This disclosure relates to the field of microelectronic devices. More particularly, this disclosure relates to graphene in microelectronic devices.
Graphene is a promising material for microelectronic devices. A commonly proposed architecture for a gated graphene component is a graphitic layer containing graphene on a substrate, with metal contacts on the graphene and a channel region in the graphene between the contacts. Integration of this component into a microelectronic device has been challenging, due to degradation of the graphene during processes to form the microelectronic devices.
The present disclosure introduces a microelectronic device which includes a gated graphene component. The gated graphene component includes a graphitic layer containing one or more layers of graphene. The graphitic layer has a channel region, a first contact region adjacent to the channel region and a second contact region adjacent to the channel region. The gated graphene component includes a patterned hexagonal boron nitride (hBN) layer on the graphitic layer over the channel region, and a gate over the patterned hBN layer above the channel region. A first connection is disposed on the graphitic layer in the first contact region, and a second connection is disposed on the graphitic layer in the second contact region. The patterned hBN layer does not extend completely under the first connection or under the second connection. A method of forming the gated graphene component in the microelectronic device is disclosed.
The present disclosure is described with reference to the attached figures. The figures are not drawn to scale and they are provided merely to illustrate the disclosure. Several aspects of the disclosure are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide an understanding of the disclosure. The present disclosure is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present disclosure.
A microelectronic device includes a gated graphene component having a graphitic layer that contains one or more layers of graphene. The graphitic layer includes a channel region, a first contact region adjacent to the channel region and a second contact region adjacent to the channel region. The graphene extends from the channel region into the first contact region and the second contact region. The gated graphene component includes a patterned hexagonal boron nitride (hBN) layer on the graphitic layer over the channel region, and a gate over the patterned hBN layer above the channel region. A first connection is disposed on the graphitic layer in the first contact region, and a second connection is disposed on the graphitic layer in the second contact region. The patterned hBN layer does not extend completely under the first connection or completely under the second connection. A method of forming the gated graphene component in the microelectronic device is disclosed.
For the purposes of this disclosure, the term “lateral” is understood to refer to a direction parallel to a plane of the top surface of the substrate. Terms such as over, above, under, and below may be used in this disclosure. These terms should not be construed as limiting the position or orientation of a structure or element, but should be used to provide spatial relationship between structures or elements.
For the purposes of this disclosure, it will be understood that, if an element is referred to as being “on” another element, it may be directly on the other element, or intervening elements may be present. Similarly, if an element is referred to as being “adjacent to” another element, it may be directly adjacent to the other element, or intervening elements may be present.
The gated graphene component 102 of the instant example includes an optional lower hBN layer 112 over the top surface 110. The gated graphene component 102 includes a graphitic layer 114 over the top surface 110, on the lower hBN layer 112, if present. The graphitic layer 114 includes one or more layers of graphene. The graphitic layer 114 includes a channel region 116, a first contact region 118 adjacent to the channel region 116, and a second contact region 120 adjacent to the channel region 116. The graphene extends from the channel region 116 into the first contact region 118, and from the channel region 116 into the second contact region 120.
A first connection 122 is disposed on the graphitic layer 114 in the first contact region 118. A second connection 124 is disposed on the graphitic layer 114 in the second contact region 120. The first connection 122 and the second connection 124 provide electrical connections to the graphene in the graphitic layer 114. The first connection 122 and the second connection 124 may include metal, graphene, carbon nanotubes, or other electrically conductive material. Barrier caps 126 may be disposed over the first connection 122 and the second connection 124. The barrier caps 126 may include material such as titanium nitride or tantalum nitride, which inhibits diffusion of nitrogen and boron.
The gated graphene component 102 includes a patterned hBN layer 128 on the graphitic layer 114 over the channel region 116. The patterned hBN layer 128 does not extend completely under the first connection 122 or completely under the second connection 124. The patterned hBN layer 128 may optionally extend past the first connection 122 and the second connection 124, as shown in
The gated graphene component 102 may include a gate dielectric layer 130 over the patterned hBN layer 128 above the channel region 116. The gate dielectric layer 130 may include silicon dioxide, silicon nitride, silicon oxynitride, hafnium oxide, zirconium oxide, tantalum oxide, or such. The gate dielectric layer 130 may be, for example, 1 nanometer to 10 nanometers thick.
The gated graphene component 102 may further include contact spacers 132 adjacent to lateral surfaces of the first connection 122 and the second connection 124. The contact spacers 132 do not extend over the channel region 116. The contact spacers 132 may include silicon dioxide, silicon nitride, or other dielectric materials. In the instant example, the gate dielectric layer 130 extends along the lateral surfaces of the first connection 122 and the second connection 124, so that the contact spacers 132 are separated from the first connection 122 and the second connection 124 by the gate dielectric layer 130. Other configurations of the contact spacers 132 and the gate dielectric layer 130, relative to the first connection 122 and the second connection 124, are within the scope of the instant example.
The gated graphene component 102 includes a gate 134 over the gate dielectric layer 130 above the channel region 116. The gate 134 may include one or more metals such as aluminum, copper, titanium, titanium nitride, tantalum, tantalum nitride, and tungsten, to provide a desired work function. The gate 134 is laterally separated from the first connection 122 and the second connection 124 by the contact spacers 132.
A dielectric layer 136 may be disposed over the gated graphene component 102 and the substrate 104. The dielectric layer 136 may be a pre-metal dielectric (PMD) layer 136 which includes one or more sub-layers of dielectric material, for example a PMD liner of silicon nitride, a layer of silicon dioxide-based material, a layer of phosphorus silicate glass (PSG) or boron phosphorus silicate glass (BPSG), and a cap layer of silicon nitride, silicon oxynitride, silicon carbide or silicon carbide nitride. Other structures and compositions for the dielectric layer 136 are within the scope of the instant example. Contacts 138 may be disposed through the dielectric layer 136 to provide electrical connections to the gate 134, the first connection 122, and the second connection 124. The contacts 138 may optionally make electrical connections to the first connection 122 and the second connection 124 through the barrier caps 126, as shown in
During operation of the microelectronic device 100, current may be flowed from the first connection 122 through the graphene in the graphitic layer 114 to the second connection 124. The patterned hBN layer 128 may protect the graphitic layer 114 from degradation during fabrication and use of the microelectronic device 100, advantageously providing desired values of charge carrier mobility in the graphene through the channel region 116. The lower hBN layer 112, if present, may further advantageously protect the graphitic layer 114.
The substrate 204 includes dielectric material 208 extending to a top surface 210 of the substrate 204. The dielectric material 208 may be part of a dielectric layer such as field oxide, formed over the semiconductor material 206, as depicted in
A lower metal layer 240 is formed over the dielectric material 208. The lower metal layer 240 includes one or more metals suitable for subsequent precipitation of an hBN layer, for example, cobalt, nickel, copper, ruthenium, rhodium, palladium, silver, rhenium, iridium, platinum, gold, or any combination thereof. These metals are not an exhaustive list, and are provided by way of examples. The lower metal layer (240) may include a homogeneous alloy or mixture of two or more different metals. The lower metal layer (240) may include a layered structure of two or more layers with different metals, for example a copper/nickel/copper stack. The lower metal layer (240) may be formed, for example, by a sputter process, an evaporation process, a chemical vapor deposition (CVD) process, a metal organic chemical vapor deposition (MOCVD) process, or an atomic layer deposition (ALD) process. A thickness of the lower metal layer 240 is appropriate for precipitation of an hBN layer onto the dielectric material 208, and thus may be selected based on the composition of the lower metal layer 240. For example, the lower metal layer 240 may have a thickness of 50 nanometers to 500 nanometers. The lower metal layer 240 may be patterned, so as to extend only over the area for the gated graphene component 202. Alternately, the lower metal layer 240 may extend over the whole substrate 204, as depicted in
Boron, denoted as “Boron” in
Referring to
Referring to
Referring to
Referring to
The first connection 222 makes contact to the graphitic layer 214 in a first contact region 218 of the graphitic layer 214. The second connection 224 makes contact to the graphitic layer 214 in a second contact region 220 of the graphitic layer 214. The graphitic layer 214 has a channel region 216 adjacent to the first contact region 218 and adjacent to the second contact region 220. Use of the lower metal layer 240 to provide the first connection 222 and the second connection 224 may advantageously provide a lower contact resistance to the graphitic layer 214 compared to a method which removes the lower metal layer 240 and uses a separate metal layer to form the first connection 222 and the second connection 224.
Referring to
Referring to
The upper metal layer 250 and the sacrificial hBN layer 254 are subsequently removed, leaving the patterned hBN layer 228 intact. The patterned hBN layer 228 does not extend completely under the first connection 222 or completely under the second connection 224, as a result of the boron and nitrogen of
Referring to
In the instant example, a conformal spacer layer 256 is formed over the gate dielectric layer 230. The conformal spacer layer 256 may include, for example, silicon dioxide, silicon nitride, or silicon oxynitride. The conformal spacer layer 256 may be formed by a PECVD process, a low pressure chemical vapor deposition (LPCVD) process, or other process for forming a conformal layer of dielectric material.
Referring to
Referring to
Formation of the microelectronic device 200 may continue with formation of contacts, interconnects and supporting dielectric layers. The microelectronic device 200 of
The gated graphene component 302 of the instant example includes a lower hBN layer 312 over the top surface 310, and a graphitic layer 314 over the top surface 310. The graphitic layer 314 includes one or more layers of graphene. The graphitic layer 314 includes a channel region 316, a first contact region 318 adjacent to the channel region 316, and a second contact region 320 adjacent to the channel region 316, and the graphene extends from the channel region 316 into the first contact region 318, and from the channel region 316 into the second contact region 320.
The substrate 304 of the instant example includes a first contact field region 358 of semiconductor material having a second, opposite, conductivity type from the semiconductor material 306. The first contact field region 358 is located below the dielectric material 308 and under the first contact region 318 of the graphitic layer 314. In a version of the instant example depicted in
A first connection 322 is disposed on the graphitic layer 314 in the first contact region 318, and a second connection 324 is disposed on the graphitic layer 314 in the second contact region 320. The first connection 322 and the second connection 324 provide electrical connections to the graphene in the graphitic layer 314. The first connection 322 and the second connection 324 may have a composition as disclosed for the first connection 122 and the second connection 124 of
The gated graphene component 302 includes a patterned hBN layer 328 on the graphitic layer 314 over the channel region 316. The patterned hBN layer 328 does not extend completely under the first connection 322 or completely under the second connection 324. The gated graphene component 302 of the instant example includes contact spacers 332 directly adjacent to lateral surfaces of the first connection 322 and the second connection 324. The contact spacers 332 do not extend over the channel region 316. The gated graphene component 302 of the instant example includes a gate dielectric layer 330 over the patterned hBN layer 328 above the channel region 316. In the instant example, the gate dielectric layer 330 extends along the lateral surfaces of the contact spacers 332, so that the gate dielectric layer 330 is separated from the first connection 322 and the second connection 324 by the contact spacers 332. Other configurations of the contact spacers 332 and the gate dielectric layer 330, relative to the first connection 322 and the second connection 324, are within the scope of the instant example.
The gated graphene component 302 includes a gate 334 over the gate dielectric layer 330 above the channel region 316. The gate 334 may have a structure and composition as disclosed for the gate 134 of
A dielectric layer 336 may be disposed over the gated graphene component 302 and the substrate 304. Contacts 338 may be disposed through the dielectric layer 336 to provide electrical connections to the gate 334, and to the first connection 322, and the second connection 324, through the barrier caps 326, as shown in
During operation of the microelectronic device 300, the first contact field region 358 and the second contact field region 360 may be biased relative to the first connection 322 and the second connection 324, to provide a desired carrier concentration in the first contact region 318 and the second contact region 320. Current may be flowed from the first connection 322 through the graphene in the graphitic layer 314 to the second connection 324. The desired carrier concentration in the first contact region 318 and the second contact region 320 may provide a desired resistance of the graphitic layer 314. The patterned hBN layer 328 and the lower hBN layer 312, may advantageously protect the graphitic layer 314, as disclosed in reference to
A first metal layer 440 is formed over the dielectric material 408. The first metal layer 440 includes one or more metals suitable for subsequent precipitation of an hBN layer. The first metal layer 440 may have a structure and composition as disclosed for the lower metal layer 240 of
Boron and nitrogen are introduced into the first metal layer 440 in sufficient quantities to form a saturation condition of boron and a saturation condition of nitrogen in the first metal layer 440 at a temperature suitable for diffusion of the boron and the nitrogen in the first metal layer 440 and precipitation of the hBN layer on the dielectric material 408, for example, 400° C. to 800° C. In the instant example, the boron may be introduced into the first metal layer 440 by ion implanting a first dose of boron ions 462, and the nitrogen may be introduced into the first metal layer 440 by ion implanting a first dose of nitrogen ions 464, as depicted schematically in
Referring to
Referring to
Referring to
Referring to
Carbon is introduced into the second metal layer 466 in sufficient quantities to form a saturation condition of carbon in the second metal layer 466 at a temperature suitable for diffusion of the carbon in the second metal layer 466 and precipitation of the graphitic layer on the lower hBN layer 412, for example, 400° C. to 800° C. In the instant example, the carbon may be introduced into the second metal layer 466 by ion implanting a dose of carbon ions 468, as depicted schematically in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Boron and nitrogen are introduced into the third metal layer 450 in sufficient quantities to form a saturation condition of boron and a saturation condition of nitrogen in the third metal layer 450 at a temperature suitable for diffusion of the boron and the nitrogen and precipitation of the hBN layer on the graphitic layer 414. In the instant example, the boron may be introduced into the third metal layer 450 by ion implanting a second dose of boron ions 474, and the nitrogen may be introduced into the third metal layer 450 by ion implanting a second dose of nitrogen ions 476, as depicted schematically in
Referring to
The third metal layer 450 is subsequently cooled, resulting in diffusion of the boron and the nitrogen to surfaces of the third metal layer 450 and precipitation of a patterned hBN layer 428 on the graphitic layer 414 above the channel region 416, opposite from the lower hBN layer 412. A sacrificial hBN layer 454 may be precipitated on a top surface of the third metal layer 450, opposite from the patterned hBN layer 428. Additional portions of the sacrificial hBN layer 454 may be precipitated on the barrier caps 426, as depicted in
The third metal layer 450 and the sacrificial hBN layer 454 are removed, leaving at least a portion of the patterned hBN layer 428 in place on the graphitic layer 414 above the channel region 416.
Referring to
Referring to
A gate 434 is formed over the gate dielectric layer 430 above the channel region 416. The gate 434 may have a structure and composition as disclosed in reference to the gate 134 of
Various features of the examples disclosed herein may be combined in other manifestations of example integrated circuits. For example, a microelectronic device may have the contact field regions 358 and 360 of
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the disclosure. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the disclosure should be defined in accordance with the following claims and their equivalents.
This application is a continuation of U.S. Nonprovisional Pat. Ser. No. 15/910,817, filed Mar. 2, 2018, the contents of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6531749 | Matsuki | Mar 2003 | B1 |
7732859 | Anderson et al. | Jun 2010 | B2 |
8106383 | Jenkins et al. | Jan 2012 | B2 |
8445893 | Meric et al. | May 2013 | B2 |
8698226 | Jain et al. | Apr 2014 | B2 |
8728880 | Chung et al. | May 2014 | B2 |
8735209 | Meric et al. | May 2014 | B2 |
8803132 | Farmer et al. | Aug 2014 | B2 |
8957404 | Mehr et al. | Feb 2015 | B2 |
9029228 | Seacrist et al. | May 2015 | B2 |
9327982 | Kub et al. | May 2016 | B2 |
9704965 | Cao | Jul 2017 | B1 |
9793214 | Venugopal et al. | Oct 2017 | B1 |
9882008 | Colombo et al. | Jan 2018 | B2 |
10304967 | Venugopal et al. | May 2019 | B1 |
10490673 | Venugopal | Nov 2019 | B2 |
20090155963 | Hawkins et al. | Jun 2009 | A1 |
20100055464 | Sung | Mar 2010 | A1 |
20100218801 | Sung et al. | Sep 2010 | A1 |
20110163298 | Lin et al. | May 2011 | A1 |
20110309334 | Kobayashi | Dec 2011 | A1 |
20120138903 | Chung et al. | Jun 2012 | A1 |
20120286244 | Chiu et al. | Nov 2012 | A1 |
20130207080 | Dimitrakopoulos | Aug 2013 | A1 |
20130240830 | Seacrist et al. | Sep 2013 | A1 |
20130302963 | Kelber et al. | Sep 2013 | A1 |
20140291607 | Kim | Oct 2014 | A1 |
20150364589 | Lee et al. | Dec 2015 | A1 |
20160197148 | Shepard | Jul 2016 | A1 |
20170323977 | Cheng et al. | Nov 2017 | A1 |
20180061967 | Bi et al. | Mar 2018 | A1 |
20180308696 | Colombo et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
103258849 | Aug 2013 | CN |
106803517 | Jun 2017 | CN |
2018010151 | Jan 2018 | WO |
Entry |
---|
Patent Cooperation Treaty International Search Report, PCT/US2019/020553, dated May 24, 2019. |
Extended European Search report in corresponding EP Patent Application No. EP19760285.7, dated Mar. 24, 2021 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20200075779 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15910817 | Mar 2018 | US |
Child | 16661758 | US |