19, No. 4, Jul./Aug. 2001, pp. 1878-1881.
Darwish, A.M., et al., “Dependence of GaN HEMT Millimeter-Wave Performance on Temperature,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, No. 12, Dec. 2009, pp. 3205-3211.
Fath, P. et al., “Mechanical wafer engineering for high efficiency solar cells: An investigation of the induced surface Damage,” Conference Record of the Twenty-Fourth IEEE Photovoltaic Specialists Conference, Dec. 5-9, 1994, vol. 2, pp. 1347-1350.
Han, D.S. et al., “Improvement of Light Extraction Efficiency of Flip-Chip Light-Emitting Diode by Texturing the Bottom Side Surface of Sapphire Substrate,” IEEE Photonics Technology Letters, Jul. 1, 2006, vol. 18, No. 13, pp. 1406-1408.
Hibbard, D.L. et al., “Low Resistance High Reflectance Contacts to p—GaN Using Oxidized Ni/Au and Al or Ag,” Applied Physics Letters, vol. 83, No. 2, Jul. 14, 2003, pp. 311-313.
Krüger, Olaf, et al., “Laser-Assisted Processing of VIAs for AlGaN/GaN HEMTs on SiC Substrates,” IEEE Electron Device Letters, vol. 27, No. 6, Jun. 2006, pp. 425-427.
Lee, S.J., “Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes,” Optical Engineering, SPIE, Jan. 2006, vol. 45, No. 1, 14 pages.
Shchekin, O.B. et al., “High performance thin-film flip-chip InGaN—GaN light-emitting diodes,” Applied Physics Letters, vol. 89, 071109, Aug. 2006, 4 pages.
Sheppard, S.T., et al., “High Power Demonstration at 10 GHz with GaN/AlGaN HEMT Hybrid Amplifiers,” 2000 Device Research Conference, Conference Digest, Jun. 2000, pp. 37-38.
Wierer, J.J., et al., “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, vol. 78, No. 22, May 28, 2001, pp. 3379-3381.
Windisch, R. et al., “40% Efficient Thin-Film Surface-Textured Light-Emitting Diodes by Optimization of Natural Lithography,” IEEE Transactions on Electron Devices, Jul. 2000, vol. 47, No. 7, pp. 1492-1498.
Windisch, R. et al., “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Applied Physics Letters, Oct. 8, 2001, vol. 79, No. 15, pp. 2315-2317.
Final Office Action for U.S. Appl. No. 10/620,205, mailed Dec. 16, 2004, 9 pages.
Non-Final Office Action for U.S. Appl. No. 10/620,205, mailed Jul. 23, 2004, 7 pages.
Non-Final Office Action for U.S. Appl. No. 10/620,205, mailed May 3, 2005, 10 pages.
Non-Final Office Action for U.S. Appl. No. 10/689,980, mailed Jan. 26, 2005, 7 pages.
Non-Final Office Action for U.S. Appl. No. 10/689,980, mailed May 12, 2005, 8 pages.
Non-Final Office Action for U.S. Appl. No. 11/397,279, mailed Oct. 31, 2007, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/397,279, mailed Apr. 17, 2008, 7 pages.
Final Office Action for U.S. Appl. No. 10/689,979, mailed Jun. 29, 2005, 16 pages.
Non-Final Office Action for U.S. Appl. No. 10/689,979, mailed Jan. 11, 2005, 14 pages.
Notice of Allowance for U.S. Appl. No. 10/689,979, mailed Oct. 26, 2005, 6 pages.
Non-Final Office Action for U.S. Appl. No. 11/360,734, mailed Jan. 18, 2008, 10 pages.
Notice of Allowance for U.S. Appl. No. 11/360,734, mailed Aug. 7, 2008, 6 pages.
Final Office Action for U.S. Appl. No. 11/937,207, mailed Nov. 19, 2009, 9 pages.
Non-Final Office Action for U.S. Appl. No. 11/937,207, mailed Mar. 18, 2010, 10 pages.
Non-Final Office Action for U.S. Appl. No. 11/937,207, mailed May 29, 2009, 11 pages.
Notice of Allowance for U.S. Appl. No. 11/937,207, mailed Feb. 28, 2011, 8 pages.
Quayle Action for U.S. Appl. No. 11/937,207, mailed Nov. 24, 2010, 4 pages.
Final Office Action for U.S. Appl. No. 11/458,833, mailed Dec. 15, 2008, 13 pages.
Non-Final Office Action for U.S. Appl. No. 11/458,833, mailed Apr. 1, 2008, 10 pages.
Notice of Allowance for U.S. Appl. No. 11/458,833, mailed Mar. 9, 2009, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/795,926, mailed Dec. 19, 2014, 14 pages.
Non-Final Office Action for U.S. Appl. No. 13/942,998, mailed Nov. 19, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/871,526, mailed Dec. 16, 2014, 17 pages.
Invitation to Pay Fees for PCT/US2013/056105, mailed Nov. 5, 2013, 7 pages.
International Search Report and Written Opinion for PCT/US2013/056105, mailed Feb. 12, 2014, 15 pages.
Non-Final Office Action for U.S. Appl. No. 13/910,202, mailed Sep. 25, 2014, 9 pages.
Final Office Action for U.S. Appl. No. 13/910,202, mailed Jan. 20, 2015, 10 pages.
International Search Report and Written Opinion for PCT/US2013/056126, mailed Oct. 25, 2013, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/927,182, mailed May 1, 2014, 7 pages.
Final Office Action for U.S. Appl. No. 13/927,182, mailed Sep. 17, 2014, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/974,488, mailed Oct. 28, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/914,060, mailed Nov. 13, 2014, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/966,400, mailed Sep. 3, 2014, 9 pages.
Final Office Action for U.S. Appl. No. 13/966,400, mailed Dec. 3, 2014, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/957,698, mailed Nov. 5, 2014, 11 pages.
International Search Report and Written Opinion for PCT/US2013/056132, mailed Oct. 10, 2013, 11 pages.
Final Office Action for U.S. Appl. No. 13/973,482, mailed Nov. 5, 2014, 9 pages.
International Search Report and Written Opinion for PCT/US2013/056187, mailed Oct. 10, 2013, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/973,482, mailed May 23, 2014, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/795,986, mailed Apr. 24, 2014, 13 pages.
Final Office Action for U.S. Appl. No. 13/795,986, mailed Dec. 5, 2014, 16 pages.
International Search Report for GB0902558.6, issued Jun. 15, 2010, by the UK Intellectual Property Office, 2 pages.
Examination Report for British Patent Application No. 0902558.6, mailed Nov. 16, 2012, 5 pages.
Examination Report for British Patent Application No. GB0902558.6, issued Feb. 28, 2013, 2 pages.
Non-Final Office Action for U.S. Appl. No. 12/705,869, mailed Feb. 9, 2012, 10 pages.
Notice of Allowance for U.S. Appl. No. 12/705,869, mailed Apr. 4, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 12/705,869, mailed Jul. 19, 2012, 8 pages.
Advisory Action for U.S. Appl. No. 12/841,225, mailed Apr. 16, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/841,225 mailed Feb. 1, 2012, 9 pages.
Non-Final Office Action for U.S. Appl. No. 12/841,225, mailed May 2, 2012, 10 pages.
Non-Final Office Action for U.S. Appl. No. 12/841,225 mailed Dec. 22, 2011, 8 pages.
Non-Final Office Action for U.S. Appl. No. 12/841,257 mailed Jan. 5, 2012, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/795,926, mailed Apr. 27, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/942,998, mailed Apr. 27, 2015, 8 pages.
Final Office Action for U.S. Appl. No. 13/871,526, mailed Jun. 17, 2015, 11 pages.
Advisory Action for U.S. Appl. No. 13/871,526, mailed Sep. 3, 2015, 3 pages.
International Preliminary Report on Patentability for PCT/US2013/056105, mailed Mar. 5, 2015, 12 pages.
Advisory Action for U.S. Appl. No. 13/910,202, mailed Apr. 6, 2015, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/910,202, mailed May 14, 2015, 9 pages.
International Preliminary Report on Patentability for PCT/US2013/056126, mailed Mar. 5, 2015, 7 pages.
Final Office Action for U.S. Appl. No. 13/974,488, mailed Feb. 20, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/974,488, mailed May 29, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/966,400, mailed Feb. 20, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/957,698, mailed Mar. 30, 2015, 7 pages.
Corrected/Supplemental Notice of Allowability for U.S. Appl. No. 13/957,689, mailed May 20, 2015, 3 pages.
Corrected/Supplement Notice of Allowability for U.S. Appl. No. 13/957,689, mailed Jun. 9, 2015, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/957,698, mailed Jul. 20, 2015, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/557,940, mailed Aug. 31, 2015, 8 pages.
International Preliminary Report on Patentability for PCT/US2013/056132, mailed Mar. 5, 2015, 9 pages.
International Preliminary Report on Patentability for PCT/US2013/056187, mailed Mar. 12, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/973,482, mailed May 4, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/795,986, mailed Mar. 6, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/067,019, mailed Mar. 25, 2015, 7 pages.
Advisory Action for U.S. Appl. No. 10/620,205, mailed Feb. 15, 2005, 2 pages.
Notice of Allowance for U.S. Appl. No. 10/620,205, mailed Dec. 8, 2005, 4 pages.
Notice of Allowance for U.S. Appl. No. 12/841,225, mailed Nov. 9, 2012, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/749,274, mailed Feb. 22, 2016, 6 pages.
Corrected/Supplemental Notice of Allowability for U.S. Appl. No. 13/957,698, mailed Nov. 4, 2015, 4 pages.
Final Office Action for U.S. Appl. No. 14/557,940, mailed Feb. 8, 2016, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/067,019, mailed Oct. 13, 2015, 6 pages.
Huang, Xiucheng et al., “Analytical Loss Model of High Voltage GaN HEMT in Cascode Configuration,” IEEE Transactions on Power Electronics, vol. 29, No. 5, May 2014, IEEE, pp. 2208-2219.
Lee, Han S., “GaN-on-Silicon-Based Power Switch in Sintered, Dual-Side Cooled Package,” PowerElectronics.com, Jan. 2, 2013, 5 pages, http://powerelectronics.com/discrete-power-semis/gan-silicon-based-power-switch-sintered-dual-side-cooled-package.
Liang, Zhenxian et al., “Embedded Power—An Integration Packaging Technology for IPEMs,” The International Journal of Microcircuits and Electronic Packaging, vol. 23, No. 4, 2000, pp. 481-487.
Li, Xueqing et al., “Investigation of SiC Stack and Discrete Cascodes” PowerPoint Presentation, PCIM Europe, May 20-22, 2014, Nuremberg, Germany, 26 slides.
Stevanovic, Ljubisa D. et al., “Low Inductance Power Module with Blade Connector,” 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb. 21-25, 2010, IEEE, Palm Springs, CA, pp. 1603-1609.
Lin, C.K. et al., “GaN Lattice Matched ZnO/Pr2O3 Film as Gate Dielectric Oxide Layer for AlGaN/GaN HEMT,” IEEE ntemational Conference of Electron Devices and Solid-State Circuits, EDSSC 2009, IEEE, Dec. 25-27, 2009, Xi'an, China, pp. 408-411.
Lin, H. C. et al., “Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs,” Applied Physics Letters, vol. 87, 2005, pp. 182094-1 to 182094-3.
Lossy, R. et al., “Gallium nitride MIS-HEMT using atomic layer deposited Al2O3 as gate dielectric,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, No. 1, Jan./Feb. 2013, 6 pages.
Seok, O. et al., “High-breakdown voltage and low on-resistance AlGaN/GaN on Si MOS-HEMTs employing an extended Tan gate on HfO2 gate insulator,” Electronics Letters, vol. 49, No. 6, Institute of Engineering and Technology, Mar. 14, 2013, 2 pages.
Tang, K. et al., “Enhancement-mode GaN Hybrid MOS-HEMTs with Breakdown Voltage of 1300V,” 21st International Symposium on Power Semiconductor Devices & IC's, ISPSD 2009, IEEE, Jun. 14-18, 2009, Barcelona, Spain, pp. 279-282.
Ye, P.D., et al., “GaN MOS-HEMT Using Atomic Layer Deposition Al2O3 as Gate Dielectric and Surface Passivation,” International Journal of High Speed Electronics and Systems, vol. 14, No. 3, 2004, pp. 791-796.
Non-Final Office Action for U.S. Appl. No. 14/731,736, mailed Jan. 14, 2016, 10 pages.
Liang, Zhenxian et al., “Embedded Power—A Multilayer Integration Technology for Packaging of IPEMs and PEBBs,” Proceedings of International Workshop on Integrated Power Packaging, Jul. 14-16, 2000, IEEE, pp. 41-45.
Non-Final Office Action for U.S. Appl. No. 13/871,526, mailed Mar. 8, 2016, 13 pages.
Notice of Allowance for U.S. Appl. No. 14/731,736, mailed May 9, 2016, 8 pages.
Final Office Action for U.S. Appl. No. 14/749,274, mailed Jun. 23, 2016, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/749,274, mailed Aug. 15, 2016, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/797,573, mailed Jul. 7, 2016, 8 pages.
Final Office Action for U.S. Appl. No. 13/871,526, mailed Aug. 30, 2016, 14 pages.
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 13/871,526, mailed Oct. 31, 2016, 4 pages.
Related Publications (1)
Number Date Country
20160071781 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
62046236 Sep 2014 US