Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer

Abstract
A Magnetic Tunnel Junction (MTJ) device can include a reference magnetic layer having one or more trenches disposed therein. One or more sections of a tunnel barrier layer can be disposed on the walls of the one or more trenches. One or more sections of a free magnetic layer can be disposed on the one or more sections of the tunnel barrier layer in the one or more trenches. One or more sections of a conductive layer can be disposed on the one or more sections of the free magnetic layer in the one or more trenches. One or more insulator blocks can be disposed between corresponding sections of the tunnel barrier layer, corresponding sections of the free magnetic layer and corresponding sections of the conductive layer in the one or more trenches.
Description
BACKGROUND OF THE INVENTION

Computing systems have made significant contributions toward the advancement of modern society and are utilized in a number of applications to achieve advantageous results. Numerous devices, such as desktop personal computers (PCs), laptop PCs, tablet PCs, netbooks, smart phones, game consoles, servers, distributed computing systems, Internet of Things (IoT) devices, Artificial Intelligence (AI), and the like have facilitated increased productivity and reduced costs in communicating and analyzing data in most areas of entertainment, education, business, and science. One common aspect of computing systems is the computing device readable memory. Computing devices may include one or more types of memory, such as volatile random-access memory, non-volatile flash memory, and the like.


An emerging non-volatile memory technology is Magnetoresistive Random Access Memory (MRAM). In MRAM devices, data can be stored in the magnetization orientation between ferromagnetic layers of a Magnetic Tunnel Junction (MTJ). Referring to FIG. 1, a MTJ, in accordance with the convention art, is shown. The MTJ can include two magnetic layers 110, 120, and a magnetic tunnel barrier layer 130. One of the magnetic layers 110 can have a fixed magnetization polarization 140, while the polarization of the magnetization of the other magnetic layer 120 can switch between opposite directions. Typically, if the magnetic layers 110, 120 have the same magnetization polarization, the MTJ cell will exhibit a relatively low resistance value corresponding to a ‘1’ bit state; while if the magnetization polarization between the two magnetic layers 110, 120 is antiparallel the MTJ cell will exhibit a relatively high resistance value corresponding to a ‘0’ bit state. Because the data is stored in the magnetic fields, MRAM devices are non-volatile memory devices. The state of a MRAM cell can be read by applying a predetermined current through the cell and measuring the resulting voltage, or by applying a predetermined voltage across the cell and measuring the resulting current. The sensed current or voltage is proportional to the resistance of the cell and can be compared to a reference value to determine the state of the cell.


MRAM devices are characterized by densities similar to Dynamic Random-Access Memory (DRAM), power consumption similar to flash memory, and speed similar to Static Random-Access Memory (SRAM). Although MRAM devices exhibit favorable performance characteristics as compared to other memory technologies, there is a continuing need for improved MRAM devices and methods of manufacture thereof.


SUMMARY OF THE INVENTION

The present technology may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the present technology directed toward Magnetic Tunnel Junction (MTJ) devices.


In one embodiment, device can include a reference magnetic layer having a plurality of trenches disposed therein. One or more sections of a tunnel barrier layer can be disposed on the walls of the plurality of trenches. One or more sections of a free magnetic layer can be disposed on the one or more sections of the tunnel barrier layer in the plurality of trenches. One or more sections of a conductive layer can be disposed on the one or more sections of the free magnetic layer in the plurality of trenches. A plurality of insulator blocks arranged can be disposed between corresponding sections of the tunnel barrier layer, corresponding sections of the free magnetic layer and corresponding sections of the conductive layer in an array of columns and rows in the plurality of trenches. Corresponding sections of the tunnel barrier layer, corresponding section of the free magnetic layer and corresponding sections of the conductive layer disposed between adjacent insulator blocks in one of the plurality of trenches form a Magnetic Tunnel Junction (MTJ) cell.


In another embodiment, a memory device can include an array of Magnetic Tunnel Junction (MTJ) cells. The array of MTJ cells can include a reference magnetic layer including a plurality of trenches. One or more sections of a tunnel barrier layer can be disposed on the walls of the plurality of trenches. One or more sections of a free magnetic layer can be disposed on the one or more sections of the tunnel barrier layer in the plurality of trenches. One or more sections of a conductive layer can be disposed on the one or more sections of the free magnetic layer in the plurality of trenches. A plurality of insulator blocks arranged can be disposed between corresponding sections of the tunnel barrier layer, corresponding sections of the free magnetic layer and corresponding sections of the conductive layer in an array of columns and rows in the plurality of trenches. A bit line can be coupled to the reference magnetic layer. A plurality of select transistors can be coupled to respective sections of the conductive layer in the plurality of trenches.


In yet another embodiment, a device can include a first reference magnetic layer including a first plurality of trenches, and a second reference magnetic layer including a second plurality of trenches. A plurality of sections of a first tunnel barrier layer can be disposed on the walls of the first plurality of trenches. A plurality of sections of a first free magnetic layer can be disposed on the plurality of sections of the first tunnel barrier layer in the first plurality of trenches. A plurality of sections of a first conductive layer can be disposed on the plurality of sections of the first free magnetic layer in the first plurality of trenches. A first plurality of insulator blocks can be disposed between corresponding sections of the first tunnel barrier layer, corresponding sections of the first free magnetic layer and corresponding sections of the first conductive layer in the first plurality of trenches. Similarly, a plurality of sections of a second tunnel barrier layer can be disposed on the walls of the second plurality of trenches. A plurality of sections of a second free magnetic layer can be disposed on the plurality of sections of the second tunnel barrier layer in the second plurality of trenches. A plurality of sections of a second conductive layer can be disposed on the plurality of sections of the second free magnetic layer in the second plurality of trenches. A second plurality of insulator blocks can be disposed between corresponding sections of the second tunnel barrier layer, corresponding sections of the second free magnetic layer and corresponding sections of the second conductive layer in the second plurality of trenches. In addition, an insulator layer can be disposed between a first side of the second reference magnetic layer and a second side of the first reference magnetic layer. A plurality of interconnects can be disposed through the insulator layer and coupled between respective ones of the plurality of sections of the first conductive layer and the second conductive layer.


In yet another embodiment, a memory device can include an array of Magnetic Tunnel Junction (MTJ) cells arranged in cell columns and cell rows in a plurality of cell levels. The MTJ cells in corresponding cell column and cell row positions in the plurality of cell levels can be coupled together in cell strings. The array of MTJ cells can include a first reference magnetic layer including a first plurality of trenches. A plurality of sections of a first tunnel barrier layer can be disposed on the walls of the first plurality of trenches. A plurality of sections of a first free magnetic layer disposed on the plurality of sections of the first tunnel barrier layer in the first plurality of trenches. A plurality of sections of a first conductive layer can be disposed on the plurality of sections of the first free magnetic layer in the first plurality of trenches. A first plurality of insulator blocks can be disposed between corresponding sections of the first tunnel barrier layer, corresponding sections of the first free magnetic layer and corresponding sections of the first conductive layer in the first plurality of trenches. A first insulator layer can be disposed on a first side of the first reference magnetic layer. A first plurality of interconnects can be disposed through the first insulator layer and coupled to respective ones of the plurality of sections of the first conductive layer. The array of MTJ cells can also include a second reference magnetic layer including a second plurality of trenches. A plurality of sections of a second tunnel barrier layer can be disposed on the walls of the second plurality of trenches. A plurality of sections of a second free magnetic layer can be disposed on the plurality of sections of the second tunnel barrier layer in the second plurality of trenches. A plurality of sections of a second conductive layer can be disposed on the plurality of sections of the second free magnetic layer in the second plurality of trenches. A second plurality of insulator blocks can be disposed between corresponding sections of the second tunnel barrier layer, corresponding sections of the second free magnetic layer and corresponding sections of the second conductive layer in the second plurality of trenches. A second insulator layer can be disposed between a first side of the second reference magnetic layer and a second side of the first reference magnetic layer. A second plurality of interconnects disposed through the second insulator layer and coupled between respective ones of the plurality of sections of the first conductive layer and the second conductive layer.


In yet another embodiment, method of manufacturing a MTJ can include forming a planar reference magnetic layer on a planar non-magnetic insulator layer. One or more trenches can be formed through the planar reference magnetic layer. One or more portions of a tunnel insulator layer can be formed on the walls of the one or more trenches. One or more portions of a free magnetic layer can be formed on the one or more portions of the tunnel insulator layer inside the one or more trenches. One or more insulator blocks can be formed adjacent one or more portions of the free magnetic layer in the one or more trenches. One or more conductive cores can be formed between the one or more insulator blocks and between the one or more portions of the free magnetic layer in the one or more trenches.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present technology are illustrated by way of example and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 shows a Magnetic Tunnel Junction (MTJ), in accordance with the conventional art.



FIG. 2 shows a MTJ, in accordance with aspects of the present technology.



FIG. 3 shows one or more MTJs, in accordance with aspects of the present technology.



FIG. 4 shows one or more MTJs, in accordance with aspects of the present technology.



FIG. 5 shows a device including an array of MTJs, in accordance with aspects of the present technology.



FIG. 6 shows a device including an array of MTJs, in accordance with aspects of the present technology.



FIG. 7 shows a memory device, in accordance with aspects of the present technology.



FIG. 8 shows a memory device, in accordance with aspects of the present technology.



FIG. 9 shows a memory device, in accordance with aspects of the present technology.



FIG. 10 shows a device including an array of MTJ cells, in accordance with aspects of the present technology.



FIG. 11 shows a memory cell array, in accordance with aspects of the present technology.



FIG. 12 shows a memory cell array, in accordance with aspects of the present technology.



FIGS. 13A and 13B show a method of fabricating a MTJ, in accordance with aspects of the present technology.



FIGS. 14A-14H shows a method of fabricating a MTJ, in accordance with aspects of the present technology.



FIGS. 15A-15C shows a method of fabricating a MTJ, in accordance with aspects of the present technology.



FIGS. 16A-16F shows a method of fabricating a MTJ, in accordance with aspects of the present technology.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present technology, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, it is understood that the present technology may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present technology.


Some embodiments of the present technology which follow are presented in terms of routines, modules, logic blocks, and other symbolic representations of operations on data within one or more electronic devices. The descriptions and representations are the means used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. A routine, module, logic block and/or the like, is herein, and generally, conceived to be a self-consistent sequence of processes or instructions leading to a desired result. The processes are those including physical manipulations of physical quantities. Usually, though not necessarily, these physical manipulations take the form of electric or magnetic signals capable of being stored, transferred, compared and otherwise manipulated in an electronic device. For reasons of convenience, and with reference to common usage, these signals are referred to as data, bits, values, elements, symbols, characters, terms, numbers, strings, and/or the like with reference to embodiments of the present technology.


It should be borne in mind, however, that all of these terms are to be interpreted as referencing physical manipulations and quantities and are merely convenient labels and are to be interpreted further in view of terms commonly used in the art. Unless specifically stated otherwise as apparent from the following discussion, it is understood that through discussions of the present technology, discussions utilizing the terms such as “receiving,” and/or the like, refer to the actions and processes of an electronic device such as an electronic computing device that manipulates and transforms data. The data is represented as physical (e.g., electronic) quantities within the electronic device's logic circuits, registers, memories and/or the like, and is transformed into other data similarly represented as physical quantities within the electronic device.


In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” object is intended to denote also one of a possible plurality of such objects. It is also to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


Referring to FIG. 2, a Magnetic Tunnel Junction (MTJ), in accordance with aspects of the technology in the applications identified in the above Cross-Reference to Relate Applications, is shown. The MTJ 200 can include an annular structure 210-240 including an annular non-magnetic layer 210 disposed about an annular conductive layer 220, an annular free magnetic layer 230 disposed about the annular non-magnetic layer 220, and an annular tunnel barrier layer 240 disposed about the annular free magnetic layer 230. The MTJ 200 can also include a planar reference magnetic layer 250 disposed about the annular structure 210-240 and separated from the free magnetic layer 230 by the annular tunnel barrier layer 240.


The MTJ 200 can further include a first planar non-magnetic insulator layer 260 disposed about the annular structure 210-240 and on a first side of the planar reference magnetic layer 250. The MTJ can further include a second planar non-magnetic insulator layer 270 disposed about the annular structure 210-240 and on a second side of the planar reference magnetic layer 250.


In one implementation, the annular structure can be a substantially cylindrical structure with tapered sidewalls. In one implementation, the conical structure can have a taper of approximately 10-45 degrees from a first side of the planar reference magnetic layer 250 to a second side of the planar reference magnetic layer 250. In another expression, the wall angle measured from the normal axis to the horizontal direction of the planar reference magnetic layer 250 can be approximately 10-45 degrees. In one implementation, the annular tunnel insulator 240, the annular free magnetic layer 230, and the annular non-magnetic layer 210 can be concentric regions each bounded by inner and outer respective tapered cylinders having substantially the same axis, disposed about a solid tapered cylindrical region of the annular conductive layer 220.


In aspects, the magnetic field of the planar reference magnetic layer 250 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 250. The magnetic field of the annular free magnetic layer 230 can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer 250 and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer 250. In one implementation, the magnetic field of the annular free magnetic layer 230 can be configured to switch to being substantially parallel to the magnetic field of the planar reference layer 250 in response to a current flow in a first direction through the conductive annular layer 220 and to switch to being substantially anti-parallel to the magnetic field of the planar reference layer 250 in response to a current flow in a second direction through the conductive annular layer 220. More generally, the polarization direction, either parallel or anti-parallel, can be changed by a corresponding change in the current direction. Therefore, regardless of the definition of the current flowing direction, the polarization of the annular free magnetic layer 230 can switch to the other polarization orientation by switching the current direction.


Referring to FIG. 3, one or more Magnetic Tunnel Junctions (MTJs), in accordance with aspects of the present technology, is shown. The one or more MTJs 300 can include a reference magnetic layer 305 including one or more trenches. The one or more MTJs 300 can further include one or more sections of a tunnel barrier layer 310 disposed on the walls of the one or more trenches, one or more sections of a free magnetic layer 315 disposed on the one or more sections of the tunnel barrier layer 310 in the one or more trenches, and one or more sections of a conductive layer 320 disposed on the one or more sections of the free magnetic layer 315 in the one or more trenches. The one or more MTJs 300 can also optionally include one or more sections of a non-magnetic capping layer (not shown) disposed between the one or more sections of the free magnetic layer 315 and the one or more sections of the conductive layer 320 in the one or more trenches. The one or more MTJs 300 can further include one or more insulator blocks 325 disposed between corresponding sections of the tunnel barrier layer 310, free magnetic layer 315 and conductive layer 320. For example, an insulator block 325 can be disposed between a first and second set of corresponding sections of the tunnel barrier layer 310, free magnetic layer 315, the optional non-magnetic capping layer and the conductive layer 320 to form a first MTJ (e.g., Bit 1) and a second MTJ (e.g., Bit 2).


The one or more MTJs 300 can further include a first set of one or more additional layers disposed on a first side of the reference magnetic layer 305. In one instance, the first set of one or more additional layers can include a conductive buffer layer (e.g., Perpendicular Magnetic Anisotropy (PMA) enhancer) (not shown), an insulator layer 330 and one or more interconnects 335. For example, the insulator layer 330 can be disposed on the first side of the reference magnetic layer 305, the tunnel barrier layer 310 and free magnetic layer 315. The interconnect 335 can be coupled to the conductive layer 320.


The one or more MTJs 300 can further include one or more bit lines 340 disposed on a second side of the reference magnetic layer 305, and across one or more insulator blocks 325. For example, one or more bit lines 340 can be coupled to one or more portions of reference magnetic layer 305, and isolated from the tunnel barrier layer 310, free magnetic layer 315 and conductive layer 320 by the one or more insulator blocks 325. The one or more MTJs 300 can also include a second set of one or more additional layers (not shown) disposed on the second side of the reference magnetic layer 305. In one instance, the second set of one or more additional layers can include a capping layer (e.g., PMA enhancer) and an insulator layer.


In one implementation, the reference magnetic layer 305 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi), or compounds thereof, with a thickness of approximately 1-20 nm, preferably 1 to 10 nm, and more preferably 1 to 5 nm. The tunnel insulator layer 310 can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or combination of these oxide materials with a thickness of approximately 0.2 to 2.0 nm. The free magnetic layer 315 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B), Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron (NiFe) alloy or their multilayer combinations with a thickness of approximately 1-10 nm, and preferably 1 to 5 nm. The non-magnetic capping layer (not shown) can include one or more layers of metal protecting layers that can include one or more elements of a Tantalum (Ta), Chromium (Cr), Tungsten (W), Vanadium (V), Platinum (Pt), Ruthenium (Ru), Palladium (Pd), Copper (Cu), Silver (Ag), Rhodium (Rh), or their alloy, with a thickness of approximately 1 to 5 nm. The conductive layer 320 can include one or more layers of Copper (Cu), Aluminum (Al), Ruthenium (Ru), and/or one or more alloys thereof with a thickness of approximately 5-20 nm. The first and second sets of additional layers can include one or more insulator layers of MgO, SiOx, AlOx. are alloys thereof with a thickness of the first and second additional layers in the range of 5 to 20 nm, preferably 5 to 10 nm. The first and second sets of additional layers can also include one or more buffer and/or capping layers of Ta, Cr, W, V, Mo, Pt, Ru, Pd, Cu, Ag, Rh, or their alloy, with a thickness of approximately 1 to 10 nm.


In one implementation, the walls of the one or more trenches can have a taper of approximately 10-45 degrees from the second side of the reference magnetic layer 305 to the first side of the planar reference magnetic layer 305. In another expression, the wall angle measured from the normal axis to the horizontal direction of the reference magnetic layer 305 can be approximately 10-45 degrees.


In aspects, the magnetic field 345 of the reference magnetic layer 305 can have a fixed polarization substantially parallel to a major planar orientation of the planar reference magnetic layer 305, and the magnetic field 350 of the free magnetic layer 315 can have a polarization substantially parallel to the major planar orientation of the reference magnetic layer 305, as illustrated in FIG. 3. The magnetic field 350 of the free magnetic layer 315 can be selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field 345 of the planar reference layer 305. In one implementation, the magnetic field 350 of the free magnetic layer 315 can be configured to switch to being substantially parallel to the magnetic field 345 of the reference layer 305 in response to a current flow in a first direction through the conductive layer 320 and to switch to being substantially anti-parallel to the magnetic field 345 of the reference layer 305 in response to a current flow in a second direction through the conductive layer 320. More generally, the polarization direction, either parallel or anti-parallel, can be changed by a corresponding change in the current direction. Therefore, regardless of the definition of the current flowing direction, the polarization of the free magnetic layer 315 can switch to the other polarization orientation by switching the current direction.


In another implementation, the magnetic field 345 of the reference magnetic layer 305 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 305, and the magnetic field 350 of the free magnetic layer 315 can have a polarization substantially perpendicular to the major planar orientation of the reference magnetic layer 305, as illustrated in FIG. 4.


Referring now to FIG. 5, a device including an array of Magnetic Tunnel Junctions (MTJs), in accordance with aspects of the present technology, is shown. In one implementation, the device 500 can be a memory cell array. The device 500 can include a reference magnetic layer 505 including a plurality of trenches. The trenches can be substantially parallel to each other. The device 500 can further include a plurality of sections of a tunnel barrier layer 510 disposed on the walls of the trenches, a plurality of sections of a free magnetic layer 515 disposed on the sections of the tunnel barrier layer 510 in the trenches, a plurality of sections of an optional non-magnetic capping layer 520 disposed on the sections of the free magnetic layer 515 and one or more sections of a conductive layer 525 disposed on the one or more sections of the non-magnetic capping layer 520 in the one or more trenches. The device 500 can further include a plurality of insulator blocks 530 disposed between corresponding sections of the tunnel barrier layer 510, free magnetic layer 515, optional non-magnetic capping layer 520 and conductive layer 525. For example, insulator blocks 530 can be disposed between a first, second and third set of corresponding sections of the tunnel barrier layer 510, free magnetic layer 515, the optional non-magnetic capping layer 520 and the conductive layer 525 to form a first MTJ 535, a second MTJ 540 and third MTJ 545. The insulator blocks 530 can be arranged in an array in the plurality of trenches to form rows of MTJs 535, 540, 545 along trenches, and columns of MTJs 545, 550, 555 across the trenches.


The one or more MTJs 500 can further include a first set of one or more additional layers disposed on a first side of the reference magnetic layer 505. In one instance, the first set of one or more additional layers can include a conductive buffer layer (e.g., Perpendicular Magnetic Anisotropy (PMA) enhancer for one of the implementations) (not shown), an insulator layer 560 and an interconnect 565. For example, the insulator layer 560 can be disposed on the first side of the reference magnetic layer 505, the tunnel barrier layer 510 and free magnetic layer 415. The interconnect 565 can be coupled to the conductive layer 545 and the optional non-magnetic capping layer 520.


The device 500 can further include one or more bit lines 570 disposed on a second side of the reference magnetic layer 505, and across one or more insulator blocks 530. For example, one or more bit lines 570 can be coupled to one or more portions of reference magnetic layer 505, and isolated from the free magnetic layer 515, optional non-magnetic capping layer 520 and conductive layer 525 by the one or more insulator blocks 530. The device 500 can also include a second set of one or more additional layers (not shown) disposed on the second side of the reference magnetic layer 505. In one instance, the second set of one or more additional layers can include a capping layer (e.g., PMA enhancer for one of the implementations) and an insulator layer. The device can further include a plurality of select elements 575, 580, 585, a plurality of source lines 592, 594, 596, and a plurality of word lines 598. The MTJ cells 535-555 arranged along columns and rows can be coupled by a corresponding select transistor 575, 580, 585 to a respective source line 592, 594, 596. The gate of the select transistors 575, 580, 585 can be coupled to a respective word line 598.


In one implementation, the reference magnetic layer 505 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi), or compounds thereof, with a thickness of approximately 1-20 nm, preferably 1 to 10 nm, and more preferably 1 to 5 nm. The tunnel insulator layer 510 can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or combination of these oxide materials with a thickness of approximately 0.2 to 2.0 nm. The free magnetic layer 515 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B), Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron (NiFe) alloy or their multilayer combinations with a thickness of approximately 1-10 nm, and preferably 1 to 5 nm. The non-magnetic capping layer 520 can include one or more layers of metal protecting layers that can include one or more elements of a Tantalum (Ta), Chromium (Cr), Tungsten (W), Vanadium (V), Platinum (Pt), Ruthenium (Ru), Palladium (Pd), Copper (Cu), Silver (Ag), Rhodium (Rh), or their alloy, with a thickness of approximately 1 to 5 nm. The conductive layer 525 can include one or more layers of Copper (Cu), Aluminum (Al), Ruthenium (Ru), and/or one or more alloys thereof with a thickness of approximately 5-20 nm. The first and second sets of additional layers can include one or more insulator layers of MgO, SiOx, AlOx. and alloys thereof with a thickness of the first and second additional layers in the range of 5 to 20 nm, preferably 5 to 10 nm. The first and second sets of additional layers can also include one or more buffer and/or capping layers of Ta, Cr, W, V, Mo, Pt, Ru, Pd, Cu, Ag, Rh, or their alloy, with a thickness of approximately 1 to 10 nm.


In one implementation, the walls of the one or more trenches can have a taper of approximately 10-45 degrees from the second side of the reference magnetic layer 505 to the first side of the reference magnetic layer 505. In another expression, the wall angle measured from the normal axis to the horizontal direction of the reference magnetic layer 505 can be approximately 10-45 degrees.


In aspects, the magnetic field of the reference magnetic layer 505 can have a fixed polarization substantially parallel to a major planar orientation of the planar reference magnetic layer 505, and the magnetic field of the free magnetic layer 515 can have a polarization substantially parallel to the major planar orientation of the reference magnetic layer 505, as illustrated in FIG. 3. The magnetic field of a given portion of the free magnetic layer 515 can be selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer 505. In one implementation, the magnetic field of a given portion of the free magnetic layer 515 can be configured to switch to being substantially parallel to the magnetic field of the reference layer 505 in response to a current flow in a first direction through a corresponding portion of the conductive layer 525 and to switch to being substantially anti-parallel to the magnetic field of the reference layer 505 in response to a current flow in a second direction through the corresponding portion of the conductive layer 525. In another implementation, the magnetic field of the reference magnetic layer 505 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 505, and the magnetic field of the free magnetic layer 515 can have a polarization substantially perpendicular to the major planar orientation of the reference magnetic layer 505, as illustrated in FIG. 4.


Referring now to FIG. 6, a schematic representation of a memory cell array as described above with respect to FIG. 5 is shown. The memory cell array 500 can include a plurality of MTJ cells 535-555, a plurality of bit lines 570, a plurality of source lines 592, 594, 596, a plurality of word lines 598, and a plurality of select transistor 575, 580, 585. The plurality of MTJ cells 535-555 can be coupled to one or more bit lines 570. The MTJ cells arranged along columns 535, 540, 545 can be coupled by a corresponding select transistor 598 to a respective source line 592, 594, 596. The gate of the select transistors 592, 594, 596 can be coupled to a respective word line 598. In one implementation, a logic ‘0’ state can be written to a given memory cell 53510 by biasing the respective bit line 570 at a bit line write potential (e.g., VBLW), biasing the respective source line 575 at a ground potential, and driving the respective word line 598 at a word line write potential (e.g., VWLW=VHi). The word lines 598 for the cells that are not being written to can be biased at a ground potential. In addition, the other source lines 594, 596 can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line write potential or some portion thereof. A logic ‘1’ state can be written to the given memory cell 535 by biasing the respective bit line 570 at a ground potential, biasing the respective source line 592 at a source line write potential (e.g., VSLW), and driving the respective word line 598 at the word line write potential (e.g., VWLW=VHi). The word lines for the cells that are not being written to can be biased at ground potential. In addition, the other source lines 594, 596 can be biased at a low potential or held in a high impedance state. The state of the given memory cell 535 can be read by biasing the respective bit line 570 at a bit line read potential (e.g., VBLR), biasing the respective source line 592 at a ground potential, driving the respective word line 598 at a word line read potential (VWLR=VHi), and sensing the resulting current on the respective source line 592. The word lines for the cells that are not being read can be biased at a ground potential. In addition, the other source lines 594, 596 can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line read potential or some portion thereof.


Referring now to FIG. 7, a memory device, in accordance with aspects of the present technology, is shown. The memory device 700 can include a plurality of memory cell array blocks 705-720. Each memory cell array block 705-720 can include a plurality of MTJ cells as described above in more detail with respect to FIGS. 5 and 6. Two or more bit lines 730, 735 of the memory cell array blocks 710, 715 arranged in respective columns can be coupled together by a corresponding global bit line 740. In addition, the source lines 745 of the memory cell array blocks 710, 715 arranged in respective columns can be coupled together. Likewise, the word lines 750 of the memory cell array blocks 715, 725 arranged in respective rows can be coupled together. The memory device 700 will be further explained with reference to FIG. 8, which illustrates a schematic representation of the memory device.


Referring now to FIG. 8, the memory device 700 can include a plurality of memory cell array blocks 705-720. Each memory cell array block can include a plurality of MTJ cells 810, a plurality of bit lines 730, a plurality of source lines 745, a plurality of word lines 750, and a plurality of select transistor 820. The MTJ cells arranged along columns 810 can be coupled by a corresponding select transistor 820 to a respective source line 745. The gate of the select transistors can be coupled to a respective word line 750. Two or more bit lines 730, 735 of the memory cell array blocks 710, 715 arranged in respective columns can be coupled together by a corresponding global bit line 740. In addition, the source lines 745 of the memory cell array blocks 710, 715 arranged in respective columns can be coupled together. Likewise, the word lines 750 of the memory cell array blocks 715, 725 arranged in respective rows can be coupled together.


In one implementation, logic ‘0’ and ‘1’ states can be written to a given memory cell 810 by biasing the global bit line 740 which also biases the respective bit line 730 at a bit line write potential (e.g., VBLW), biasing the respective source line 745 at a ground potential, and driving the respective word line 750 at a word line write potential (e.g., VWLW=VHi). The word lines for the cells that are not being written to can be biased at a ground potential. In addition, the other source lines can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line write potential or some portion thereof. A logic ‘1’ state can be written to the given memory cell 810 by biasing the global bit line 740 which also biases the respective bit line 730 at a ground potential, biasing the respective source line 745 at a source line write potential (e.g., VSLW), and driving the respective word line 750 at the word line write potential (e.g., VWLW=VHi). The word lines for the cells that are not being written to can be biased at ground potential. In addition, the other source lines can be biased at a low potential or held in a high impedance state. The state of the given memory cell 810 can be read by biasing the global bit line 740 which also biases the respective bit line 730 at a bit line read potential (e.g., VBLR), biasing the respective source line 745 at a ground potential, driving the respective word line 750 at a word line read potential (VWLR=VHi), and sensing the resulting current on the respective source line 745. The word lines for the cells that are not being read can be biased at a ground potential. In addition, the other source lines can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line read potential or some portion thereof.


Referring now to FIG. 9, a memory device, in accordance with aspects of the present technology, is shown. In one implementation, the memory device can be a Magnetoresistive Random Access Memory (MRAM). The memory device 900 can include a plurality of memory cell array blocks 710-725, one or more word line decoders 905, 910, one or more sense amplifier circuits 915, 920, and peripheral circuits 925. The memory device 900 can include other well-known circuits that are not necessary for an understanding of the present technology and therefore are not discussed herein.


Each memory cell array block 710-725 can include can include a plurality of MTJ cells 810, a plurality of bit lines 730, a plurality of source lines 745, a plurality of word lines 750, and a plurality of select transistor 820 as described in more detail above with reference to FIGS. 7 and 8. The peripheral circuits 925, the word line decoders 905, 910 and sense amplifier circuits 915, 920 can map a given memory address to a particular row of MTJ memory cells in a particular memory cell array block 710-725. The output of the word line drivers 905, 910 can drive the word lines to select a given word line of the array. The sense amplifier circuits 915, 920 utilize the source lines and bit lines of the array to read from and write to memory cells of a selected word line in a selected memory cell array block 710-725.


In one aspect, the peripheral circuits 925 and the word line decoders 905, 910 can be configured to apply appropriate write voltages to bit lines, source lines and word lines to write data to cells in a selected word. The magnetic polarity, and corresponding logic state, of the free layer of the MTJ cell can be changed to one of two states depending upon the direction of current flowing through the MTJ cell. For read operations, the peripheral circuits 925, the word line decoders 905, 910 and sense amplifier circuits 915, 920 can be configured to apply appropriate read voltages to the bit lines, sources lines and word lines to cause a current to flow in the source lines that can be sensed by the sense amplifier circuits 915, 920 to read data from cells in a selected word.


Referring now to FIG. 10, a device including an array MTJs, in accordance with aspects of the present technology, is shown. In one implementation, the device 1000 can be a memory cell array. The device can include a first magnetic layer 1005 including a first plurality of trenches. The first plurality of trenches can be substantially parallel to each other. The device 1000 can further include a plurality of sections of a first tunnel barrier layer 1010 disposed on the wall of the first plurality of trenches, a plurality of sections of a first free magnetic layer 1015 disposed on the sections of the first tunnel barrier layer 1010, a plurality of sections of an optional first non-magnetic capping layer 1020 disposed on the sections of the first free magnetic layer 1015, and a plurality of sections of a first conductive layer 1025 disposed on the sections of the optional first non-magnetic capping layer 1020 in the first plurality of trenches. The device 1000 can further include a first plurality of insulator blocks disposed between corresponding sections of the first tunnel barrier layer 1010, the first free magnetic layer 1015, the optional first non-magnetic capping layer 1020, and the first conductive layer 1025. The first plurality of insulator blocks can be arranged in an array in the plurality of trenches to form rows of MTJs along the first plurality of trenches, and columns of MTJs across the first plurality of trenches. The device 1000 can further include a first insulator layer 1030 and a first plurality of interconnects 1035. The first insulator layer 1030 can be disposed on the first side of the reference magnetic layer 1005, the first tunnel barrier layer 1010, and the first free magnetic layer 1015. The first plurality of interconnects 1035 can be coupled to the first conductive layer 1025 and the optional first magnetic capping layer 1020.


The device 1000 can further include a second magnetic layer 1040 including a second plurality of trenches. The second plurality of trenches can be substantially parallel to each other and to the first plurality of trenches in the first magnetic layer 1005. The device 1000 can further include a plurality of sections of a second tunnel barrier layer 1045 disposed on the wall of the second plurality of trenches, a plurality of sections of a second free magnetic layer 1050 disposed on the sections of the second tunnel barrier layer 1045, a plurality of sections of an optional second non-magnetic capping layer 1055 disposed on the sections of the second free magnetic layer 1050, and a plurality of sections of a second conductive layer 1060 disposed on the sections of the optional second non-magnetic capping layer 1055 in the second plurality of trenches. The device 1000 can further include a second plurality of insulator blocks 1065 disposed between corresponding sections of the second tunnel barrier layer 1045, the second free magnetic layer 1050, the optional second non-magnetic capping layer 1055, and the second conductive layer 1060. The second plurality of insulator blocks 1065 can be arranged in an array in the second plurality of trenches to form rows of MTJs 1070-1080 along the second plurality of trenches, and columns of MTJs 1080-1090 across the second plurality of trenches. The device 1000 can further include a second insulator layer 1092 and a second plurality of interconnects 1094. The second insulator layer 1092 can be disposed between the first and second reference magnetic layers 1005, 1040, the first and second tunnel barrier layers 1010, 1045, and the first and second free magnetic layers 1015, 1050. The second plurality of interconnects 1094 can be coupled between the first and second conductive layers 1025, 1060 and the optional first and second magnetic capping layers 1020, 1055. The second plurality of interconnects 1094 can be configured to couple corresponding MTJs in a given row and column position in strings.


The device 1000 can further include bit lines 1096, 1098 disposed on a second side of the first and second reference magnetic layer 1005, 1040, and across one or more of the first and second plurality of insulator blocks 1065. For example, a first bit line 1096 can be coupled to one or more portions of the first reference magnetic layer 1005, and isolated from the first free magnetic layer 1015, the optional first non-magnetic capping layer 1020 and the first conductive layer 1025 by one or more of the first plurality of insulator blocks. A second bit line 1098 can be coupled to one or more portions of the second reference magnetic layer 1040, and isolated from the second free magnetic layer 1050, the optional second non-magnetic capping layer 1055 and the second conductive layer 1060 by one or more of the second plurality of insulator blocks 1065.


Although FIG. 10 illustrates a device 1000 including two levels of MTJ cells, the device can further include MTJ cells in any number of levels. The device 1000 can further include a plurality of select elements, a plurality of source lines and a plurality of word lines as illustrated in FIG. 5. Strings of the MTJ cells arranged along columns and rows can be coupled by a corresponding select transistor to a respective source line. The gate of the select transistors can be coupled to a respective word line.


In one implementation, the reference magnetic layers 1005, 1040 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi), or compounds thereof, with a thickness of approximately 1-20 nm, preferably 1 to 10 nm, and more preferably 1 to 5 nm. The tunnel insulator layers 1010, 1045 can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or combination of these oxide materials with a thickness of approximately 0.2 to 2.0 nm. The free magnetic layers 1015, 1050 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B), Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron (NiFe) alloy or their multilayer combinations with a thickness of approximately 1-10 nm, and preferably 1 to 5 nm. The non-magnetic capping layers 1020, 1055 can include one or more layers of metal protecting layers that can include one or more elements of a Tantalum (Ta), Chromium (Cr), Tungsten (W), Vanadium (V), Platinum (Pt), Ruthenium (Ru), Palladium (Pd), Copper (Cu), Silver (Ag), Rhodium (Rh), or their alloy, with a thickness of approximately 1 to 5 nm. The conductive layers 1025, 1060 can include one or more layers of Copper (Cu), Aluminum (Al), Ruthenium (Ru), and/or one or more alloys thereof with a thickness of approximately 5-20 nm.


In one implementation, the walls of the one or more trenches can have a taper of approximately 10-45 degrees from the second side of the reference magnetic layers 1005, 1040 to the first side of the reference magnetic layers 1005, 1040. In another expression, the wall angle measured from the normal axis to the horizontal direction of the reference magnetic layers 1005, 1040 can be approximately 10-45 degrees.


In aspects, the magnetic field of the reference magnetic layers 1005, 1040 can have a fixed polarization substantially parallel to a major planar orientation of the reference magnetic layers 1005, 1040, and the magnetic field of the free magnetic layers 1015, 1050 can have a polarization substantially parallel to the major planar orientation of the reference magnetic layers 1005, 1040, as illustrated in FIG. 3. The magnetic field of a given portion the free magnetic layers 1015, 1050 can be selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the reference magnetic layers 1005, 1040. In one implementation, the magnetic field in a given portion of the first free magnetic layer 1015 can be configured to switch to being substantially parallel to the magnetic field of the first reference layer 1005 in response to a current flow in a first direction through a corresponding portion of the first conductive layer 1025, and to switch to being substantially anti-parallel to the magnetic field of the first reference layer 1005 in response to a current flow in a second direction through the corresponding portion of the first conductive layer 1025. Similarly, the magnetic field in a given portion of the second free magnetic layer 1050 can be configured to switch to being substantially parallel to the magnetic field of the second reference layer 1040 in response to a current flow in a first direction through a corresponding portion of the second conductive layer 1060, and to switch to being substantially anti-parallel to the magnetic field of the second reference layer 1040 in response to a current flow in a second direction through the corresponding portion of the second conductive layer 1060. In another implementation, the magnetic field of the reference magnetic layers 1005, 1040 can have a fixed polarization substantially perpendicular to a major planar orientation of the reference magnetic layers 1005, 1040, and the magnetic field of the free magnetic layers 1015, 1050 can have a polarization substantially perpendicular to the major planar orientation of the reference magnetic layers 1005, 1040, as illustrated in FIG. 4.


Referring now to FIG. 11, the memory cell array 1000 can include a plurality of MTJ cells 1105-1120, a plurality of bit lines 1125, 1130, a plurality of source lines 1135-1145, a plurality of word lines 1150, 1155, and a plurality of select transistor 1160, 1165. The MTJ cells arranged along a string 1105, 1110 can be coupled by a corresponding select transistor 1160 to a respective source line 1135. The MTJ cells arranged along a second string 1115, 1120 in the same column can be coupled by another corresponding select transistor 1165 to the same respective source line 1135. The gate of the select transistors 1160, 1165 can be coupled to a respective word line 1150, 1155. The memory device can further include a plurality of memory cell array blocks, as described above with reference to FIGS. 7 and 9.


In one implementation, a logic ‘0’ state can be written to a given memory cell 1105 by biasing the respective bit line 1120 at a bit line write potential (e.g., VBLW), biasing the respective source line 1135 at a ground potential, and driving the respective word line 1155 at a word line write potential (e.g., VWLW=VHi). The word lines for the cells that are not being written to can be biased at a ground potential. In addition, the other source lines 1140, 1145 can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line write potential or some portion thereof. A logic ‘1’ state can be written to the given memory cell 1105 by biasing the respective bit line 1120 at a ground potential, biasing the respective source line 1135 at a source line write potential (e.g., VSLW), and driving the respective word line 1155 at the word line write potential (e.g., VWLW=VHi). The word lines for the cells that are not being written to can be biased at ground potential. In addition, the other source lines 1140, 1145 can be biased at a low potential or held in a high impedance state. The state of the given memory cell 1105 can be read by biasing the respective bit line 1120 at a bit line read potential (e.g., VBLR), biasing the respective source line 1135 at a ground potential, driving the respective word line 1155 at a word line read potential (VWLR=VH1), and sensing the resulting current on the respective source line 1135. The word lines for the cells that are not being read can be biased at a ground potential. In addition, the other source lines 1140, 1145 can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line read potential or some portion thereof.


Referring now to FIG. 12, two MTJ cells coupled in a string, in accordance with aspects of the present technology, is shown. When writing a ‘0’ to a first MTJ cell 1105, the bit line 1120 can be biased at VBLW and the source line can be biased at ground resulting in a current that flows from the bit line 1120 and out through the source line 1135. However, the bit lines of the second MTJ cells in the same string 1110 can be biased at ground, which will result in half the current that flows into the bit line 1120 of the first MTJ cell 1105 flowing out the source line 1135 and half the current leaking out through the bit line 1125 of the second MTJ cell. By increasing the potential voltage on the bit line 1120 of the second MTJ cell 1110 or holding the bit line 1120 of the second MTJ cell 1110 in a high impedance state (e.g., floating), the leakage current can be reduced. For example, if the potential on the bit line 1125 of the second MTJ cell 1110 is increased to one half (½) of the applied to the bit line 1120 of the first MTJ cell 1105, the leakage current out through the second MTJ cell 1110 can be reduced to 25%. Similar leakage paths can be present when writing a ‘1’ to a given MTJ cell in a string. By decreasing the potential applied to the bit lines of the other MTJ cells in the string or holding the bit lines of the other strings in a high impedance state, leakage currents through the other MTJ cells can be also be decreased.


Referring now to FIGS. 13A and 13B, a method of fabricating one or more MTJs, in accordance with aspects of the present technology, is shown. The method of fabricating the one or more MTJs will be further described with reference to FIGS. 14A-14H, which show the one or more MTJs during various stage of the method of manufacturing. The method of fabrication can include forming a planar reference magnetic layer 1405 on a planar non-magnetic insulator layer 1410, at 1305. Although aspects of the present technology are described with reference to layers, it is to be appreciated that the term “layer” as used herein can refer to a uni-layer or a multi-layer. In one implementation, one or more layers Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi), or compounds thereof can be deposited on the non-magnetic insulator layer. In one implementation, the non-magnetic insulator layer can include one or more layers of Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx) or alloys.


At 1310, one or more trenches 1415 can be formed in the reference magnetic layer 1405. In one implementation, the one or more trenches 1415 can be formed by Ion Beam Etching (IBE) in combination with a trench mask. In one implementation, the one or more trenches can have a taper of approximately 10-45 degrees from a top side of the reference magnetic layer 1405 to a bottom side of the reference magnetic layer 1405. In another expression, the wall angle measured from the normal axis to the horizontal direction of the planar reference magnetic layer 1405 can be approximately 10-45 degrees.


At 1315, a tunnel insulator layer 1420 can be formed on the walls of the one or more trenches 1415. At 1320, a free magnetic layer 1425 can be formed on the tunnel insulator in the one or more trenches 1415. At 1325, an optional non-magnetic layer (not shown) can be formed on the free magnetic layer 1425 in the one or more trenches 1415. In one implementation, a tunnel insulator layer 1420 can be deposited on the surface of the planar non-magnetic insulator layer 1405 including the walls of the one or more trenches 1415. The tunnel insulator layer can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or a combination of these oxide materials. A free magnetic layer 1425 can be deposited on the surface of the tunnel insulator layer 1420 inside and outside the one or more trenches 1415. The free magnetic layer 1425 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B), Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron (NiFe) alloy or their multilayer combinations. A non-magnetic layer can be deposited on the surface of the free magnetic layer 1425 inside and outside of the one or more trenches 1415. The non-magnetic layer can include one or more layers a Tantalum (Ta), Chromium (Cr), W, V, Pt, Ru, Pd, Cu, Ag, Rh, or their alloy. The materials of the tunnel insulator 1420, the free magnetic layer 1425 and the optional non-magnetic layer can be deposited by an angular deposition process to improve deposition in the one or more trenches. In other implementations, the materials of the tunnel insulator 1420, the free magnetic layer 1425 and the optional non-magnetic layer can be deposited by atomic layer deposition or Chemical Vapor Deposition (CVD). The portions of the tunnel insulator layer 1420, the free magnetic layer 1425 and the optional annular non-magnetic layer at the bottom of the one or more trenches 1415 and on top of the planar non-magnetic insular layer 1405 can be removed by one or more selective etching, milling or the like processes. Alternatively, the portions of the tunnel insulator layer 1420, the free magnetic layer 1425 and the optional non-magnetic layer at the bottom of the one or more trenches and on top of the planar non-magnetic insular layer can be removed by successive etching, milling or the like processes before the subsequent layer is deposited.


In one implementation, the magnetic field of the planar reference magnetic layer 1405 and the magnetic field of the free magnetic layer 1425 can have a polarization parallel to the major planar orientation of the planar reference magnetic layer 1405 (also referred to as in-plane), and the magnetic field of the free magnetic layer 1425 can be selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer 1425, as illustrated in FIG. 14C. In another implementation, the magnetic field of the planar reference magnetic layer 1405 and the magnetic field of the free magnetic layer 1425 can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer 1405 (also referred to as perpendicular-to-plane), and the magnetic field of the free magnetic layer 1425 can be selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer 1405, as illustrated in FIG. 4.


At 1330, one or more portions of the optional non-magnetic layer, one or more portions of the free magnetic layer 1425, and optionally one or more portions of the tunnel insulator layer 1420 can be removed from the walls of the one or more trenches 1415. In one implementation, an insulator block mask 1430 can be formed as illustrated in FIG. 14D, and the exposed portions of the optional non-magnetic layer, the free magnetic layer 1425, and optionally the tunnel insulator layer 1420 can be removed by ion beam milling, reactive ion etch or the like, as illustrated in FIG. 14E. In other implementation, the exposed portions of the optional non-magnetic layer and the free magnetic layer can be oxidized and nitride. In yet another implementation can be ion implanted with Gallium (Ga) or the like.


At 1335, one or more insulator blocks can be formed between the one or more portions of the optional non-magnetic layer, the one or more portions of the free magnetic layer 1425 and optionally the one or more portions of the tunnel insulator 1420 in the one or more trenches. In one implementation, a layer of an insulator 1435 such a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or a combination of these oxide materials can be deposited. The insulator layer 1435 can be deposited in the portions of the one or more trenches exposed by the insulator block mask 1430 and over the surface of the insulator block mask 1430, as illustrated in FIG. 14F. In one implementation, a processes such as Chemical Mechanical Polishing (CMP) can be used to remove the excess portion of the one or more insulator layers outside the exposed portions of the one or more trenches, and then a resist stripping process can be utilized to remove the insulator block mask, as illustrated in FIG. 14G.


At 1340, one or more conductive cores 1445 can be formed between the one or more insulator blocks 1440, and between the one or more portions of the free magnetic layer 1425, or the optional non-magnetic layer if applicable, in the one or more trenches, as illustrated in FIG. 14H. In one implementation, a metal seed layer can be deposited on the exposed portions of the free magnetic layer, or the optional non-magnetic layer if applicable, between the one or more insulator blocks. A conductor layer, such as Copper (Cu) can be deposited by a process such as Chemical Vapor Deposition (CVD) on the metal seed layer to form the one or more conductive cores.


The respective portions of the reference magnetic layer 1405, the tunnel insulator 1420, the free magnetic layer 1425, the optional non-magnetic layer and the conductive cores 1445 between sets of insulator blocks 1440 form corresponding MTJ cells. In addition, the processes of 1305-1340 can optionally be repeated a plurality of times to form strings of MTJs as illustrated in FIG. 10.


Referring now to FIGS. 15A-15C, a method of fabricating a memory cell array, in accordance with aspects of the present technology, is shown. The method of fabricating the memory cell array will be further described with reference to FIGS. 16A-16F, which show the memory cell array during various stage of the method of manufacturing. The method of fabrication can include forming an array of selectors 1602 on a substrate, at 1505. There a numerous selectors and methods of fabrication that can be utilized for the array of selectors. The specific selector and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 1510, a plurality of word lines 1604 can be formed on a substrate and coupled to the selectors in respective rows. In one implementation, a conductive layer can be deposited on a substrate. A word line pattern mask can be formed on the conductive layer and a selective etching process can be performed to remove the portions of the conductive layer exposed by the word line pattern mask to form the plurality of word lines coupled to the selectors. In another embodiment, a word line can be formed by electro-plating on to the framed photo-resist pattern that has a vacancy for word line portion. The word lines can be disposed as a plurality of substantially parallel traces in a first direction (e.g., rows) of the substrate. There are numerous conductive materials that can be utilized for the word lines, and there are numerous deposition, masking, etching, photoresist-framing, and electro-plating process that can be utilized for forming the plurality of word lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 1515, a plurality of source lines 1606 can be formed on the substrate and coupled to the selectors in respective columns. In one implementation, an insulator layer can be formed over the plurality of word lines, and a second conductive layer can be deposited over the insulator layer. A source line pattern mask can be formed on the second conductive layer a selective etching process can be performed to remove the portions of the second conductive layer exposed by the word line pattern mask to form the plurality of source lines. The source lines can be disposed as a plurality of substantially parallel traces in a second direction (e.g., columns) on the substrate that is perpendicular to the first direction of the word lines. There are numerous conductive materials that can be utilized for the source lines, and there are numerous deposition, masking, etching, photoresist-framing, and electro-plating process that can be utilized for forming the plurality of source lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 1520, one or more planar non-magnetic insulator layers 1608 can be deposited on the plurality of selectors. In one implementation, one or more layers of Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx) or alloys thereof can be deposited on the plurality of selectors. At 1525, a plurality of vias 1610 can be formed through the first planar non-magnetic insulator layer. There are numerous conductive materials that can be utilized for the plurality of vias through the one or more planar non-magnetic insulator layer, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of vias. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 1530, one or more planar reference magnetic layers 1612 can be deposited on the one or more non-magnetic insulator layers 1610. In one implementation, one or more layers Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi), or compounds thereof can be deposited on the one or more non-magnetic insulator layers.


At 1535, a plurality of trenches 1614 can be formed through the one or more reference magnetic layers 1612. The trenches 1614 can be aligned the plurality of vias 1610 In one implementation, the one or more trenches can be formed by Ion Beam Etching (IBE) in combination with a trench mask. In one implementation, the one or more trenches can have a taper of approximately 10-45 degrees from a top side of the reference magnetic layer to a bottom side of the reference magnetic layer. In another expression, the wall angle measured from the normal axis to the horizontal direction of the planar reference magnetic layer can be approximately 10-45 degrees.


At 1540, a plurality of portions of tunnel insulators can be formed on the walls of the one or more trenches. At 1545, a plurality of portions of free magnetic layer can be formed on the plurality of portions of tunnel insulators in the plurality of trenches. At 1550, a plurality of portions of optional non-magnetic layer can be formed on the free magnetic layer in the one or more trenches. In one implementation, a tunnel insulator layer 1616 can be deposited on the surface of the planar non-magnetic insulator layer 1612 and the walls of the one or more trenches 1614. The tunnel insulator layer 116 can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or a combination of these oxide materials. A free magnetic layer 1618 can be deposited on the surface of the tunnel insulator layer 1616 inside and outside the one or more trenches 1614. The free magnetic layer 1618 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B), Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron (NiFe) alloy or their multilayer combinations. An optional non-magnetic layer 1620 can be deposited on the surface of the free magnetic layer 1618 inside and outside of the one or more trenches 1614. The non-magnetic layer 1620 can include one or more layers a Tantalum (Ta), Chromium (Cr), W, V, Pt, Ru, Pd, Cu, Ag, Rh, or their alloy. The materials of the tunnel insulator 1616, the free magnetic layer 1618 and the optional non-magnetic layer 1620 can be deposited by an angular deposition process to improve deposition in the one or more trenches 1614. In other implementations, the materials of the tunnel insulator 1616, the free magnetic layer 1618 and the optional non-magnetic layer 1620 can be deposited by atomic layer deposition or Chemical Vapor Deposition (CVD). The portions of the tunnel insulator layer 1616, the free magnetic layer 1618 and the optional non-magnetic layer 1620 at the bottom of the one or more trenches 1614 and on top of the planar reference magnetic layer 1612 can be removed by one or more selective etching, milling or the like processes. Alternatively, the portions of the tunnel insulator layer 1616, the free magnetic layer 1618 and the optional non-magnetic layer 1620 at the bottom of the one or more trenches 1614 and on top of the planar reference magnetic layer 1612 can be removed by successive etching, milling or the like processes before the subsequent layer is deposited. It is to be appreciated that the thickness along a vertical axis of the free magnetic layer 1618 or the optional non-magnetic layer 1620 is thinner in the horizontal portions at the bottom of the trenches 1614 and on top of the planar reference magnetic layer 1612 as compared to the portions along the walls of the trenches 1614. Therefore, the free magnetic layer 1618 or the optional non-magnetic layer 1620 at the bottom of the one or more trenches 1614 and on top of the planar reference magnetic layer 1612 can be removed, while the free magnetic layer 1618 or the optional non-magnetic layer 1620 is only thinned.


In one implementation, the magnetic field of the reference magnetic layer and the magnetic field of the free magnetic layer can have a polarization parallel to the major planar orientation of the planar reference magnetic layer (also referred to as in-plane), and the magnetic field of the free magnetic layer can be selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer. In another implementation, the magnetic field of the reference magnetic layer and the magnetic field of the free magnetic layer can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer (also referred to as perpendicular-to-plane), and the magnetic field of the free magnetic layer can be selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer.


At 1555, one or more portions of the optional non-magnetic layer 1620, one or more portions of the free magnetic layer 1618, and optionally one or more portions of the tunnel insulator layer 1616 can be selectively removed from the walls of the plurality of trenches 1614. In one implementation, an insulator block mask can be formed, and the exposed portions of the optional non-magnetic layer 1620, the free magnetic layer 1618, and optionally the tunnel insulator layer 1616 can be removed by ion beam milling, reactive ion etch or the like. In other implementation, the exposed portions of the optional non-magnetic layer and the free magnetic layer can be oxidized and nitride. In yet another implementation can be ion implanted with Gallium (Ga) or the like. For reference, FIG. 16D illustrates the plurality of portions of the optional non-magnetic layer 1620 and the plurality of portions of the free magnetic layer 1618 without the insulator block mask disposed over them as shown illustrated in the similar structure in FIGS. 14D-14F so that the structure of the formed plurality of portions of the optional non-magnetic layer 1620 and the plurality of portions of the free magnetic layer 1618 can be seen. However, the insulator block mask typically cover the plurality of portions of the optional non-magnetic layer 1620 and the plurality of portions of the free magnetic layer 1618 until after formation of the plurality of insulator blocks formed subsequent processes.


At 1560, a plurality of insulator blocks 1622 can be formed between the plurality of portions of the optional non-magnetic layer 1620, the plurality of portions of the free magnetic layer 1618 and optionally the plurality of portions of the tunnel insulator 1616 in the plurality of trenches 1614 as illustrated in FIG. 16E. In one implementation, one or more layer of an insulator such a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or a combination of these oxide materials can be deposited. The one or more insulator layers can be deposited in the portions of the trenches exposed by the insulator block mask and over the surface of the insulator block mask. In one implementation, a processes such as Chemical Mechanical Polishing (CMP) can be used to remove the excess portion of the one or more insulator layers outside the exposed portions of the one or more trenches, and then a resist stripping process can be utilized to remove the insulator block mask.


At 1565, a plurality of conductive core 1624 can be formed between the one or more insulator blocks, and between the free magnetic layer or the optional non-magnetic layer if applicable, in the one or more trenches, as illustrated in FIG. 16F. In one implementation a metal seed layer can be deposited on the exposed portions of the free magnetic layer, or the optional non-magnetic layer if applicable, between the one or more insulator blocks. A conductor layer, such as Copper (Cu) can be deposited by a process such as Chemical Vapor Deposition (CVD) on the metal seed layer to form the one or more conductive cores. The processes of 1520 through 1565 can optionally be repeated a plurality of times to form a string of MTJs as illustrated in FIG. 10.


At 1570, portions of one or more planar non-magnetic insulator layers and one or more planar reference magnetic layers can be removed in a periphery region to expose each planar reference magnetic layer. The periphery region can be outside the array of annular openings. In one implementation, a series of one or more etching, milling or the like processes can be used to step down through the planar non-magnetic insulator layers and the planar reference magnetic layers. At 1575, a bit line 1626 can be formed on each planar reference magnetic layer 1612. In one implementation, an insulator layer can be deposited in the periphery region, and a bit line insulator patch mask can be formed from the insulator layer. A selective etching process can be performed to remove the portions of the insulator layer on the free magnetic layer, the optional non-magnetic layer and the conductive core layer in the periphery region exposed by the bit line insulator patch mask to form one or more bit line insulator patches 1628. A conductive layer can be deposited on the reference magnetic layer, while electrically isolated from on the free magnetic layer, the optional non-magnetic layer and the conductive core layer the by the insulator patches. A bit line pattern mask can be formed on the conductive layer and a selective etching process can be performed to remove the portions of the conductive layer exposed by the bit line pattern mask to form the plurality of bit lines on corresponding ones of the planar reference magnetic layers. In another implementation, a photo-resist frame is made by photo process before depositing a bit line material. The photo-resist frame has an opening to form a bit line inside. The electric-plating process is used to form a metal bit line inside the photo-resist frame. After the electrical plating process, the photo-resist frame is removed. The bit lines can be disposed as a plurality of substantially parallel traces in a first direction (e.g., rows) on respective planar reference magnetic layers.


At 1580, one or more bit line vias can optionally be formed. The one or more bit line vias can be coupled to respective bit lines. There are numerous conductive materials that can be utilized for the bit line vias, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of bit line vias. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 1585, one or more global bit lines can be formed. The one or more global bit lines can be coupled to corresponding bit lines or bit line vias, as illustrated in FIG. 7. In one implementation, two or more bit lines arranged in respective columns can be coupled together by a corresponding global bit line. There are numerous conductive materials that can be utilized for the global bit lines, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of global bit lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


The foregoing descriptions of specific embodiments of the present technology have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, to thereby enable others skilled in the art to best utilize the present technology and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims
  • 1. A Magnetic Tunnel Junction (MTJ) device comprising: a reference magnetic layer including one or more trenches within the reference magnetic layer;a plurality of sections of a tunnel barrier layer disposed on the walls of the one or more trenches within the reference magnetic layer;a plurality of sections of a free magnetic layer disposed on corresponding sections of the tunnel barrier layer in the one or more trenches within the reference magnetic layer;a plurality of sections of a conductive layer disposed on corresponding sections of the free magnetic layer in the one or more trenches within the reference magnetic layer; andone or more insulator blocks disposed in the one or more trenches within the reference magnetic layer and between corresponding sections of the tunnel barrier layer, corresponding sections of the free magnetic layer and corresponding sections of the conductive layer in the one or more trenches within the reference magnetic layer.
  • 2. The MTJ of claim 1, further comprising: one or more sections of a non-magnetic capping layer disposed between the one or more sections of the free magnetic layer and the one or more sections of the conductive layer in the one or more trenches.
  • 3. The MTJ of claim 1, further comprising: an insulator layer disposed on a first side of the reference magnetic layer; andone or more interconnects disposed in the insulator layer and coupled to the conductive layer in respective ones of the one or more trenches.
  • 4. The MTJ of claim 1, further comprising: a first conductive buffer layer disposed on a first side of the reference magnetic layer;a first insulator layer disposed on the first conductive layer;a second conductive buffer layer disposed on a second side of the reference magnetic layer; anda second insulator layer disposed on the second conductive layer.
  • 5. The MTJ of claim 1, further comprising: one or more bit lines disposed on the reference magnetic layer, across one or more of the insulator blocks and coupled to portions of the reference magnetic layer.
  • 6. The MTJ of claim 1, wherein the one or more trenches have a taper of approximately 10-45 degrees from a second side of the reference magnetic layer to a first side of the reference magnetic layer.
  • 7. The MTJ of claim 1, wherein: the free magnetic layer includes a Cobalt-Iron-Boron (Co—Fe—B) alloy;the conductive layer includes one or more of Copper (Cu), copper alloy, Aluminum (Al), aluminum alloy, Ruthenium (Ru) or ruthenium alloy;the tunnel barrier layer includes one or more of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx) or Titanium Oxide (TiOx); andthe reference magnetic layer includes a Cobalt-Iron-Boron (Co—Fe—B) alloy.
  • 8. The MTJ of claim 1, wherein: a magnetic field of the reference magnetic layer has a fixed polarization substantially parallel to a major planar orientation of the reference magnetic layer; anda magnetic field of the free magnetic layer has a polarization substantially parallel to the major planar orientation of the reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the reference magnetic layer.
  • 9. The MTJ of claim 8, wherein the magnetic field of the free magnetic layer is configured to switch to being substantially parallel to the magnetic field of the reference magnetic layer in response to a current flow in a first direction through the conductive layer and to switch to being substantially anti-parallel to the magnetic field of the reference magnetic layer in response to a current flow in a second direction through the conductive layer.
  • 10. The MTJ of claim 1, wherein: a magnetic field of the reference magnetic layer has a fixed polarization substantially perpendicular to a major planar orientation of the reference magnetic layer; anda magnetic field of the free magnetic layer has a polarization substantially perpendicular to the major planar orientation of the reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the reference magnetic layer.
  • 11. The MTJ of claim 10, wherein the magnetic field of the free magnetic layer is configured to switch to being substantially parallel to the magnetic field of the reference magnetic layer in response to a current flow in a first direction through the conductive layer and to switch to being substantially anti-parallel to the magnetic field of the reference magnetic layer in response to a current flow in a second direction through the conductive layer.
  • 12. A device comprising: a reference magnetic layer including a plurality of trenches within the reference magnetic layer;a plurality of sections of a tunnel barrier layer disposed on the walls of the plurality of trenches within the reference magnetic layer;a plurality of sections of a free magnetic layer disposed on corresponding sections of the tunnel barrier layer in the plurality of trenches within the reference magnetic layer;a plurality of sections of a conductive layer disposed on corresponding sections of the free magnetic layer in the plurality of trenches within the reference magnetic layer; anda plurality of insulator blocks disposed in the plurality of trenches within the reference magnetic layer between corresponding sections of the tunnel barrier layer, corresponding sections of the free magnetic layer and corresponding sections of the conductive layer in an array of columns and rows in the plurality of trenches within the reference magnetic layer.
  • 13. The device of claim 12, wherein the plurality of trenches have a taper of approximately 10-45 degrees from a first side of the reference magnetic layer to a second side of the reference magnetic layer.
  • 14. The device of claim 12, further comprising: a first set of one or more additional layers disposed a first side of the reference magnetic layer; anda second set of one or more additional layers disposed on a second side of the reference magnetic layer.
  • 15. The device of claim 12, wherein corresponding sections of the tunnel barrier layer, corresponding section of the free magnetic layer and corresponding sections of the conductive layer disposed between adjacent insulator blocks in one of the plurality of trenches comprise a Magnetic Tunnel Junction (MTJ) cell.
  • 16. The device of claim 12, wherein a magnetic field of the reference magnetic layer has a fixed polarization substantially parallel to a major planar orientation of the reference magnetic layer; anda magnetic field of the free magnetic layer has a polarization substantially parallel to the major planar orientation of the reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the reference magnetic layer.
  • 17. The device of claim 16, wherein the magnetic field of the free magnetic layer is configured to switch to being substantially parallel to the magnetic field of the reference magnetic layer in response to a current flow in a first direction through the conductive layer and to switch to being substantially anti-parallel to the magnetic field of the reference layer magnetic in response to a current flow in a second direction through the conductive layer.
  • 18. The device of claim 12, wherein a magnetic field of the reference magnetic layer has a fixed polarization substantially perpendicular to a major planar orientation of the reference magnetic layer; anda magnetic field of the free magnetic layer has a polarization substantially perpendicular to the major planar orientation of the reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the reference magnetic layer.
  • 19. The device of claim 18, wherein the magnetic field of the free magnetic layer is configured to switch to being substantially parallel to the magnetic field of the reference magnetic layer in response to a current flow in a first direction through the conductive layer and to switch to being substantially anti-parallel to the magnetic field of the reference layer magnetic in response to a current flow in a second direction through the conductive layer.
  • 20. A memory device comprising: an array of Magnetic Tunnel Junction (MTJ) cells including; a reference magnetic layer including a plurality of trenches within the reference magnetic layer;a plurality of sections of a tunnel barrier layer disposed on the walls of the plurality of trenches within the reference magnetic layer;a plurality of sections of a free magnetic layer disposed on corresponding sections of the tunnel barrier layer in the plurality of trenches within the reference magnetic layer;a plurality of sections of a conductive layer disposed in the plurality of trenches within the reference magnetic layer on corresponding sections of the free magnetic layer in the plurality of trenches within the reference magnetic layer;a plurality of insulator blocks disposed in the plurality of trenches within the reference magnetic layer between corresponding sections of the tunnel barrier layer, corresponding sections of the free magnetic layer and corresponding sections of the conductive layer in an array of columns and rows in the plurality of trenches within the reference magnetic layer;a bit line coupled to the reference magnetic layer; anda plurality of select transistors, each select transistor coupled to respective sections of the conductive layer in the plurality of trenches.
  • 21. The memory device of claim 20, further comprising: a plurality of word lines, each word line coupled to gates of a set of the plurality of select transistors arranged in a corresponding row; anda plurality of source lines, each source line coupled to sources of a set of the plurality of select transistors arranged in a corresponding column.
  • 22. The memory device of claim 20, further comprising: a plurality of blocks of the array of MTJ cells arranged in columns and rows.
  • 23. The memory device of claim 22, further comprising: a plurality of global bit lines, each global bit line coupled to a set of bit lines in a corresponding column of the plurality of blocks of the array of MTJ cells.
  • 24. The memory device of claim 20, wherein a magnetic field of the reference magnetic layer has a fixed polarization substantially parallel to a major planar orientation of the reference magnetic layer; anda magnetic field of the free magnetic layer has a polarization substantially parallel to the major planar orientation of the reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the reference magnetic layer.
  • 25. The memory device of claim 24, wherein the magnetic field of the free magnetic layer is configured to switch to being substantially parallel to the magnetic field of the reference magnetic layer in response to a current flow in a first direction through the conductive layer and to switch to being substantially anti-parallel to the magnetic field of the reference magnetic layer in response to a current flow in a second direction through the conductive layer.
  • 26. The memory device of claim 20, wherein a magnetic field of the reference magnetic layer has a fixed polarization substantially perpendicular to a major planar orientation of the reference magnetic layer; anda magnetic field of the fee magnetic layer has a polarization substantially perpendicular to the major planar orientation of the reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the reference magnetic layer.
  • 27. The memory device of claim 26, wherein the magnetic field of the free magnetic layer is configured to switch to being substantially parallel to the magnetic field of the reference magnetic layer in response to a current flow in a first direction through the conductive layer and to switch to being substantially anti-parallel to the magnetic field of the reference magnetic layer in response to a current flow in a second direction through the conductive layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of U.S. patent application Ser. No. 16/059,004 filed Aug. 8, 2018, U.S. patent application Ser. No. 16/059,009 filed Aug. 8, 2018, U.S. patent application Ser. No. 16/059,012 filed Aug. 8, 2018, U.S. patent application Ser. No. 16/059,016 filed Aug. 8, 2018, U.S. patent application Ser. No. 16/059,018 filed Aug. 8, 2018; and claims the benefit of U.S. Provisional Patent Application No. 62/647,210 filed Mar. 23, 2018; all of which are incorporated herein in their entirety.

US Referenced Citations (486)
Number Name Date Kind
4597487 Crosby et al. Jul 1986 A
5541868 Prinz Jul 1996 A
5559952 Fujimoto Sep 1996 A
5629549 Johnson May 1997 A
5640343 Gallagher et al. Jun 1997 A
5654566 Johnson Aug 1997 A
5691936 Sakakima et al. Nov 1997 A
5695846 Lange et al. Dec 1997 A
5695864 Slonczewski Dec 1997 A
5732016 Chen et al. Mar 1998 A
5751647 O'Toole May 1998 A
5856897 Mauri Jan 1999 A
5896252 Kanai Apr 1999 A
5966323 Chen et al. Oct 1999 A
6016269 Peterson et al. Jan 2000 A
6055179 Koganei et al. Apr 2000 A
6064948 West May 2000 A
6075941 Itoh Jun 2000 A
6097579 Gill Aug 2000 A
6112295 Bhamidipati et al. Aug 2000 A
6124711 Tanaka et al. Sep 2000 A
6134138 Lu et al. Oct 2000 A
6140838 Johnson Oct 2000 A
6154139 Kanai et al. Nov 2000 A
6154349 Kanai et al. Nov 2000 A
6172902 Wegrowe et al. Jan 2001 B1
6233172 Chen et al. May 2001 B1
6233690 Choi et al. May 2001 B1
6243288 Ishikawa et al. Jun 2001 B1
6252798 Satoh et al. Jun 2001 B1
6256223 Sun Jul 2001 B1
6292389 Chen et al. Sep 2001 B1
6347049 Childress et al. Feb 2002 B1
6376260 Chen et al. Apr 2002 B1
6385082 Abraham et al. May 2002 B1
6436526 Odagawa et al. Aug 2002 B1
6442681 Ryan et al. Aug 2002 B1
6447935 Zhang et al. Sep 2002 B1
6458603 Kersch et al. Oct 2002 B1
6493197 Ito et al. Dec 2002 B2
6522137 Sun et al. Feb 2003 B1
6532164 Redon et al. Mar 2003 B2
6538918 Swanson et al. Mar 2003 B2
6545903 Savtchenko et al. Apr 2003 B1
6545906 Savtchenko et al. Apr 2003 B1
6563681 Sasaki et al. May 2003 B1
6566246 deFelipe et al. May 2003 B1
6603677 Redon et al. Aug 2003 B2
6608776 Hidaka Aug 2003 B2
6635367 Igarashi et al. Oct 2003 B2
6653153 Doan et al. Nov 2003 B2
6654278 Engel et al. Nov 2003 B1
6677165 Lu et al. Jan 2004 B1
6710984 Yuasa et al. Mar 2004 B1
6713195 Wang et al. Mar 2004 B2
6714444 Huai et al. Mar 2004 B2
6731537 Kanamori May 2004 B2
6744086 Daughton et al. Jun 2004 B2
6750491 Sharma et al. Jun 2004 B2
6751074 Inomata et al. Jun 2004 B2
6765824 Kishi et al. Jul 2004 B2
6772036 Eryurek et al. Aug 2004 B2
6773515 Li et al. Aug 2004 B2
6777730 Daughton et al. Aug 2004 B2
6785159 Tuttle Aug 2004 B2
6807091 Saito Oct 2004 B2
6812437 Levy et al. Nov 2004 B2
6829161 Huai et al. Dec 2004 B2
6835423 Chen et al. Dec 2004 B2
6838740 Huai et al. Jan 2005 B2
6839821 Estakhri Jan 2005 B2
6842317 Sugita et al. Jan 2005 B2
6842366 Chan Jan 2005 B2
6847547 Albert et al. Jan 2005 B2
6879512 Luo Apr 2005 B2
6887719 Lu et al. May 2005 B2
6888742 Nguyen et al. May 2005 B1
6902807 Argoitia et al. Jun 2005 B1
6906369 Ross et al. Jun 2005 B2
6920063 Huai et al. Jul 2005 B2
6933155 Albert et al. Aug 2005 B2
6936479 Sharma Aug 2005 B2
6938142 Pawlowski Aug 2005 B2
6956257 Zhu et al. Oct 2005 B2
6958507 Atwood et al. Oct 2005 B2
6958927 Nguyen et al. Oct 2005 B1
6967863 Huai Nov 2005 B2
6980469 Kent et al. Dec 2005 B2
6984529 Stojakovic et al. Jan 2006 B2
6985385 Nguyen et al. Jan 2006 B2
6992359 Nguyen et al. Jan 2006 B2
6995962 Saito et al. Feb 2006 B2
7002839 Kawabata et al. Feb 2006 B2
7005958 Wan Feb 2006 B2
7006371 Matsuoka Feb 2006 B2
7006375 Covington Feb 2006 B2
7009877 Huai et al. Mar 2006 B1
7033126 Van Den Berg Apr 2006 B2
7041598 Sharma May 2006 B2
7045368 Hong et al. May 2006 B2
7054119 Sharma et al. May 2006 B2
7057922 Fukumoto Jun 2006 B2
7095646 Slaughter et al. Aug 2006 B2
7098494 Pakala et al. Aug 2006 B2
7106624 Huai et al. Sep 2006 B2
7110287 Huai et al. Sep 2006 B2
7149106 Mancoff et al. Dec 2006 B2
7161829 Huai et al. Jan 2007 B2
7170778 Kent et al. Jan 2007 B2
7187577 Wang Mar 2007 B1
7190611 Nguyen et al. Mar 2007 B2
7203129 Lin et al. Apr 2007 B2
7203802 Huras Apr 2007 B2
7227773 Nguyen et al. Jun 2007 B1
7233039 Huai et al. Jun 2007 B2
7242045 Nguyen et al. Jul 2007 B2
7245462 Huai et al. Jul 2007 B2
7262941 Li et al. Aug 2007 B2
7273780 Kim Sep 2007 B2
7283333 Gill Oct 2007 B2
7307876 Kent et al. Dec 2007 B2
7313015 Bessho Dec 2007 B2
7324387 Bergemont et al. Jan 2008 B1
7324389 Cernea Jan 2008 B2
7335960 Han et al. Feb 2008 B2
7351594 Bae et al. Apr 2008 B2
7352021 Bae et al. Apr 2008 B2
7369427 Diao et al. May 2008 B2
7372722 Jeong May 2008 B2
7376006 Bednorz et al. May 2008 B2
7386765 Ellis Jun 2008 B2
7404017 Kuo Jul 2008 B2
7421535 Jarvis et al. Sep 2008 B2
7436699 Tanizaki Oct 2008 B2
7449345 Horng et al. Nov 2008 B2
7453719 Sakimura Nov 2008 B2
7476919 Hong et al. Jan 2009 B2
7502249 Ding Mar 2009 B1
7502253 Rizzo Mar 2009 B2
7508042 Guo Mar 2009 B2
7511985 Horii Mar 2009 B2
7515458 Hung et al. Apr 2009 B2
7515485 Lee Apr 2009 B2
7532503 Morise et al. May 2009 B2
7541117 Ogawa Jun 2009 B2
7542326 Yoshimura Jun 2009 B2
7573737 Kent et al. Aug 2009 B2
7576956 Huai Aug 2009 B2
7582166 Lampe Sep 2009 B2
7598555 Papworth-Parkin Oct 2009 B1
7602000 Sun et al. Oct 2009 B2
7619431 DeWilde et al. Nov 2009 B2
7633800 Adusumilli et al. Dec 2009 B2
7642612 Izumi et al. Jan 2010 B2
7660161 Van Tran Feb 2010 B2
7663171 Inokuchi et al. Feb 2010 B2
7675792 Bedeschi Mar 2010 B2
7696551 Xiao Apr 2010 B2
7733699 Roohparvar Jun 2010 B2
7739559 Suzuki et al. Jun 2010 B2
7773439 Do et al. Aug 2010 B2
7776665 Izumi et al. Aug 2010 B2
7796439 Arai Sep 2010 B2
7810017 Radke Oct 2010 B2
7821818 Dieny et al. Oct 2010 B2
7852662 Yang Dec 2010 B2
7861141 Chen Dec 2010 B2
7881095 Lu Feb 2011 B2
7911832 Kent et al. Mar 2011 B2
7916515 Li Mar 2011 B2
7936595 Han et al. May 2011 B2
7936598 Zheng et al. May 2011 B2
7983077 Park Jul 2011 B2
7986544 Kent et al. Jul 2011 B2
8008095 Assefa et al. Aug 2011 B2
8028119 Miura Sep 2011 B2
8041879 Erez Oct 2011 B2
8055957 Kondo Nov 2011 B2
8058925 Rasmussen Nov 2011 B2
8059460 Jeong et al. Nov 2011 B2
8072821 Arai Dec 2011 B2
8077496 Choi Dec 2011 B2
8080365 Nozaki Dec 2011 B2
8088556 Nozaki Jan 2012 B2
8094480 Tonomura Jan 2012 B2
8102701 Prejbeanu et al. Jan 2012 B2
8105948 Zhong et al. Jan 2012 B2
8120949 Ranjan et al. Feb 2012 B2
8143683 Wang et al. Mar 2012 B2
8144509 Jung Mar 2012 B2
8148970 Fuse Apr 2012 B2
8159867 Cho et al. Apr 2012 B2
8201024 Burger Jun 2012 B2
8223534 Chung Jul 2012 B2
8255742 Ipek Aug 2012 B2
8278996 Miki Oct 2012 B2
8279666 Dieny et al. Oct 2012 B2
8295073 Norman Oct 2012 B2
8295082 Chua-Eoan Oct 2012 B2
8334213 Mao Dec 2012 B2
8345474 Oh Jan 2013 B2
8349536 Nozaki Jan 2013 B2
8362580 Chen et al. Jan 2013 B2
8363465 Kent et al. Jan 2013 B2
8374050 Zhou et al. Feb 2013 B2
8386836 Burger Feb 2013 B2
8415650 Greene Apr 2013 B2
8416620 Zheng et al. Apr 2013 B2
8422286 Ranjan et al. Apr 2013 B2
8422330 Hatano et al. Apr 2013 B2
8432727 Ryu Apr 2013 B2
8441844 El Baraji May 2013 B2
8456383 Liu Jun 2013 B2
8456926 Ong et al. Jun 2013 B2
8477530 Ranjan et al. Jul 2013 B2
8492881 Kuroiwa et al. Jul 2013 B2
8495432 Dickens Jul 2013 B2
8535952 Ranjan et al. Sep 2013 B2
8539303 Lu Sep 2013 B2
8542524 Keshtbod et al. Sep 2013 B2
8549303 Fifield et al. Oct 2013 B2
8558334 Ueki et al. Oct 2013 B2
8559215 Zhou et al. Oct 2013 B2
8574928 Satoh et al. Nov 2013 B2
8582353 Lee Nov 2013 B2
8590139 Op DeBeeck et al. Nov 2013 B2
8592927 Jan Nov 2013 B2
8593868 Park Nov 2013 B2
8609439 Prejbeanu et al. Dec 2013 B2
8617408 Balamane Dec 2013 B2
8625339 Ong Jan 2014 B2
8634232 Oh Jan 2014 B2
8667331 Hori Mar 2014 B2
8687415 Parkin et al. Apr 2014 B2
8705279 Kim Apr 2014 B2
8716817 Saida May 2014 B2
8716818 Yoshikawa et al. May 2014 B2
8722543 Belen May 2014 B2
8737137 Choy et al. May 2014 B1
8755222 Kent et al. Jun 2014 B2
8779410 Sato et al. Jul 2014 B2
8780617 Kang Jul 2014 B2
8792269 Abedifard Jul 2014 B1
8802451 Malmhall Aug 2014 B2
8810974 Noel et al. Aug 2014 B2
8817525 Ishihara Aug 2014 B2
8832530 Pangal et al. Sep 2014 B2
8852760 Wang et al. Oct 2014 B2
8853807 Son et al. Oct 2014 B2
8860156 Beach et al. Oct 2014 B2
8862808 Tsukamoto et al. Oct 2014 B2
8867258 Rao Oct 2014 B2
8883520 Satoh et al. Nov 2014 B2
8902628 Ha Dec 2014 B2
8966345 Wilkerson Feb 2015 B2
8987849 Jan Mar 2015 B2
9019754 Bedeschi Apr 2015 B1
9025378 Tokiwa May 2015 B2
9026888 Kwok May 2015 B2
9030899 Lee May 2015 B2
9036407 Wang et al. May 2015 B2
9037812 Chew May 2015 B2
9043674 Wu May 2015 B2
9070441 Otsuka et al. Jun 2015 B2
9070855 Gan et al. Jun 2015 B2
9076530 Gomez et al. Jul 2015 B2
9082888 Kent et al. Jul 2015 B2
9104581 Fee et al. Aug 2015 B2
9104595 Sah Aug 2015 B2
9130155 Chepulskyy et al. Sep 2015 B2
9136463 Li Sep 2015 B2
9140747 Kim Sep 2015 B2
9165629 Chih Oct 2015 B2
9165787 Kang Oct 2015 B2
9166155 Deshpande Oct 2015 B2
9178958 Lindamood Nov 2015 B2
9189326 Kalamatianos Nov 2015 B2
9190471 Yi et al. Nov 2015 B2
9196332 Zhang et al. Nov 2015 B2
9229806 Mekhanik et al. Jan 2016 B2
9229853 Khan Jan 2016 B2
9231191 Huang et al. Jan 2016 B2
9245608 Chen et al. Jan 2016 B2
9250990 Motwani Feb 2016 B2
9250997 Kim et al. Feb 2016 B2
9251896 Ikeda Feb 2016 B2
9257483 Ishigaki Feb 2016 B2
9263667 Pinarbasi Feb 2016 B1
9286186 Weiss Mar 2016 B2
9298552 Leem Mar 2016 B2
9299412 Naeimi Mar 2016 B2
9317429 Ramanujan Apr 2016 B2
9324457 Takizawa Apr 2016 B2
9337412 Pinarbasi et al. May 2016 B2
9341939 Yu et al. May 2016 B1
9342403 Keppel et al. May 2016 B2
9349482 Kim et al. May 2016 B2
9351899 Bose et al. May 2016 B2
9362486 Kim et al. Jun 2016 B2
9378817 Kawai Jun 2016 B2
9379314 Park et al. Jun 2016 B2
9389954 Pelley et al. Jul 2016 B2
9396065 Webb et al. Jul 2016 B2
9396991 Arvin et al. Jul 2016 B2
9401336 Arvin et al. Jul 2016 B2
9406876 Pinarbasi Aug 2016 B2
9418721 Bose Aug 2016 B2
9431084 Bose et al. Aug 2016 B2
9449720 Lung Sep 2016 B1
9450180 Annunziata Sep 2016 B1
9455013 Kim Sep 2016 B2
9466789 Wang et al. Oct 2016 B2
9472282 Lee Oct 2016 B2
9472748 Kuo et al. Oct 2016 B2
9484527 Han et al. Nov 2016 B2
9488416 Fujita et al. Nov 2016 B2
9490054 Jan Nov 2016 B2
9508456 Shim Nov 2016 B1
9520128 Bauer et al. Dec 2016 B2
9520192 Naeimi et al. Dec 2016 B2
9525126 Lin Dec 2016 B1
9548116 Roy Jan 2017 B2
9548445 Lee et al. Jan 2017 B2
9553102 Wang Jan 2017 B2
9564587 Jo Feb 2017 B1
9583167 Chung Feb 2017 B2
9594683 Dittrich Mar 2017 B2
9600183 Tomishima et al. Mar 2017 B2
9608038 Wang et al. Mar 2017 B2
9634237 Lee et al. Apr 2017 B2
9640267 Tani May 2017 B2
9646701 Lee May 2017 B2
9652321 Motwani May 2017 B2
9662925 Raksha et al. May 2017 B2
9697140 Kwok Jul 2017 B2
9720616 Yu Aug 2017 B2
9728712 Kardasz et al. Aug 2017 B2
9741926 Pinarbasi et al. Aug 2017 B1
9772555 Park et al. Sep 2017 B2
9773974 Pinarbasi et al. Sep 2017 B2
9780300 Zhou et al. Oct 2017 B2
9793319 Gan et al. Oct 2017 B2
9853006 Arvin et al. Dec 2017 B2
9853206 Pinarbasi et al. Dec 2017 B2
9853292 Loveridge et al. Dec 2017 B2
9858976 Ikegami Jan 2018 B2
9859333 Kim et al. Jan 2018 B2
9865806 Choi et al. Jan 2018 B2
9935258 Chen et al. Apr 2018 B2
10008662 You Jun 2018 B2
10026609 Sreenivasan et al. Jul 2018 B2
10038137 Chuang Jul 2018 B2
10042588 Kang Aug 2018 B2
10043851 Shen Aug 2018 B1
10043967 Chen Aug 2018 B2
10062837 Kim et al. Aug 2018 B2
10115446 Louie et al. Oct 2018 B1
10134988 Fennimore et al. Nov 2018 B2
10163479 Berger et al. Dec 2018 B2
10186614 Asami Jan 2019 B2
20020090533 Zhang et al. Jul 2002 A1
20020105823 Redon et al. Aug 2002 A1
20030085186 Fujioka May 2003 A1
20030117840 Sharma et al. Jun 2003 A1
20030151944 Saito Aug 2003 A1
20030197984 Inomata et al. Oct 2003 A1
20030218903 Luo Nov 2003 A1
20040012994 Slaughter et al. Jan 2004 A1
20040026369 Ying Feb 2004 A1
20040061154 Huai et al. Apr 2004 A1
20040094785 Zhu et al. May 2004 A1
20040130936 Nguyen et al. Jul 2004 A1
20040173315 Leung Sep 2004 A1
20040257717 Sharma et al. Dec 2004 A1
20050041342 Huai et al. Feb 2005 A1
20050051820 Stojakovic et al. Mar 2005 A1
20050063222 Huai et al. Mar 2005 A1
20050104101 Sun et al. May 2005 A1
20050128842 Wei Jun 2005 A1
20050136600 Huai Jun 2005 A1
20050158881 Sharma Jul 2005 A1
20050180202 Huai et al. Aug 2005 A1
20050184839 Nguyen et al. Aug 2005 A1
20050201023 Huai et al. Sep 2005 A1
20050237787 Huai et al. Oct 2005 A1
20050280058 Pakala et al. Dec 2005 A1
20060018057 Huai Jan 2006 A1
20060033136 Liu Feb 2006 A1
20060049472 Diao et al. Mar 2006 A1
20060077734 Fong Apr 2006 A1
20060087880 Mancoff et al. Apr 2006 A1
20060092696 Bessho May 2006 A1
20060132990 Morise et al. Jun 2006 A1
20060227465 Inokuchi et al. Oct 2006 A1
20070019337 Apalkov et al. Jan 2007 A1
20070096229 Yoshikawa May 2007 A1
20070242501 Hung et al. Oct 2007 A1
20080049488 Rizzo Feb 2008 A1
20080079530 Weidman et al. Apr 2008 A1
20080112094 Kent et al. May 2008 A1
20080151614 Guo Jun 2008 A1
20080259508 Kent et al. Oct 2008 A2
20080297292 Viala et al. Dec 2008 A1
20090046501 Ranjan et al. Feb 2009 A1
20090072185 Raksha et al. Mar 2009 A1
20090091037 Assefa et al. Apr 2009 A1
20090098413 Kanegae Apr 2009 A1
20090146231 Kuper et al. Jun 2009 A1
20090161421 Cho et al. Jun 2009 A1
20090209102 Zhong et al. Aug 2009 A1
20090231909 Dieny et al. Sep 2009 A1
20100124091 Cowburn May 2010 A1
20100162065 Norman Jun 2010 A1
20100193891 Wang et al. Aug 2010 A1
20100246254 Prejbeanu et al. Sep 2010 A1
20100271870 Zheng et al. Oct 2010 A1
20100290275 Park et al. Nov 2010 A1
20110032645 Noel et al. Feb 2011 A1
20110058412 Zheng et al. Mar 2011 A1
20110061786 Mason Mar 2011 A1
20110089511 Keshtbod et al. Apr 2011 A1
20110133298 Chen et al. Jun 2011 A1
20120052258 Op DeBeeck et al. Mar 2012 A1
20120069649 Ranjan et al. Mar 2012 A1
20120155156 Watts Jun 2012 A1
20120155158 Higo Jun 2012 A1
20120280336 Watts Jun 2012 A1
20120181642 Prejbeanu et al. Jul 2012 A1
20120188818 Ranjan et al. Jul 2012 A1
20120280339 Zhang et al. Nov 2012 A1
20120294078 Kent et al. Nov 2012 A1
20120299133 Son et al. Nov 2012 A1
20130001506 Sato et al. Jan 2013 A1
20130001652 Yoshikawa et al. Jan 2013 A1
20130021841 Zhou et al. Jan 2013 A1
20130244344 Malmhall et al. Sep 2013 A1
20130267042 Satoh et al. Oct 2013 A1
20130270661 Yi et al. Oct 2013 A1
20130307097 Yi et al. Nov 2013 A1
20130341801 Satoh et al. Dec 2013 A1
20140009994 Parkin et al. Jan 2014 A1
20140042571 Gan et al. Feb 2014 A1
20140070341 Beach et al. Mar 2014 A1
20140103472 Kent et al. Apr 2014 A1
20140136870 Breternitz et al. May 2014 A1
20140151837 Ryu Jun 2014 A1
20140169085 Wang et al. Jun 2014 A1
20140177316 Otsuka et al. Jun 2014 A1
20140217531 Jan Aug 2014 A1
20140252439 Guo Sep 2014 A1
20140264671 Chepulskyy et al. Sep 2014 A1
20140281284 Block et al. Sep 2014 A1
20140306302 Jan Oct 2014 A1
20150056368 Wang et al. Feb 2015 A1
20150279904 Pinarbasi et al. Oct 2015 A1
20160064452 Ueda Mar 2016 A1
20160087193 Pinarbasi et al. Mar 2016 A1
20160163973 Pinarbasi Jun 2016 A1
20160218278 Pinarbasi et al. Jul 2016 A1
20160283385 Boyd et al. Sep 2016 A1
20160315118 Kardasz et al. Oct 2016 A1
20160378592 Ikegami et al. Dec 2016 A1
20170062712 Choi et al. Mar 2017 A1
20170123991 Sela et al. May 2017 A1
20170133104 Darbari et al. May 2017 A1
20170141157 Sakai May 2017 A1
20170199459 Ryu et al. Jul 2017 A1
20180033957 Zhang Feb 2018 A1
20180097006 Kim et al. Apr 2018 A1
20180114589 El-Baraji et al. Apr 2018 A1
20180119278 Kornmeyer May 2018 A1
20180121117 Berger et al. May 2018 A1
20180121355 Berger et al. May 2018 A1
20180121361 Berger et al. May 2018 A1
20180122446 Berger et al. May 2018 A1
20180122447 Berger et al. May 2018 A1
20180122448 Berger et al. May 2018 A1
20180122449 Berger et al. May 2018 A1
20180122450 Berger et al. May 2018 A1
20180130945 Choi et al. May 2018 A1
20180211821 Kogler Jul 2018 A1
20180233362 Glodde Aug 2018 A1
20180233363 Glodde Aug 2018 A1
20180248110 Kardasz et al. Aug 2018 A1
20180248113 Pinarbasi et al. Aug 2018 A1
20180331279 Shen Nov 2018 A1
Foreign Referenced Citations (15)
Number Date Country
105706259 Jun 2016 CN
2910716 Jun 2008 FR
2005-044848 Feb 2005 JP
2005-150482 Jun 2005 JP
2005-535111 Nov 2005 JP
2006128579 May 2006 JP
2008-524830 Jul 2008 JP
2009-027177 Feb 2009 JP
2013-012546 Jan 2013 JP
2014-039061 Feb 2014 JP
5635666 Dec 2014 JP
10-2014-015246 Sep 2014 KR
2009-080636 Jul 2009 WO
2011-005484 Jan 2011 WO
2014-062681 Apr 2014 WO
Non-Patent Literature Citations (11)
Entry
US 7,026,672 B2, 04/2006, Grandis (withdrawn)
US 2016/0218273 A1, 06/2016, Pinarbasi (withdrawn)
Bhatti Sabpreet et al., “Spintronics Based Random Access Memory: a Review,” Material Today, Nov. 2107, pp. 530-548, vol. 20, No. 9, Elsevier.
Helia Naeimi, et al., “STTRAM Scaling and Retention Failure,” Intel Technology Journal, vol. 17, Issue 1, 2013, pp. 54-75 (22 pages).
S. Ikeda, et al., “A Perpendicular-Anisotropy CoFeB—MgO Magnetic Tunnel Junction”, Nature Materials, vol. 9, Sep. 2010, pp. 721-724 (4 pages).
R.H. Kock, et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”, Physical Review Letters, The American Physical Society, vol. 84, No. 23, Jun. 5, 2000, pp. 5419-5422 (4 pages).
K.J. Lee, et al., “Analytical Investigation of Spin-Transfer Dynamics Using a Perpendicular-to-Plane Polarizer”, Applied Physics Letters, American Insitute of Physics, vol. 86, (2005), pp. 022505-1 to 022505-3 (3 pages).
Kirsten Martens, et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”, NSF grants PHY-0351964 (DLS), 2005, 11 pages.
Kristen Martens, et al., “Magnetic Reversal in Nanoscroolc Ferromagnetic Rings”, NSF grants PHY-0351964 (DLS), 2006, 23 pages.
“Magnetic: Technology Spintronics, Media and Interface”, Data Storage Institute, R&D Highlights, Sep. 2010, 3 pages.
Daniel Scott Matic, “A Magnetic Tunnel Junction Compact Model for STT-RAM and MeRAM”, Master Thesis University of California, Los Angeles, 2013, pp. 43.
Related Publications (1)
Number Date Country
20190296224 A1 Sep 2019 US
Provisional Applications (1)
Number Date Country
62647210 Mar 2018 US
Continuation in Parts (5)
Number Date Country
Parent 16059012 Aug 2018 US
Child 16121453 US
Parent 16059018 Aug 2018 US
Child 16059012 US
Parent 16059009 Aug 2018 US
Child 16059018 US
Parent 16059004 Aug 2018 US
Child 16059009 US
Parent 16059016 Aug 2018 US
Child 16059004 US