Manufacturing electrochemical sensor modules

Information

  • Patent Grant
  • 9504162
  • Patent Number
    9,504,162
  • Date Filed
    Friday, May 18, 2012
    12 years ago
  • Date Issued
    Tuesday, November 22, 2016
    7 years ago
Abstract
Certain processes for manufacturing an electrochemical sensor module include etching a Silicon wafer to form precursor sensor bodies, disposing sensor fibers along rows of the precursor sensor bodies, securing a rigid layer over the sensor fibers, dividing the wafer, rigid layer, and sensor fibers into individual precursor sensor bodies, and joining each precursor sensor body to a component body to form sensor modules.
Description
TECHNICAL FIELD

The present disclosure relates to manufacturing systems and processes for producing sensors for measuring bioanalytes and, in particular, to producing sensors using continuous manufacturing systems and processes.


BACKGROUND

Electrochemical bio-sensors have been developed for detecting analyte concentrations in a given fluid sample. For example, U.S. Pat. Nos. 5,264,105; 5,356,786; 5,262,035; 5,320,725; and 6,464,849, which are hereby incorporated herein by reference in their entireties, disclose wired enzyme sensors for detecting analytes, such as lactate or glucose. Wired enzyme sensors have been widely used in blood glucose monitoring systems adapted for home use by diabetics to allow blood glucose levels to be closely monitored. Other example types of blood glucose monitoring systems are disclosed by U.S. Pat. Nos. 5,575,403; 6,379,317; and 6,893,545.


Conventional manufacturing systems and processes for producing bio-sensors involve web based conductive print technology.


SUMMARY

One aspect of the present disclosure relates to a sensor system that can be manufactured in reduced scale and that can be conveniently handled by consumers.


Another aspect of the present disclosure relates to an electrochemical sensor module for use in a sensor system that can be efficiently manufactured using a continuous manufacturing process such as a continuous insert molding process.


A further aspect of the present disclosure relates to a sensor module including a molded body that defines an analyte analysis cell and also integrates a skin piercing element, such as a lancet or canula, into the molded body.


A variety of additional aspects will be set forth in the description that follows. The aspects can relate to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flowchart illustrating an operational flow for a manufacturing process by which multiple sensor modules may be produced;



FIG. 2 is a top, plan view of an example wafer with features of precursor sensor bodies etched into a surface;



FIG. 3 is a top, plan view of the wafer of FIG. 2 with conductive tracings deposited over the etched features;



FIG. 4 illustrates one example implementation of a manufacturing station at which the dispense operation of FIG. 1 is implemented;



FIG. 5 is a top, plan view of the wafer of FIG. 3 with sensor fibers disposed across the etched features;



FIG. 6 is a top, plan view of an example rigid layer suitable for use with the wafer of FIG. 5;



FIG. 7 shows the rigid layer of FIG. 6 attached to the wafer of FIG. 5;



FIG. 8 illustrates one example implementation of a cutting station at which the separate operation of FIG. 1 is implemented;



FIG. 9 shows cutting paths superimposed over the rigid layer;



FIG. 10 shows one example precursor sensor body divided out from the wafer 120;



FIG. 11 is an end view of an example sensor module including the precursor sensor body of FIG. 10 and an example component body; and



FIG. 12 is a cross-sectional view of the sensor module of FIG. 11 taken through the test chamber of the sensor module.





DETAILED DESCRIPTION

Reference will now be made in detail to exemplary aspects of the present disclosure which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.


The following definitions are provided for terms used herein:


A “working electrode” is an electrode at which the analyte (or a second compound whose level depends on the level of the analyte) is electrooxidized or electroreduced with or without the agency of an electron transfer agent.


A “reference electrode” is an electrode used in measuring the potential of the working electrode. The reference electrode should have a generally constant electrochemical potential as long as no current flows through it. As used herein, the term “reference electrode” includes pseudo-reference electrodes. In the context of the disclosure, the term “reference electrode” can include reference electrodes which also function as counter electrodes (i.e., a counter/reference electrode).


A “counter electrode” refers to an electrode paired with a working electrode to form an electrochemical cell. In use, electrical current passes through the working and counter electrodes. The electrical current passing through the counter electrode is equal in magnitude and opposite in sign to the current passing through the working electrode. In the context of the disclosure, the term “counter electrode” can include counter electrodes which also function as reference electrodes (i.e., a counter/reference electrode).


A “counter/reference electrode” is an electrode that functions as both a counter electrode and a reference electrode.


An “electrochemical sensing system” is a system configured to detect the presence and/or measure the level of an analyte in a sample via electrochemical oxidation and reduction reactions on the sensor. These reactions are converted (e.g., transduced) to an electrical signal that can be correlated to an amount, concentration, or level of an analyte in the sample. Further details about electrochemical sensing systems, working electrodes, counter electrodes and reference electrodes can be found at U.S. Pat. No. 6,560,471, the disclosure of which is hereby incorporated herein by reference in its entirety.


“Electrolysis” is the electrooxidation or electroreduction of a compound either directly at an electrode or via one or more electron transfer agents.


An “electron transfer agent” is a compound that carries electrons between the analyte and the working electrode either directly or in cooperation with other electron transfer agents. One example of an electron transfer agent is a redox mediator.


A “sensing layer” is a component of the sensor which includes constituents that facilitate the electrolysis of the analyte. The sensing layer may include constituents such as an electron transfer agent, a catalyst which catalyzes a reaction of the analyte to produce a response at the electrode, or both.


The present disclosure is directed to a manufacturing system configured to produce one or more sensor modules configured for analyte monitoring (e.g., glucose single-point monitoring, lactate single-point monitoring, etc.). Each sensor module includes a housing containing an analysis cell configured to hold a fluid sample, at least two elongated electrodes arranged to enter the analysis cell, and contacts for electrically connecting the electrodes to external connectors. Certain types of the elongated electrodes includes a composite conductive monofilament (CCM) electrode. In other embodiments, the housing can contain additional electrodes having differing enzyme coatings. The analysis cell can be configured for coulormetric or amperometric assays.



FIG. 1 is a flowchart illustrating an operational flow for a manufacturing process 100 by which multiple sensor modules may be produced. In some implementations, the manufacturing process 100 uses microfabrication technology to produce multiple precursor bodies of sensor modules on a single wafer. For example, in certain implementations, the manufacturing process 100 produces about 900 sensors on a six-inch diameter substrate. In other implementations, the manufacturing process 100 can produce greater or fewer sensors on larger or smaller substrate.


The manufacturing process 100 begins at a start module 101, performs any appropriate initialization procedures, and proceeds to a fabricate operation 103. The fabricate operation 103 forms features of one or more precursor sensor bodies in a wafer of substrate 120. In accordance with some aspects, the fabricate operation 103 removes material from the wafer, for example, to form wells and/or channels in the substrate. In some implementations, the fabricate operation 103 removes the material through etching. In other implementations, the fabricate operation 103 removes the material using a laser. In accordance with other aspects, the fabricate operation 103 deposits material into the wafer, for example, to form conductive signal paths or other features.


A dispense operation 105 disposes one or more electrodes along the features of the precursor sensor bodies. In some implementations, the dispense operation 105 disposes a single sensor fiber along the features of multiple precursor sensor bodies. In certain implementations, the dispense operation 105 disposes two sensor fibers (e.g., a working electrode and a counter electrode) along the features of multiple precursor sensor bodies. In certain implementations, the dispense operation 105 disposes three sensor fibers (e.g., a working electrode, a counter electrode, and a reference electrode) along the features of multiple precursor sensor bodies.


An attach operation 107 secures a rigid layer to the wafer 120. In certain implementations, the attach operation 107 secures the rigid layer to the wafer 120 using an organic binder. The rigid layer cooperates with the fabricated substrate 120 to define features (e.g. a test chamber) of the precursor sensor bodies. The rigid layer also secures the electrodes in the precursor sensor bodies. In certain implementations, the binder also provides a seal around the electrodes.


A separate operation 109 divides the wafer into segments so that each segment contains the features of a single precursor sensor body. In certain implementations, dicing tape is applied to the wafer to protect the sensor features during the separate operation 109. In some implementations, the separate operation 107 divides the wafer by cutting the wafer using a shear or other blade. In other implementations, the separate operation 109 divides the wafer using a laser. In still other implementations, the separate operation 109 divides the wafer by scoring and bending the wafer.


A join operation 111 couples the wafer segment to one or more additional components. When joined, the features of the wafer segment and features of the additional components form a complete sensor body. For example, in certain implementations, joining the wafer and the additional components seals an analysis cell of the sensor body. In certain implementations, joining the wafer and the additional components provides capillary channels from the analysis cell to an exterior of the sensor body. In some implementations, the join operation 111 couples the wafer segment to a molded carrier. In other implementations, the join operation 111 couples the wafer segment to a laminated section.


The manufacturing process 100 performs any appropriate completion procedures and ends at a stop module 113.



FIGS. 2-12 illustrate the steps of the manufacturing process 100 as applied to one example implementation. In the example shown, the manufacturing process 100 is used to form six sensor modules 150. Each sensor module 150 includes a precursor sensor body 140 and a component body 151. The precursor sensor body 140 includes a first (e.g., working) electrode 130 and a second (e.g., counter) electrode 131 disposed in holding structures 122, 123 that extend between opposite ends of the sensor body 150. The electrodes 130, 131 also extend through a test chamber 155 configured to hold a blood sample from a patient. Each precursor sensor body 140 also includes electrode contacts 124, 126 that carry signals from the electrodes 130, 131 to a monitoring system coupled to the sensor module 150. The component body 151 defines a capillary port through which a blood sample may enter the test chamber 155. Certain types of component bodies 151 also include skin-piercing members.



FIGS. 2 and 3 show the results of the fabricate operation 103 implemented on an example wafer 120. In the example shown, the wafer 120 has a rectangular shape. In other implementations, however, the wafer 120 may be round, oblong, square, triangular, or any other shape. In some implementations, the wafer 120 is a Silicon wafer. In other implementations, however, the wafer 120 may be formed from any suitable substrate material.


As shown in FIG. 2, the fabricate operation 103 removes material from the wafer 120 to form features of multiple precursor sensor bodies 140. The fabricate operation 103 forms at least a first row of precursor sensor bodies 140 on the substrate 120. Each row includes features from at least one precursor sensor body 140. In certain implementations, each row includes features from multiple precursor sensor bodies 140. In some implementations, the fabricate operation 103 forms multiple rows of precursor sensor body features. In other implementations, the fabricate operation 103 may form precursor sensor body features in the wafer 120 in other configurations or patterns (e.g., rings, matrices, staggered rows, etc.).


In some implementations, the fabricate operation 103 removes material to define one or more wells 121. Each well 121 corresponds to one precursor sensor body 140. The well 121 of each precursor sensor body 140 is configured to form part of the test chamber of a respective assembled sensor body 150. In some implementations, the fabricate operation 103 also removes material to form at least a first channel 122 for each precursor sensor body. In certain implementations, the fabricate operation 103 forms a continuous channel extending across the wafer 120 to form the first channel 122 for each precursor sensor body 140 in the row. In certain implementations, the fabricate operation 103 also forms a second channel 123 extending through one or more of the precursor sensor bodies 140 in each row.


In the example shown in FIG. 2, the fabricate operation 103 forms two rows of features of precursor sensor bodies 140. Each row includes features of three precursor sensor bodies 140. For example, the fabricate operation 103 forms a well 121a for each precursor sensor body 140 in the first row and a well 121b for each precursor sensor body 140 in the second row. The fabricate operation 103 also forms a first groove 122a and a second holding groove 123a that extends across the wafer 120 through the first row of precursor sensor bodies 140. The fabricate operation 103 also forms a first groove 122b and a second groove 123b that extends across the wafer 120 through the second row of precursor sensor bodies 140.


In some implementations, the fabricate operation 103 deposits material on the wafer 120 to form features of the precursor sensor bodies 140. For example, the fabricate operation 103 may deposit a metal or other conductive material over the wafer 120 to form one or more conductive paths across the wafer 120. As shown in FIG. 3, in some implementations, the fabricate operation 103 forms a first conductive path 124 along the first groove 122 and a second conductive path 126 along the second groove 123. In certain implementations, the conductive paths 124, 126 are broken by the wells 121. In other implementations, the conductive paths 124, 126 pass through the wells 121.


In some implementations, the first conductive path 124 includes at least one contact pad 125 for each precursor sensor body 140 and the second conductive path 126 includes at least one contact pad 127 for each precursor sensor body 140. In certain implementations, each of the conductive paths 124, 126 includes two contact pads 125, 127 for each precursor sensor body 140. For example, each conductive path 124, 126 may include a corresponding contact pad 125, 127, respectively, on either side of the well 121.



FIG. 4 illustrates one example implementation of a manufacturing station 134 at which the dispense operation 105 is implemented. The first station 134 is configured to deposit one or more sensor fiber electrodes onto the substrate wafer 120. In one example implementation, each sensor fiber electrode includes a composite sensor fiber having a dielectric core, a conductive layer, and a sensing layer. In some implementations, the manufacturing station 134 deposits a single sensor fiber 130 onto the wafer 120 for each row of precursor sensor bodies 140. In other implementations, the manufacturing station 134 disposes multiple sensor fiber electrodes onto the wafer 120 per row of precursor sensor bodies 140. For example, the first station 134 may dispose a first sensor fiber (e.g., working electrode) 130 and a second sensor fiber (e.g., counter electrode) 131 onto each row of the wafer 120.


In some implementations, the composite sensor fibers are dispensed from one or more reels 132 into the grooves 122, 123 defined in the precursor sensor bodies 140. In certain implementations, the first station 134 includes a set of reels 132 for each row of precursor sensor bodies 140. In other implementations, the first station 134 includes multiple sets of reels 132 for each row of precursor sensor bodies 140, each set dispensing one sensor fiber onto a groove. For example, as shown in FIG. 5, a first sensor fiber 130 may be disposed along a first groove 124 and a second sensor fiber 131 may be disposed along a second groove 126 for each row of precursor sensor bodies 140.


In certain implementations, the first station 901 also includes one or more cutting structures 136 that disconnect the dispensed sensor fibers 906 from the reels 910. In some implementations, the cutting structures 914 cut the sensor fibers 130, 131 at extreme ends of the wafer 120. In such implementations, a continuous length of each sensor fiber 130, 131 extends through all of the precursor sensor bodies 140 in one of the rows of precursor sensor bodies 140. In the example shown in FIG. 5, a first continuous length of sensor fiber 130 extends from a first cut end 137 to a second cut end 139. The first cut end 137 is located at a first end of the wafer 120 and the second cut end 139 is located at an opposite end of the wafer 120. Each of the other sensor fibers in FIG. 5 also extend through multiple precursor sensor bodies 140 between opposite sides of the wafer 120.


In some implementations, the dispose operation 105 also includes disposing a binder over the fiber sensors 130, 131. In certain implementations, the binder is an organic binder that is configured to permanently attach a rigid layer to the silicone substrate 120. In certain implementations, the binder also provides a thin film that forms a seal around the sensor fibers 130, 131.



FIGS. 6 and 7 illustrate an example implementation of a rigid layer 128 suitable to be secured to the wafer 120 to form the precursor sensor bodies 140. The rigid layer 128 defines a plurality of apertures 129. In some implementations, the rigid layer 128 defines apertures 129 that align with the wells 121 of the wafer 120 to form the test chambers 155 of the precursor sensor bodies 140 (see FIG. 7). In certain implementations, the rigid layer 128 also defines apertures 129 that align between the wells 121 of the wafer 120 to expose the contact pads 125, 127 of the precursor sensor bodies 140 (see FIG. 7). Accordingly, a monitoring system can access signals generated by the electrodes via the contact pads 125, 127.



FIG. 8 illustrates one example implementation of a cutting station 138 of the manufacturing system. The cutting station 138 is configured to separate the precursor bodies 140 of the sensor modules 150 from each other by cutting the wafer 120 and the continuous lengths of the composite sensor fibers 130, 131. For example, FIG. 9 shows cutting paths 139 superimposed over the rigid layer 128. The cutting paths 139 define the boundaries of the precursor sensor bodies 140.


The cutting station 138 includes at least one cutting tool 136. In some implementations, the cutting station 138 includes a single cutting tool 136 that moves along the wafer 120. In other implementations, the cutting station 138 includes multiple cutting tools 136. For example, the cutting tools 136 may be positioned in a fixed pattern and pressed through the wafer 120. In certain implementations, the cutting station 138 applies dicing tape to a top of the wafer 120 along dividing lines that define the boundaries of the precursor sensor bodies 140. The dicing tape may protect the sensor fibers 130, 131 or other features while the wafer is segmented.


In some implementations, the wafer 120 and sensor fibers 130, 131 are cut using the same cutting tool 136. In certain implementations, the wafer 120 and the sensor fibers 130, 131 are cut with a laser. In certain implementations, the wafer 120 and sensor fibers 130, 131 are cut with a knife or other bladed instrument. In certain implementations, the wafer 120 and sensor fibers 130, 131 are cut with a nipper. In certain implementations, the wafer 120 and sensor fibers 130, 131 are cut with pneumatic shears. In other implementations, the wafer 120 and sensor fibers 130, 131 are cut using different tools. For example, the wafer 120 may be cut with a laser and the sensor fibers 130, 131 may be cut using a nipper.



FIG. 10 shows one example segment divided out from the wafer 120. The segment defines a precursor sensor body 140 a first sensor fiber 130 and a second sensor fiber 131 extending through a test chamber 155. Cut ends of the sensor fibers 130, 131 are located at opposite sides of the test precursor sensor body 140. The aperture 129 in the rigid layer 128 provides access to the test chamber 155. Apertures 129 in the rigid layer 128 on either side of the test chamber 155 provide access to the contact pads 125, 127. The contact pads 125, 127 are located at positions offset from the cut ends of the electrodes 130, 131.



FIGS. 11 and 12 show the result of the join operation 111 of the manufacturing process 100 of FIG. 1. The join operation 111 attaches the precursor sensor body 140 to a component body 151 to form a sensor module 150. In some implementations, the component body 151 includes a molded carrier. In other implementations, the component body 151 includes a laminated member. Joining the precursor sensor body 140 and the component body 151 closes the test chamber 155.


The component body 151 defines a passage 152 extend at least from one end of the component body 151 to the test chamber aperture 129 in the rigid layer 128 of the precursor sensor body 140. The passage 152 provides an inlet at one end of the sensor module 150 that leads to the test chamber 155. In some implementations, the component body 150 includes a skin-piercing member that is configured to extend and retract through the passage 152 to take the blood sample.


Additional details regarding example sensor fibers suitable for use in sensor modules manufactured as described above can be found in U.S. Pat. Nos. 5,264,105; 5,356,786; 5,262,035; and 5,320,725, the disclosures of which are incorporated by reference herein. Further examples of sensor fibers are described in U.S. application Ser. No. 13/129,325, filed May 13, 2011, and titled “Electrochemical Sensor Module,” the disclosure of which is incorporated by reference herein. Other examples of sensor fibers are described in PCT Publication Nos. WO 2009/032760 and WO 2009/051901, the disclosures of which are incorporated by reference herein. Additional details regarding example sensor modules can be found in U.S. Provisional Application No. 61/430,384, filed Jan. 6, 2011, and titled “Sensor Module with Enhanced Capillary Flow,” the disclosure of which is hereby incorporated herein by reference.


The above specification provides examples of how certain aspects may be put into practice. It will be appreciated that the aspects can be practiced in other ways than those specifically shown and described herein without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A method of installing sensors in sensor modules, the method comprising: providing a first wafer and a continuous length of at least a first composite sensor fiber;removing material from the first wafer to form features of a plurality of precursor sensor bodies;disposing at least the first composite sensor fiber across the features of the precursor sensor bodies;coupling a rigid body to the first wafer;separating the coupled first wafer and rigid body into a plurality of precursor sensor bodies by cutting the first wafer, the rigid body, and the first composite sensor fiber into segments; anddepositing conductive tracings on the first wafer prior to disposing the first composite sensor fiber across the features of the precursor sensor bodies.
  • 2. The method of claim 1, further comprising: providing a continuous length of a second composite sensor fiber; anddisposing the second composite sensor fiber across the features of the precursor sensor bodies adjacent to the first composite sensor fiber;wherein separating the coupled first wafer and rigid body into the plurality of precursor sensor bodies also includes cutting the second composite sensor fiber into segments.
  • 3. The method of claim 2, wherein the segments of the first composite sensor fiber form working electrodes and the segments of the second composite sensor fiber form counter electrodes.
  • 4. The method of claim 1, wherein removing material from the first wafer to form features of the plurality of precursor sensor bodies comprises etching the first wafer to form the features.
  • 5. The method of claim 1, wherein removing material from the first wafer to form features of the plurality of precursor sensor bodies comprises removing the material to form a well for each precursor sensor body to be formed.
  • 6. The method of claim 5, wherein coupling the rigid body to the first wafer comprises aligning apertures in the rigid body with the wells defined in the first wafer to form test chambers.
  • 7. The method of claim 6, further comprising joining each of the precursor sensor bodies to a component body that closes each respective test chamber.
  • 8. The method of claim 1, further comprising joining each of the precursor sensor bodies to a component body that includes a skin-piercing member.
  • 9. The method of claim 1, wherein removing material from the first wafer to form the features of the precursor sensor bodies comprises forming multiple rows of the features of the precursor sensor bodies, each row including features of multiple precursor sensor bodies.
Parent Case Info

This application is a National Stage Application of PCT/US2012/038601, filed 18 May 2012, which claims benefit of U.S. Provisional Application Ser. No. 61/488,512 filed May 20, 2011, the subject matter of which is incorporated by reference in its entirety. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/038601 5/18/2012 WO 00 11/19/2013
Publishing Document Publishing Date Country Kind
WO2012/162151 11/29/2012 WO A
US Referenced Citations (199)
Number Name Date Kind
1454224 Schmidt May 1923 A
2291720 Hukle Aug 1942 A
3170968 Rokunohe et al. Feb 1965 A
3823035 Sanders Jul 1974 A
3926201 Katz Dec 1975 A
4008302 Erlichman Feb 1977 A
4008717 Kowarski Feb 1977 A
4073974 Albarino et al. Feb 1978 A
4224125 Nakamura et al. Sep 1980 A
4255487 Sanders Mar 1981 A
4296533 Doerter Oct 1981 A
4321057 Buckles Mar 1982 A
4399099 Buckles Aug 1983 A
4545382 Higgins et al. Oct 1985 A
4545835 Gusack et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4573968 Parker Mar 1986 A
4640821 Mody et al. Feb 1987 A
4671288 Gough Jun 1987 A
4704311 Pickering et al. Nov 1987 A
4734184 Burleigh et al. Mar 1988 A
4820399 Senda et al. Apr 1989 A
4824206 Klainer et al. Apr 1989 A
4846548 Klainer Jul 1989 A
4880752 Keck et al. Nov 1989 A
4908115 Morita et al. Mar 1990 A
4919649 Timothy et al. Apr 1990 A
4927516 Yamaguchi et al. May 1990 A
4945896 Gade Aug 1990 A
4974929 Curry Dec 1990 A
4981779 Wagner Jan 1991 A
5001054 Wagner Mar 1991 A
5004583 Guruswamy et al. Apr 1991 A
RE33677 Vazirani Aug 1991 E
5047044 Smith et al. Sep 1991 A
5110755 Chen May 1992 A
5112455 Cozzette et al. May 1992 A
5131138 Crouse Jul 1992 A
5164229 Hay et al. Nov 1992 A
5165406 Wong Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5171689 Kawaguri et al. Dec 1992 A
5186808 Yamaguchi et al. Feb 1993 A
5205920 Oyama et al. Apr 1993 A
5217533 Hay et al. Jun 1993 A
5220920 Gharib Jun 1993 A
5243982 Möstl et al. Sep 1993 A
5244636 Walt et al. Sep 1993 A
5250264 Walt et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5264092 Skotheim et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5269891 Colin Dec 1993 A
5271815 Wong Dec 1993 A
5271820 Kinlen et al. Dec 1993 A
5277872 Bankert et al. Jan 1994 A
5298144 Spokane Mar 1994 A
5298741 Walt et al. Mar 1994 A
5320725 Gregg et al. Jun 1994 A
5320814 Walt et al. Jun 1994 A
5330634 Wong et al. Jul 1994 A
5356786 Heller et al. Oct 1994 A
5366527 Amos et al. Nov 1994 A
5372133 Hogen Esch Dec 1994 A
D354347 Knute et al. Jan 1995 S
D354559 Knute et al. Jan 1995 S
5384028 Ito Jan 1995 A
5395504 Saurer et al. Mar 1995 A
5422246 Koopal et al. Jun 1995 A
5431174 Knute Jul 1995 A
5437973 Vadgama et al. Aug 1995 A
5478051 Mauer Dec 1995 A
5503728 Kaneko et al. Apr 1996 A
5505828 Wong et al. Apr 1996 A
5512159 Yoshioka et al. Apr 1996 A
5543012 Watson et al. Aug 1996 A
5575403 Charlton et al. Nov 1996 A
5593852 Heller et al. Jan 1997 A
5605152 Slate et al. Feb 1997 A
5609749 Yamauchi et al. Mar 1997 A
5645710 Shieh Jul 1997 A
5656241 Seifert et al. Aug 1997 A
5720924 Eikmeier et al. Feb 1998 A
5810199 Charlton et al. Sep 1998 A
5824177 Yoshihara Oct 1998 A
5849415 Shalaby et al. Dec 1998 A
5863800 Eikmeier et al. Jan 1999 A
5900215 Seifert et al. May 1999 A
5951764 Hay et al. Sep 1999 A
5971941 Simons et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5982959 Hopenfeld Nov 1999 A
5997501 Gross et al. Dec 1999 A
6036924 Simons et al. Mar 2000 A
6044665 Lysson et al. Apr 2000 A
6048352 Douglas et al. Apr 2000 A
D424696 Ray et al. May 2000 S
D426638 Ray et al. Jun 2000 S
6071294 Simons et al. Jun 2000 A
6071391 Gotoh et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6103199 Bjornson et al. Aug 2000 A
6107083 Collins et al. Aug 2000 A
6120676 Heller et al. Sep 2000 A
6143164 Heller et al. Nov 2000 A
6241863 Montbouquette Jun 2001 B1
6299757 Feldman et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6379317 Kintzig et al. Apr 2002 B1
6461496 Feldman et al. Oct 2002 B1
6464849 Say et al. Oct 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6560471 Heller et al. May 2003 B1
6561989 Whitson May 2003 B2
6576101 Heller et al. Jun 2003 B1
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6607658 Heller et al. Aug 2003 B1
6610978 Yin et al. Aug 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6620112 Klitmose Sep 2003 B2
6676816 Mao et al. Jan 2004 B2
6706159 Moerman et al. Mar 2004 B2
6707554 Miltner et al. Mar 2004 B1
6740214 Dobson et al. May 2004 B1
6749740 Liamos et al. Jun 2004 B2
6783502 Orloff et al. Aug 2004 B2
6797214 Ruuttu et al. Sep 2004 B1
6840912 Kloepfer et al. Jan 2005 B2
6881551 Heller et al. Apr 2005 B2
6893545 Gotoh et al. May 2005 B2
6965791 Hitchcock et al. Nov 2005 B1
7008799 Zimmer et al. Mar 2006 B1
7058437 Buse et al. Jun 2006 B2
7211437 Schabbach et al. May 2007 B2
7264139 Brickwood et al. Sep 2007 B2
7282705 Brennen Oct 2007 B2
7299081 Mace et al. Nov 2007 B2
7322942 Roe Jan 2008 B2
7335294 Heller et al. Feb 2008 B2
7344499 Prausnitz et al. Mar 2008 B1
7378007 Moerman et al. May 2008 B2
7396334 Kuhr et al. Jul 2008 B2
7585278 Aceti et al. Sep 2009 B2
7723099 Miller et al. May 2010 B2
7740581 Buse et al. Jun 2010 B2
7828749 Douglas et al. Nov 2010 B2
7829023 Burke et al. Nov 2010 B2
7860544 Say et al. Dec 2010 B2
7875228 Storrs et al. Jan 2011 B2
20020040208 Flaherty et al. Apr 2002 A1
20020098124 Bentsen et al. Jul 2002 A1
20030211619 Olson et al. Nov 2003 A1
20040087033 Schembri May 2004 A1
20040102717 Qi May 2004 A1
20040236251 Roe et al. Nov 2004 A1
20050067737 Mills et al. Mar 2005 A1
20050089944 Shieh et al. Apr 2005 A1
20050196747 Stiene Sep 2005 A1
20050197548 Dietiker Sep 2005 A1
20060241517 Fowler et al. Oct 2006 A1
20070027385 Brister et al. Feb 2007 A1
20070123803 Fujiwara et al. May 2007 A1
20070149897 Ghesquiere et al. Jun 2007 A1
20070199818 Petyt et al. Aug 2007 A1
20070218281 Demir et al. Sep 2007 A1
20080017645 Garagiola Jan 2008 A1
20080097546 Powers et al. Apr 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080295328 Sasaki Dec 2008 A1
20090021901 Stothers Jan 2009 A1
20090032760 Muscatell Feb 2009 A1
20090056447 Berthold Mar 2009 A1
20090069654 Yasuzawa et al. Mar 2009 A1
20090178923 Marquant et al. Jul 2009 A1
20090257917 Nakamura et al. Oct 2009 A1
20100018869 Feldman et al. Jan 2010 A1
20100018871 Feldman et al. Jan 2010 A1
20100051479 Heller et al. Mar 2010 A1
20100059372 Heller et al. Mar 2010 A1
20100059373 Heller et al. Mar 2010 A1
20100072063 Heller et al. Mar 2010 A1
20100072064 Heller et al. Mar 2010 A1
20100267183 Kramer Oct 2010 A1
20100326842 Mazza et al. Dec 2010 A1
20110000610 Burke et al. Jan 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110086373 Wallace-Davis et al. Apr 2011 A1
20110189762 Say Aug 2011 A1
20110203941 Say Aug 2011 A1
20110265944 Say Nov 2011 A1
20110266149 Say Nov 2011 A1
20110270061 Say Nov 2011 A1
20120291254 Say Nov 2012 A1
Foreign Referenced Citations (34)
Number Date Country
101 12 384 Sep 2002 DE
10 2004 060 742 Jul 2006 DE
0 256 415 Feb 1988 EP
0 327 658 Aug 1989 EP
0 409 033 Jan 1991 EP
0 420 296 Apr 1991 EP
0 592 805 Apr 1994 EP
0 710 835 May 1996 EP
0 792 620 Sep 1997 EP
0 965 301 Dec 1999 EP
1 462 775 Sep 2004 EP
64-3552 Jan 1989 JP
1-153952 Jun 1989 JP
1-263537 Oct 1989 JP
4-279854 Oct 1992 JP
6-174946 Jun 1994 JP
8-107890 Apr 1996 JP
08327486 Dec 1996 JP
2007-202632 Aug 2007 JP
WO 8907139 Aug 1989 WO
WO 9115993 Oct 1991 WO
WO 9410553 May 1994 WO
WO 9622730 Aug 1996 WO
WO 9639616 Dec 1996 WO
WO 9715827 May 1997 WO
WO 0035340 Jun 2000 WO
WO 2005051183 Jun 2005 WO
WO 2007091633 Aug 2007 WO
WO 2008017645 Feb 2008 WO
WO 2009032760 Mar 2009 WO
WO 2009051901 Apr 2009 WO
WO 2010056869 May 2010 WO
WO 2010056878 May 2010 WO
WO 2010056878 May 2010 WO
Non-Patent Literature Citations (13)
Entry
European Search Report for 09826755.2 mailed Oct. 5, 2012.
Gough, D. et al., “Short-term In Vivo operation of a glucose sensor,” A.S.A.I.O. Transactions, vol. 32, No. 1, pp. 148-150 (Jul.-Sep. 1986).
International Search Report and Written Opinion for PCT/US2008/074649 mailed Apr. 20, 2009.
International Search Report and Written Opinion for PCT/US2008/074644 mailed May 14, 2009.
International Search Report and Written Opinion for PCT/US2009/064216 mailed May 3, 2010.
International Search Report and Written Opinion for PCT/US2009/064225 mailed May 4, 2010.
International Search Report and Written Opinion for PCT/US2009/064228 mailed Jul. 1, 2010.
Jaraba, P. et al., “NADH amperometric sensor based on poly(3-methylthiophene)-coated cylindrical carbon fiber microelectrodes: application to the enzymatic determination of L-lactate,” Electrochimica Acta., vol. 43, No. 23, pp. 3555-3565 (1998).
Netchiporouk, L.I. et al., “Properties of carbon fibre microelectrodes as a basis for enzyme biosensors,” Analytica Chimica Acta, vol. 303, pp. 275-283 (1995).
Sakslund, H. et al., “Development and evaluation of glucose microsensors based on electrochemical codeposition of ruthenium and glucose oxidase onto carbon fiber microelectrodes,” Journal of Electroanalytical Chemistry, vol. 397, pp. 149-155 (1995).
Sakslund, H. et al, “Analysis of the factors determining the sensitivity of a miniaturized glucose biosensor made by codeposition of palladium and glucose oxidase onto an 8 μm carbon filter,” Journal of Electroanalytical Chemistry, vol. 402, pp. 149-160 (1996).
International Search Report and Written Opinion from International Application No. PCT/US2012/038601 filed May 18, 2012.
U.S. Appl. No. 61/430,384, filed Jan. 6, 2011.
Related Publications (1)
Number Date Country
20150128412 A1 May 2015 US
Provisional Applications (1)
Number Date Country
61488512 May 2011 US