Membrane probing method using improved contact

Information

  • Patent Grant
  • 8451017
  • Patent Number
    8,451,017
  • Date Filed
    Friday, June 18, 2010
    14 years ago
  • Date Issued
    Tuesday, May 28, 2013
    11 years ago
Abstract
A substrate, preferably constructed of a ductile material and a tool having the desired shape of the resulting device for contacting contact pads on a test device is brought into contact with the substrate. The tool is preferably constructed of a material that is harder than the substrate so that a depression can be readily made therein. A dielectric (insulative) layer, that is preferably patterned, is supported by the substrate. A conductive material is located within the depressions and then preferably lapped to remove excess from the top surface of the dielectric layer and to provide a flat overall surface. A trace is patterned on the dielectric layer and the conductive material. A polyimide layer is then preferably patterned over the entire surface. The substrate is then removed by any suitable process.
Description
BACKGROUND OF THE INVENTION

The present invention relates to probe assemblies of the type commonly used for testing integrated circuits (IC) and, in particular, the present invention relates to a membrane probing assembly having contacts which scrub, in a locally controlled manner, across the respective input/output conductors of each device so as to reliably wipe clear the surface oxides that are normally found on those conductors thereby ensuring good electrical connection between the probing assembly and each device.


The trend in electronic production has been toward increasingly smaller geometries particularly in integrated circuit technology wherein a very large number of discrete circuit elements are fabricated on a single substrate or “wafer.” After fabrication, this wafer is divided into a number of rectangular-shaped chips or “dice” where each die presents a rectangular or other regular arrangement of metallized contact pads through which input/output connections are made. Although each die is eventually packaged separately, for efficiency sake, testing of the circuit formed on each die is preferably performed while the dies are still joined together on the wafer. One typical procedure is to support the wafer on a flat stage or “chuck” and to move the wafer in X, Y and Z directions relative to the head of the probing assembly so that the contacts on the probing assembly move from die to die for consecutive engagement with each die. Respective signal, power and ground lines are run to the probing assembly from the test instrumentation thus enabling each circuit to be sequentially connected to the test instrumentation.


Probe structures have been developed to compensate for the inductance at the probe tips. One such design is exemplified by Lockwood et al., U.S. Pat. No. 4,697,143. Lockwood et al. disclose a ground-signal-ground arrangement of strip like conductive traces formed on the underside of an alumina substrate so as to create coplanar transmission lines. These coplanar transmission lines extend from the pads of the DUT at one end to a coaxial cable at the other end. The associated pair of ground traces on each coplanar transmission line is connected to the outer conductor of the coaxial cable and the interposed signal trace is connected to the inner conductor. Areas of wear-resistant conductive material are provided to reliably establish an electrical connection with the respective pads of the DUT. Layers of ferrite-containing microwave absorbing material are mounted about the substrate to absorb spurious microwave energy over a major portion of the length of each ground-signal-ground trace pattern. In accordance with this type of construction, a high frequency impedance (e.g., 50 ohms) can be presented at the probe tips to the device under test. Thus broadband signals of eighteen gigahertz or less can travel with little loss across the coplanar transmission lines formed by each ground-signal-ground trace pattern.


The problem with this type of probing assembly is that the needle-like tips, due to their narrow geometry, exhibit high inductance so that signal distortion is large in high frequency measurements made through these tips. Also, these tips can act in the manner of a planing tool as they wipe across their respective pads, thereby leading to excessive pad damage. This problem is magnified to the extent that the probe tips bend out of shape during use or otherwise fail to terminate in a common plane which causes the more forward ones of the tips to bear down too heavily on their respective pads. Also, it is impractical to mount these tips at less than 100 micron center-to-center spacing or in a multi-row grid-like pattern so as to accommodate the pad arrangement of more modern, higher density dies. Also, this type of probing assembly has a scrub length of the needle tips of 25 microns or more, which increases the difficulty of staying within the allowed probing area.


In order to reduce inductive losses, decrease pad wear and accommodate smaller device geometries, a second type of probing assembly has been developed that uses a flexible membrane structure for supporting the probing contacts. In this assembly, lead lines of well-defined geometry are formed on one or more plies of flexible insulative film, such as polyimide or MYLAR.™. If separate plies are used, these plies are bonded together to form, for example, a multilayered transmission line structure. In the central portion of this flexible structure or membrane, each conductive line is terminated by a respective probing contact which is formed on, and projects outwardly from, an outer face of the membrane. These probing contacts are arranged in a predetermined pattern that matches the pattern of the device pads and typically are formed as upraised bumps for probing the flat surfaces conventionally defined by the pads. The inner face of the membrane is supported on a supporting structure. This structure can take the form, for example, of a truncated pyramid, in which case the inner face of the center portion of the membrane is supported on the truncated end of the support while the marginal portions of the membrane are drawn away from the center portion at an angle thereto so as to clear any upright components that may surround the pads on the device.


With respect to the membrane probing assembly just described, excessive line inductance is eliminated by carefully selecting the geometry of the lead lines, and a photolithographic process is preferably used to enable some control over the size, spacing, and arrangement, of the probing contacts so as to accommodate higher density configurations. However, although several different forms of this probing assembly have been proposed, difficulties have been encountered in connection with this type of assembly in reducing pad wear and in achieving reliable clearing of the oxide layer from each of the device pads so as to ensure adequate electrical connection between the assembly and the device-under-test.


One conventional form of membrane probing assembly, for example, is exemplified by the device shown in Rath European Patent Pub. No. 259,163A2. This device has the central portion of the sheet-like membrane mounted directly against a rigid support. This rigid support, in turn, is connected by a resilient member comprising an elastomeric or rubber block to the main body of the assembly so that the membrane can tilt to match the tilt of the device. Huff U.S. Pat. No. 4,918,383 shows a closely related device wherein radially extending leaf springs permit vertical axis movement of the rigid support while preventing it from tilting so that there is no slippage or “misalignment” of the contact bumps on the pads and further so that the entire membrane will shift slightly in the horizontal plane to allow the contacts to “scrub” across their respective pads in order to clear surface oxides from these pads.


In respect to both of these devices, however, because of manufacturing tolerances, certain of the contact bumps are likely to be in a recessed position relative to their neighbors and these recessed bumps will not have a satisfactory opportunity to engage their pads since they will be drawn away from their pads by the action of their neighbors on the rigid support. Furthermore, even when “scrub” movement is provided in the manner of Huff, the contacts will tend to frictionally cling to the device as they perform the scrubbing movement, that is, there will be a tendency for the pads of the device to move in unison with the contacts so as to negate the effect of the contact movement. Whether any scrubbing action actually occurs depends on how far the pads can move, which depends, in turn, on the degree of lateral play that exists as a result of normal tolerance between the respective bearing surfaces of the probe head and chuck. Hence this form of membrane probing assembly does not ensure reliable electrical connection between each contact and pad.


A second conventional form of membrane probing assembly is exemplified by the device show in Barsotti European Patent Pub. No. 304,868A2. This device provides a flexible backing for the central or contact-carrying portion of the flexible membrane. In Barsotti, the membrane is directly backed by an elastomeric member and this member, in turn, is backed by a rigid support so that minor height variations between the contacts or pads can be accommodated. It is also possible to use positive-pressure air, negative-pressure air, liquid or an unbacked elastomer to provide flexible backing for the membrane, as shown in Gangroth U.S. Pat. No. 4,649,339, Ardezzone U.S. Pat. No. 4,636,772, Reed, Jr. et al. U.S. Pat. No. 3,596,228 and Okubo et al. U.S. Pat. No. 5,134,365, respectively. These alternative devices, however, do not afford sufficient pressure between the probing contacts and the device pads to reliably penetrate the oxides that form on the pad surfaces.


In this second form of membrane probing assembly, as indicated in Okubo, the contacts may be limited to movement along the Z-axis in order to prevent slippage and resulting misalignment between the contacts and pads during engagement. Thus, in Barsotti, the rigid support underlying the elastomeric member is fixed in position although it is also possible to mount the support for Z-axis movement in the manner shown in Huff U.S. Pat. No. 4,980,637. Pad damage is likely to occur with this type of design, however, because a certain amount of tilt is typically present between the contacts and the device, and those contacts angled closest to the device will ordinarily develop much higher contact pressures than those which are angled away. The same problem arises with the related assembly shown in European Patent Pub. No. 230,348A2 to Garretson, even though in the Garretson device the characteristic of the elastomeric member is such as to urge the contacts into lateral movement when those contacts are placed into pressing engagement with their pads. Yet another related assembly is shown in Evans U.S. Pat. No. 4,975,638 which uses a pivotably mounted support for backing the elastomeric member so as to accommodate tilt between the contacts and the device. However, the Evans device is subject to the friction clinging problem already described insofar as the pads of the device are likely to cling to the contacts as the support pivots and causes the contacts to shift laterally.


Yet other forms of conventional membrane probing assemblies are shown in Crumly U.S. Pat. No. 5,395,253, Barsotti et al. U.S. Pat. No. 5,059,898 and Evans et al. U.S. Pat. No. 4,975,638. In Crumly, the center portion of a stretchable membrane is resiliently biased to a fully stretched condition using a spring. When the contacts engage their respective pads, the stretched center portion retracts against the spring to a partially relaxed condition so as to draw the contacts in radial scrub directions toward the center of the membrane. In Barsotti, each row of contacts is supported by the end of a respective L-shaped arm so that when the contacts in a row engage their respective pads, the corresponding arm flexes upwardly and causes the row of contacts to laterally scrub simultaneously across their respective pads. In both Crumly and Barsotti, however, if any tilt is present between the contacts and the device at the time of engagement, this tilt will cause the contacts angled closest to the device to scrub further than those angled further away. Moreover, the shorter contacts will be forced to move in their scrub directions before they have had the opportunity to engage their respective pads due to the controlling scrub action of their neighboring contacts. A further disadvantage of the Crumly device, in particular, is that the contacts nearer to the center of the membrane will scrub less than those nearer to the periphery so that scrub effectiveness will vary with contact position.


In Evans et al. U.S. Pat. No. 5,355,079 each contact constitutes a spring metal finger, and each finger is mounted so as to extend in a cantilevered manner away from the underlying membrane at a predetermined angle relative to the membrane. A similar configuration is shown in Higgins U.S. Pat. No. 5,521,518. It is difficult, however, to originally position these fingers so that they all terminate in a common plane, particularly if a high density pattern is required. Moreover, these fingers are easily bent out of position during use and cannot easily be rebent back to their original position. Hence, certain ones of the fingers are likely to touch down before other ones of the fingers, and scrub pressures and distances are likely to be different for different fingers. Nor, in Evans at least, is there an adequate mechanism for tolerating a minor degree of tilt between the fingers and pads. Although Evans suggests roughening the surface of each finger to improve the quality of electrical connection, this roughening can cause undue abrasion and damage to the pad surfaces. Yet a further disadvantage of the contact fingers shown in both Evans and Higgins is that such fingers are subject to fatigue and failure after a relatively low number of “touchdowns” or duty cycles due to repeated bending and stressing.


Referring to FIG. 1, Cascade Microtech, Inc. of Beaverton, Oreg. has developed a probe head 40 for mounting a membrane probing assembly 42. In order to measure the electrical performance of a particular die area 44 included on the silicon wafer 46, the high-speed digital lines 48 and/or shielded transmission lines 50 of the probe head are connected to the input/output ports of the test instrumentation by a suitable cable assembly, and the chuck 51 which supports the wafer is moved in mutually perpendicular X, Y, Z directions in order to bring the pads of the die area into pressing engagement with the contacts included on the lower contacting portion of the membrane probing assembly.


The probe head 40 includes a probe card 52 on which the data/signal lines 48 and 50 are arranged. Referring to FIGS. 2-3, the membrane probing assembly 42 includes a support element 54 formed of incompressible material such as a hard polymer. This element is detachably connected to the upper side of the probe card by four Allen screws 56 and corresponding nuts 58 (each screw passes through a respective attachment arm 60 of the support element, and a separate backing element 62 evenly distributes the clamping pressure of the screws over the entire back side of the supporting element). In accordance with this detachable connection, different probing assemblies having different contact arrangements can be quickly substituted for each other as needed for probing different devices.


Referring to FIGS. 3-4, the support element 54 includes a rearward base portion 64 to which the attachment arms 60 are integrally joined. Also included on the support element 54 is a forward support or plunger 66 that projects outwardly from the flat base portion. This forward support has angled sides 68 that converge toward a flat support surface 70 so as to give the forward support the shape of a truncated pyramid. Referring also to FIG. 2, a flexible membrane assembly 72 is attached to the support after being aligned by means of alignment pins 74 included on the base portion. This flexible membrane assembly is formed by one or more plies of insulative sheeting such as KAPTON.™. sold by E.I. Du Pont de Nemours or other polyimide film, and flexible conductive layers or strips are provided between or on these plies to form the data/signal lines 76.


When the support element 54 is mounted on the upper side of the probe card 52 as shown in FIG. 3, the forward support 66 protrudes through a central opening 78 in the probe card so as to present the contacts which are arranged on a central region 80 of the flexible membrane assembly in suitable position for pressing engagement with the pads of the device under test. Referring to FIG. 2, the membrane assembly includes radially extending arm segments 82 that are separated by inwardly curving edges 84 that give the assembly the shape of a formee cross, and these segments extend in an inclined mariner along the angled sides 68 thereby clearing any upright components surrounding the pads. A series of contact pads 86 terminate the data/signal lines 76 so that when the support element is mounted, these pads electrically engage corresponding termination pads provided on the upper side of the probe card so that the data/signal lines 48 on the probe card are electrically connected to the contacts on the central region.


A feature of the probing assembly 42 is its capability for probing a somewhat dense arrangement of contact pads over a large number of contact cycles in a manner that provides generally reliable electrical connection between the contacts and pads in each cycle despite oxide buildup on the pads. This capability is a function of the construction of the support element 54, the flexible membrane assembly 72 and their manner of interconnection. In particular, the membrane assembly is so constructed and connected to the support element that the contacts on the membrane assembly preferably wipe or scrub, in a locally controlled manner, laterally across the pads when brought into pressing engagement with these pads. The preferred mechanism for producing this scrubbing action is described in connection with the construction and interconnection of a preferred membrane assembly 72a as best depicted in FIGS. 6 and 7a-7b.



FIG. 6 shows an enlarged view of the central region 80a of the membrane assembly 72a. In this embodiment, the contacts 88 are arranged in a square-like pattern suitable for engagement with a square-like arrangement of pads. Referring also to FIG. 7a, which represents a sectional view taken along lines 7a-7a in FIG. 6, each contact comprises a relatively thick rigid beam 90 at one end of which is formed a rigid contact bump 92. The contact bump includes thereon a contacting portion 93 which comprises a nub of rhodium fused to the contact bump. Using electroplating, each beam is formed in an overlapping connection with the end of a flexible conductive trace 76a to form a joint therewith. This conductive trace in conjunction with a back-plane conductive layer 94 effectively provides a controlled impedance data/signal line to the contact because its dimensions are established using a photolithographic process. The backplane layer preferably includes openings therein to assist, for example, with gas venting during fabrication.


The membrane assembly is interconnected to the flat support surface 70 by an interposed elastomeric layer 98, which layer is coextensive with the support surface and can be formed by a silicone rubber compound such as ELMER'S STICK-ALL.™. made by the Borden Company or Sylgard 182 by Dow Corning Corporation. This compound can be conveniently applied in a paste-like phase which hardens as it sets. The flat support surface, as previously mentioned, is made of incompressible material and is preferably a hard dielectric such as polysulfone or glass.


In accordance with the above-described construction, when one of the contacts 88 is brought into pressing engagement with a respective pad 100, as indicated in FIG. 7b, the resulting off-center force on the rigid beam 90 and bump 92 structure causes the beam to pivot or tilt against the elastic recovery force provided by the elastomeric pad 98. This tilting motion is localized in the sense that a forward portion 102 of the beam moves a greater distance toward the flat support surface 70 than a rearward portion 104 of the same beam. The effect is such as to drive the contact into lateral scrubbing movement across the pad as is indicated in FIG. 7b with a dashed-line and solid-line representation showing the beginning and ending positions, respectively, of the contact on the pad. In this fashion, the insulative oxide buildup on each pad is removed so as to ensure adequate contact-to-pad electrical connections.



FIG. 8 shows, in dashed line view, the relative positions of the contact 88 and pad 100 at the moment of initial engagement or touchdown and, in solid-line view, these same elements after “overtravel” of the pad by a distance 106 in a vertical direction directly toward the flat support surface 70. As indicated, the distance 108 of lateral scrubbing movement is directly dependent on the vertical deflection of the contact 88 or, equivalently, on the overtravel distance 106 moved by the pad 100. Hence, since the overtravel distance for each contact on the central region 80a will be substantially the same (with differences arising from variations in contact height), the distance of lateral scrubbing movement by each contact on the central region will be substantially uniform and will not, in particular, be affected by the relative position of each contact on the central region.


Because the elastomeric layer 98 is backed by the incompressible support surface 70, the elastomeric layer exerts a recovery force on each tilting beam 90 and thus each contact 93 to maintain contact-to-pad pressure during scrubbing. At the same time, the elastomeric layer accommodates some height variations between the respective contacts. Thus, referring to FIG. 9a, when a relatively shorter contact 88a is situated between an immediately adjacent pair of relatively taller contacts 88b and these taller contacts are brought into engagement with their respective pads, then, as indicated in FIG. 9b, deformation by the elastomeric layer allows the smaller contact to be brought into engagement with its pad after some further overtravel by the pads. It will be noted, in this example, that the tilting action of each contact is locally controlled, and the larger contacts are able, in particular, to tilt independently of the smaller contact so that the smaller contact is not urged into lateral movement until it has actually touched down on its pad.


Referring to FIGS. 10 and 11, the electroplating process to construct such a beam structure, as schematically shown in FIG. 8, includes the incompressible material 68 defining the support surface 70 and the substrate material attached thereon, such as the elastomeric layer 98. Using a flex circuit construction technique, the flexible conductive trace 76a is then patterned on a sacrificial substrate. Next, a polyimide layer 77 is patterned to cover the entire surface of the sacrificial substrate and of the traces 76a, except for the desired location of the beams 90 on a portion of the traces 76a. The beams 90 are then electroplated within the openings in the polyimide layer 77. Thereafter, a layer of photoresist 79 is patterned on both the surface of the polyimide 77 and beams 90 to leave openings for the desired location of the contact bumps 92. The contact bumps 92 are then electroplated within the openings in the photoresist layer 79. The photoresist layer 79 is removed and a thicker photoresist layer 81 is patterned to cover the exposed surfaces, except for the desired locations for the contacting portions 93. The contacting portions 93 are then electroplated within the openings in the photoresist layer 81. The photoresist layer 81 is then removed. The sacrificial substrate layer is removed and the remaining layers are attached to the elastomeric layer 98. The resulting beams 90, contact bumps 92, and contacting portions 93, as more accurately illustrated in FIG. 12, provides the independent tilting and scrubbing functions of the device.


Unfortunately, the aforementioned construction technique results in a structure with many undesirable characteristics.


First, several beams 90, contact bumps 92, and contacting portions 93 (each of which may be referred to as a device) proximate one another results in different localized current densities within the electroplating bath, which in turn results in differences in the heights of many of the beams 90, contact bumps 92, and contacting portions 93. Also, different densities of the ions within the electroplating bath and “random” variations in the electroplating bath also results in differences in heights of many of the beams 90, contact bumps 92, and contacting portions 93. The different heights of many of the beams 90, contact bumps 92, and contacting portions 93 is compounded three fold in the overall height of many of the devices. Accordingly, many devices will have a significantly different height than other devices. Using membrane probes having variable device height requires more pressure to ensure that all the contacting portions 93 make adequate contact with the test device than would be required if all the devices had equal overall height. For high density membrane probes, such as 2000 or more devices in a small area, the cumulate effect of the additional pressure required for each device may exceed the total force permitted for the probe head and probe station. The excess pressure may also result in bending and breaking of the probe station, the probe head, and/or the membrane probing assembly. In addition, the devices with the greatest height may damage the pads on the test device because of the increased pressure required to make suitable contact for the devices with the lowest height.


Second, the ability to decrease the pitch (spacing) between the devices is limited by the “mushrooming” effect of the electroplating process over the edges of the polyimide 77 and photoresist layers 79 and 81. The “mushrooming” effect is difficult to control and results in a variable width of the beams 90, contact bumps 92, and contacting portions 93. If the height of the beams 90, the contact bumps 92, or the contacting portions 93 are increased then the “mushrooming” effect generally increases, thus increasing the width of the respective portion. The increased width of one part generally results in a wider overall device which in turn increases the minimum spacing between contacting portions 93. Alternatively, decreasing the height of the beams 90, the contact bumps 92, or the contacting portions 93 generally decreases the width of the “mushrooming” effect which in turn decreases the minimum spacing between contacting portions 93. However, if the height of the contacting portions 93 relative to the respective beam 90 is sufficiently reduced, then during use the rearward end of the beam 90 may sufficiently tilt and contact the test device in an acceptable location, i.e., off the contact pad.


Third, it is difficult to plate a second metal layer directly on top of a first metal layer, such as contacting portions 93 on the contact bumps 92, especially when using nickel. To provide a bond between the contact bumps 92 and the contacting portions 93, an interface seed layer such as copper or gold is used to make an improved interconnection. Unfortunately, the interface seed layer reduces the lateral strength of the device due to the lower sheer strength of the interface layer.


Fourth, applying a photoresist layer over a non-uniform surface tends to be semi-conformal in nature resulting in a non-uniform thicknesses of the photoresist material itself. Referring to FIG. 13, the photoresist layer 79 (and 81) over the raised portions of the beams 90 tends to be thicker than the photoresist layer 79 (and 81) over the lower portions of the polyimide 77. In addition, the thickness of the photoresist 79 (and 81) tends to vary depending on the density of the beams 90. Accordingly, regions of the membrane probe that have a denser spacing of devices, the photoresist layer 79 (and 81) will be thicker on average than regions of the membrane probe that have a less dense spacing of devices. During the exposing and etching processing of the photoresist layer 79 (and 81), the duration of the process depends on the thickness of the photoresist 79 (or 81). With variable photoresist thickness it is difficult to properly process the photoresist to provide uniform openings. Moreover, the thinner regions of photoresist layer 79 (or 81) will tend to be overexposed resulting in variably sized openings. Also, the greater the photoresist layer thickness 79 (or 81) the greater the variability in its thickness. Accordingly, the use of photoresist presents many processing problems.


Fifth, separate alignment processes are necessary to align the beams 90 on the traces 76a, the contact bumps 92 on the beams 90, and the contacting portions 93 on the contact bumps 92. Each alignment process has inherent variations that must be accounted for in sizing each part. The minimum size of the contacting portions 93 is defined primarily by the lateral strength requirements and the maximum allowable current density therein. The minimum size of the contacting portions 93, accounting for the tolerances in alignment, in turn defines the minimum size of the contact bumps 92 so that the contacting portions 93 are definitely constructed on the contact bumps 92. The minimum size of the contact bumps 92, in view of the contacting portions 93 and accounting for the tolerances in alignment, defines the minimum size of the beams 90 so that the contact bumps 92 are definitely constructed on the beams 90. Accordingly, the summation of the tolerances of the contact bumps 92 and the contacting portions 93, together with a minimum size of the contacting portions 93, defines the minimum device size, and thus defines the minimum pitch between contact pads.


What is desired, therefore, is a membrane probe construction technique and structure that results in a more uniform device height, decreased spacing between devices, maximized lateral strength, desired geometries, and proper alignment.


SUMMARY OF THE INVENTION

The present invention overcomes the aforementioned drawbacks of the prior art by providing a substrate, preferably constructed of a ductile material. A tool having the desired shape of the resulting device for contacting contact pads on a test device is brought into contact with the substrate. The tool is preferably constructed of a material that is harder than the substrate so that a depression can be readily made therein. A dielectric (insulative) layer, that is preferably patterned, is supported by the substrate. A conductive material is located within the depressions and then preferably planarized to remove excess from the top surface of the dielectric layer and to provide a flat overall surface. A trace is patterned on the dielectric layer and the conductive material. A polyimide layer is then preferably patterned over the entire surface. The substrate is then removed by any suitable process.


The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a perspective view of a membrane probing assembly bolted to a probe head and a wafer supported on a chuck in suitable position for probing by this assembly.



FIG. 2 is a bottom elevational view showing various parts of the probing assembly of FIG. 1, including a support element and flexible membrane assembly, and a fragmentary view of a probe card having data/signal lines connected with corresponding lines on the membrane assembly.



FIG. 3 is a side elevational view of the membrane probing assembly of FIG. 1 where a portion of the membrane assembly has been cut away to expose hidden portions of the support element.



FIG. 4 is a top elevational view of an exemplary support element.



FIGS. 5
a-5b are schematic side elevational views illustrating how the support element and membrane assembly are capable of tilting to match the orientation of the device under test.



FIG. 6 is an enlarged top elevational view of the central region of the construction of the membrane assembly of FIG. 2.



FIGS. 7
a-7b are sectional views taken along lines 7a-7a in FIG. 6 first showing a contact before touchdown and then showing the same contact after touchdown and scrub movement across its respective pad.



FIG. 8 is a schematic side view showing, in dashed-line representation, the contact of FIGS. 7a-7b at the moment of initial touchdown and, in solid-line representation, the same contact after further vertical overtravel by the pad.



FIGS. 9
a and 9b illustrate the deformation of the elastomeric layer to bring the contacts into contact with its pad.



FIG. 10 is a longitudinal sectional view of the device of FIG. 8.



FIG. 11 is a cross sectional view of the device of FIG. 8.



FIG. 12 is a more accurate pictorial view of the device shown in FIGS. 10 and 11.



FIG. 13 is a detailed view of the device shown in FIG. 11 illustrating the uneven layers that result during processing.



FIG. 14 is a pictorial view of a substrate.



FIG. 15 is a pictorial view of an exemplary embodiment of a tool, and in particular a dimpling tool, of the present invention.



FIG. 16 is a pictorial view illustrating the tool of FIG. 15 coming into contact with the substrate of FIG. 14.



FIG. 17 is a pictorial view of the substrate of FIG. 14 after the tool of FIG. 15 has come into contact therewith.



FIG. 18 is a sectional view of the substrate of FIG. 14 with a polyimide layer supported thereon.



FIG. 19 is a pictorial view of the tool of FIG. 16 together with a z-axis stop.



FIG. 20 is a sectional view of the substrate of FIG. 14 with a trace, conductive material in the depression, and additional polyimide layer thereon.



FIG. 21 is a pictorial view of the device of FIG. 20, inverted, with the substrate removed.



FIG. 22 is a breakaway sectional view of the contacting portion of FIG. 21.



FIG. 23 is a schematic view illustrating one arrangement of the devices of the present invention.



FIG. 24 is a schematic view illustrating the contact of a traditional contacting portion and the oxide layer of a solder bump.



FIG. 25 is a plan view of an alternative device with an elongate probing portion.



FIG. 26 is a side view of the device of FIG. 25 with an elongate probing portion.



FIG. 27 is a pictorial view of a solder bump with a mark therein as a result of the device of FIGS. 25 and 26.



FIG. 28 is a pictorial view of another alternative probing device.



FIG. 29 is a pictorial view of a further alternative probing device suitable for solder bumps.



FIG. 30 is a side view of a true Kelvin connection using the devices of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The currently employed construction techniques for membrane probes involves starting with the flat rigid substrate to support additional layers fabricated thereon. To decrease the pitch and provide devices with increased uniformity requires increasingly more complex and expensive processing techniques. In direct contrast to the current techniques of constructing layers from the “bottom up” upon a supporting substrate, the present inventors came to the realization that by using a suitable tool a substrate may be coined to create the desired beams, contact bumps, and contacting portions. The remaining layers are then constructed “top down” on the beam. The substrate itself is thereafter removed.


Referring to FIG. 14, a substrate 200 is preferably constructed from a ductile material such as aluminum, copper, lead, indium, brass, gold, silver, platinum, or tantalum, with a thickness preferably between 10 mills and ⅛ inch. The top surface 202 of the substrate 200 is preferably planar and polished for optical clarity to improve viewing, as described later.


Referring to FIG. 15, a tool and in particular a “dimpling” tool 210 is constructed with a head 212 having the desired shape of the resulting device for contacting the contact pads on the test device. The dimpling tool 210 includes a projection 214 to connect to a dimpling machine (not shown). The tool 210 is supported by the dimpling machine with the head 212 oriented to come into contact with the top surface 202 of the substrate 200. The tool 210 is preferably constructed of a material that is harder than the substrate 200 so that a dimple can be readily made therein. Suitable material for the tool 210 is, for example, tool steel, carbide, chromium, and diamond. The preferred dimpling machine is a probe station which has accurate x, y, and z control. It is to be understood that any other suitable dimpling machine may likewise be used. Referring to FIG. 16, the tool 210 is pressed into contact with the top surface 202 of the substrate 200 resulting in a depression 216 matching the shape of the tool 210 upon its removal from the substrate 200, as shown in FIG. 17. The tool 210 is used to create a plurality of depressions 216 in the substrate 200 matching the desired pattern, such as the pattern shown in FIG. 6. Conversely, the tool 210 can be held stationary and the substrate 200 can be moved in the z-direction until the top surface 202 of the substrate is pressed into contact with the tool 210 resulting in the same depression 216 matching the shape of the tool 210 upon its removal from the substrate 200, as shown in FIG. 17.


Referring to FIG. 18, a polyimide layer 220 is patterned around the depressions 216. It is to be understood that any other suitable insulative layer or dielectric layer may likewise be used. In the process of patterning the polyimide layer 220, it is somewhat difficult to remove the polyimide from the depressions 216 during the exposing and etching process for the polyimide layer 220. This is especially true when the depressions 216 are relatively deep with steeply inclined sides. Alternatively, the polyimide layer 220 may be patterned on the top surface 202 of the substrate 200 with openings located therein where the depressions 216 are desired. Thereafter, the tool 210 is used to create the depressions 216 in the substrate 200 through the openings provided in the polyimide layer 220. This alternative technique eliminates the difficult process of adequately removing the polyimide layer 220 from the depressions 216.


It is expensive to manufacture masks for exposing the polyimide layer 220 that have tolerances sufficient to precisely align the openings for the depressions 216. The tool 210, in combination with the dimpling machine, can be aligned to the actual location of one of the openings that results from exposing and etching the polyimide layer 220 with a relatively inexpensive, and somewhat inaccurate mask. The present inventors came to the realization that localized regions of the mask, and thus the openings resulting therefrom, tend to be relatively well aligned for purposes of dimpling. Likewise, regions of the mask distant from one another tend not to be relatively well aligned for purposes of dimpling. Accordingly, automatically dimpling the substrate 200 to match an anticipated pattern with many depressions 216 distant from one another, with an accurate dimpling machine, will result in the dimpling tool not accurately being aligned with the openings at regions distant from the initial alignment point. To improve the accuracy of the alignment process the present inventors came to the realization that the dimpling machine may be realigned to the actual openings in the polyimide layer 220 at different remote locations, so that each localized region is relatively accurately aligned, while the overall alignment may be somewhat off. In this manner a relatively inexpensive mask may be used.


Preferably the dimpling machine includes accurate z-axis movement so that the depth of each depression is identical, or substantially identical. Referring to FIG. 19, if sufficiently accurate z-axis movement is not available then an alternative dimpling tool 240 with a built in z-axis stop 242 may be used. The z-axis stop 242 is a projection extending outward from the head 244 that comes to rest on the top surface of the polyimide 220 or top surface 202 of the substrate 200. The z-axis stop 242 is positioned with respect to the head 244 such that the proper depth is obtained, taking into account whether or not the polyimide layer 220 is previously patterned before using the dimpling tool 240.


Referring to FIG. 20, a conductive material 250 is electroplated onto the polyimide 220 and substrate 200 thereby filling up the depressions 216 with the conductive material 250, such as nickel and rhodium. It is to be understood that any other suitable technique may be used to locate conductive material within the depressions 216. The conductive material 250 is then preferably lapped to remove excess from the top surface of the polyimide layer 220 and to provide a flat overall surface. The preferred lapping process is a chemical-mechanical planarization process. A trace 252 is patterned on the polyimide layer 220 and the conductive material 250. The trace 252 is preferably a good conductor such as copper, aluminum, or gold. A polyimide layer 254 is then patterned over the entire surface. Further layers of metal and dielectric may be formed. The substrate 200 is then removed by any suitable process, such as etching with hydrochloric acid (HCL 15%) or sulfuric acid (H.sub.2SO.sub.4). Hydrochloric acid and sulfuric acid are not reactive with, the polyimide layer 220 nor the conductive material 250, such as nickel or rhodium. It is to be understood that the polyimide layer 254 may alternatively be any suitable insulator or dielectric layer.


Referring to FIG. 21, the contacting portion 260 of the resulting device is preferably selected to have a low contact resistance so that a good electrical connection may be made with the test device. While nickel has a relatively low contact resistance, rhodium has an even lower contact resistance and is more resistant to wear than nickel. Accordingly, the depressions 216 are preferably coated with a layer of rhodium. Using normal processing techniques the thickness of rhodium is limited to approximately 5 microns. The resulting device includes an exterior layer of rhodium, and in particular the contacting portion 260, which is then filled with the remaining conductive material, such as nickel or a nonconductive fill. The conductive material need not fill the entire depression.


The aforementioned “top-down” construction process provides numerous advantages over the traditional “bottom-up” processing technique of constructing layers upon a supporting substrate. These advantages also permit the capability of constructing devices with improved characteristics.


First, there are no limitations to the height of the resulting devices which were previously imposed by limitations of photoresist processing. The ability to construct devices having any suitable height also relieves the limitations imposed by attempting to electroplate into a tall narrow openings in photoresist, which is difficult.


Second, the elevation of the contacting portions 260 of the devices is extremely uniform because it is defined solely by the tooling process, which is mechanical in nature. Different localized current densities of the electroplating bath, different densities of the ions within the electroplating bath, and “random” variations in the electroplating bath are eliminated from impacting the overall shape and height of the resulting devices. With substantially uniform elevation of the devices, less force is required for the devices to make adequate contact with the test device which, in turn, decreases the likelihood of bending and breaking the probe station, the probe head, and/or the membrane probing assembly. Also, the substantially uniform elevation of the devices decreases the likelihood of damaging contact pads on the test device with excessive pressure.


Third, the contacting portion 260 of the devices are stronger because the device is constructed of a single homogenous material during one depositing process requiring no interfacial layers, as previously required for the multiple processing steps. This permits reducing the size of the contacting portions to the limitation of the maximum current density allowable therein during testing and not the minimum sheer force of the interfacial layers.


Fourth, the shape of the resulting devices are customizable to effectively probe different materials The shape of the device may have steep sidewall angles, such as 85 degrees, while still providing mechanical strength, stability, and integrity. The steep sidewalls permit narrower devices to be constructed which allows for a greater density of devices for increasingly denser arrangements of contact pads on the test device. Moreover, the angle of the sidewalls are not dependent (e.g. independent) on the crystalline structure of the substrate.


Fifth, the shape of the contacting portion is known precisely, and is uniform between devices, which permits uniform contact with the contact pads of the test device.


Sixth, the alignment of the different portions of the resulting device are exactly uniform between devices because each device was constructed using the same tooling process. With exact alignment of the lower portions of each device (beam and contact bump) in relation to the contacting portion, there is no need to provide additional leeway to accommodate processing variations inherent in photoresist processes and in electroplating processes. Also, the “mushrooming” effect of the electroplating process is eliminated which also reduces the required size of the device. The alignment variability reduction, and virtual elimination, of different devices 300 allows a significantly decreased pitch to be obtained, suitable for contact pads on the test device that have increased density.


Seventh, the shape of the resulting devices may be tailor shaped to provide optimal mechanical performance. To provide the scrubbing function, as described in the background portion, the device should have a beam and bump structure that tilts upon contact. The device 300 may include an inclined surface 304 between its tail 302 and the contacting portion 260. The inclined surface 304 provides for increased strength along portions of the length of the device 300 which permits the tail 302 to be thinner than its head 306. The torque forces applied to the device 300 during the tilting process of the device 300 tend to decrease over the length of the device 300 which has a correspondingly thinner material defined by the inclined surface 304. With a thinner tail 302 and material proximate the tail 302, the tail 302 of the device 300 has less likelihood of impacting the test device if excess tiling occurs. The improved shape of the device 300 also decreases the amount of metal material required.


Eighth, “look-up” cameras are used to obtain an image of the lower portion of the membrane probe to determine the precise location of the devices 300 relative to the contact pads on the test device. Using “look-up” cameras permits automatic alignment of the membrane devices relative to the contact pads so that automatic testing may be performed. In order to obtain an image of the devices 300 on the membrane probe the “look-up” cameras normally utilize light to illuminate the devices 300. Unfortunately, the traditional planar processing techniques result in relatively flat surfaces on the beams, contact bumps, and contacting portions, in a perpendicular orientation to the “look up” cameras each of which reflects light back to the “look-up” camera. The light reflecting back to the “look up” camera from all the surfaces frequently results in some confusion regarding the exact location of the contacting portions 260. The inclined surface 304 of the devices 300 tends to reflect incident light away from lowerly disposed “look-up” cameras, while the contacting portions 306 tend to reflect incident light back to lowerly disposed “look-up” cameras. Light returning to the “look-up” camera primarily from the contacting portions 306 results in less potential confusion regarding the exact location of the contacting portions.


Ninth, the initial polishing of the top surface 202 of the substrate 200 results in a matching smooth lower surface for the polyimide layer 220 patterned thereon. After etching away, or otherwise removing, the substrate 200 the lower surface of the polyimide layer 220 is smooth and the resulting polyimide layer 220 is generally optically clear. Accordingly, the spaces between the traces and the metallized devices 300 is relatively optically transmissive so that an operator positioning the device can readily see through the device between the traces and devices. This assists the operator in manually positioning the membrane probe on the devices which are otherwise obscured. In addition, the pyramidal shape of the devices 300 allows the operator to more easily determine the exact location of the contacting portions relative to the contact pads on the test device, which were previously obscured by the wide beam structures (relative to the contacting portions).


Tenth, referring to FIG. 22, the contacting portions 260 of the device are preferably constructed with an exterior surface of rhodium 340, which typically can be effectively plated to only approximately a thickness of 5 microns. The plating process of rhodium is semi-conformal, so the resulting layer is approximately 5 microns thick in a perpendicular direction to the exterior sides 352 and 354. The width of the top 350 of the contacting portion and the angle of the sides 352 and 354 of the tool 210 is selected so that the rhodium 340 plated on both sides 352 and 254 preferably join together forming a v-shape. The remainder of the device is preferably nickel. While the thickness of the rhodium 340 is only 5 microns in a perpendicular direction, the thickness of the rhodium 340 in a perpendicular direction from the top 350 of the device is greater than 5 microns. Accordingly, the contacting portion which wears during use in a generally perpendicular direction from the top 350 will last longer than if the top portion were merely plated to a thickness of 5 microns of rhodium.


Eleventh, the texture of the contacting portion 260 may be selected to provide the described scrubbing effect on the contact pads of the test device. In particular, the tool may include a roughened surface pattern on the corresponding contacting portion to provide a uniform texture for all devices.


Thirteenth, using the construction technique of the present invention is relatively quick to construct the devices because of the decreased number of processing steps, resulting in a substantial cost savings.


The aforementioned construction technique also provides several advantages related to the shape of the devices which would be otherwise difficult, if not impossible, to construct.


First, the tool may provide any desired shape, such as a simple bump, if no scrubbing action is desired.


Second, the inclined supporting sides of the test device up to the contacting portion 260 provides superior mechanical support for the contacting portion 260, as opposed to merely a portion of metal supported by a larger contact bump. With such support from the inclined sides, the contacting portion may be smaller without risk of it becoming detached from the device. The smaller contacting portion provides improved contact with the contact pad of the test device when the device tilts to penetrate the oxide buildup on the surface of the contact pad. In addition, the tail 302 of the device may be substantially thinner than the remainder of the device which decreases the likelihood of the tail 302 portion impacting the contact-pad of the test device during testing when the device tilts.


Third, the pressure exerted by the contacting portions of the devices, given a predefined pressure exerted by the probe head, is variable by changing the center of rotation of the device. The center of rotation of the device can be selected by selecting the length of the device and the location/height of the contacting portion relative thereto. Accordingly, the pressures can be selected, as desired, to match characteristics of two different contact pads.


Fourth, referring to FIG. 23, a triangular shape of the footprint of the device allows for high lateral stability of the devices while permitting a decrease in the pitch between devices. The contacting portions 403 of the device are preferably aligned in a linear arrangement for many contact pads of test devices. The triangular portions of the device are aligned in alternatively opposing directions.


Fifth, the capability of constructing contacting portions that are raised high from the lower surface of the device, while still maintaining uniformity in the device height and structural strength, allows the device to provide scrubbing action while the lower surface of the device requires little movement. The small movement of the lower surface of the device to make good electrical contact during testing decreases the stress on the layers under the lower surface of the device. Accordingly, the likelihood of cracking the polyimide layers and the conductive traces is reduced.


When probing an oxide layer on solder bumps, or solder balls on wafers that are to be used with “flip-chip” packaging technology, such as the solder bumps on the printed circuit boards, the oxide layer developed thereon is difficult to effectively penetrate. Referring to FIG. 24, when contacting a traditional contacting portion of a membrane probe onto the solder bump, the oxide 285 tends to be pressed into the solder bump 287 together with the contacting portion 289 resulting in a poor interconnection. When using conventional needle probes on solder bumps, the needles tend to skate on the solder bumps, bend under within the solder bumps, collect debris on the needles, flake the debris onto the surface of the test device, and cleaning the needle probes is time consuming and tedious. Moreover, needle probes leave non-uniform probe marks on the solder bumps. When probing solder bumps used on flip-chips, the probe marks left in the upper portion of the solder bump tends to trap flux therein, which when heated tends to explode, which degrades, or otherwise destroys, the interconnection. Referring to FIGS. 25 and 26, an improved device construction suitable for probing solder bumps is shown. The upper portion of the device includes a pair of steeply inclined sides 291 and 293, such as 15 degrees off vertical, with preferably polished sides. The inclined sides 291 and 293 preferably form a sharp ridge 295 at the top thereof The angle of the sides 291 and 293 is selected with regard to the coefficient of friction between the sides and the oxide on the solder bump, so that the oxide coated surface tends to primarily slide along the surfaces of the sides 291 and 293, or otherwise shear away, and not be significantly carried on the sides as the device penetrates a solder bump. Referring to FIG. 27, the substantially sharp ridge also provides for a mark (detent) after contact that extends across the entire solder bump. Subsequent heating of the solder bumps, together with flux, result in the flux exiting from the sides of the solder bump thereby avoiding the possibility of explosion. In addition, the resulting mark left on the solder bumps is uniform in nature which allows manufacturers of the solder bumps to account for the resulting marks in their design. Also, less force is required to be applied to the device because it tends to slice through the solder bump rather than make pressing contact with the solder bump. The flatter surface 405 prevents slicing too deeply into the solder ball (bump).


Referring to FIG. 28, to provide a larger contact area for testing solder bumps a waffle pattern may be used.


Referring to FIG. 29, an alternative device includes a pair of projections 311 and 313 that are preferably at the ends of an arch 315. The spacing between the projections 311 and 313 is preferably less than the diameter of the solder bump 317 to be tested. With such an arrangement the projections 311 and 313 will strike the sides of the solder bump 317 thereby not leaving a mark on the upper portion of the solder bump 317. With marks on the sides of the solder bump 317, the subsequent flux used will be less likely to become trapped within the mark and explode. In addition, if the alignment of the device is not centered on the solder bump 317 then it is highly likely that one of the projections 311 and 313 will still strike the solder bump 317.


Previous device construction techniques resulted in devices that included contacting portions that were rather large and difficult to assure alignment of Referring to FIG. 30, with the improved construction technique the present inventors came to the realization that membrane probes may be used to make a “true” Kevlin connection to a contact pad on the test device. A pair of devices 351 and 353 are aligned with their contacting portions 355 and 357 adjacent one another. With this arrangement one of the devices may be the “force” while the other device is the “sense” part of the Kelvin testing arrangement. Both contacting portions 355 and 357 contact the same contact pad on the test device. A more detailed analysis of Kelvin connections is described in Fink, D. G., ed., Electronics Engineers' Handbook, 1st ed., McGraw-Hill Book Co., 1975, Sec. 17-61, pp. 17-25, 17-26, “The Kelvin Double Bridge”, and U.S. patent application Ser. No. 08/864,287, both of which are incorporated by reference herein.


It is to be noted that none to all of the aforementioned advantages may be present in devices constructed accordingly to the present invention, depending on the technique used, desired use, and structure achieved.

Claims
  • 1. A probing assembly for probing an electrical device comprising: (a) a plurality of contacts formed by locating conductive material within a plurality of depressions of a sacrificial substrate, each of said contacts having a length and a contacting portion spaced apart from an axis of moment of said contact, and each contact being electrically connected to a corresponding conductor; and(b) an elastic assembly including a surface supporting said plurality of contacts, said elastic assembly operating in respect to each contact to urge each contact, when in pressing engagement with said electrical device, into tilting motion so that each contact is driven in accordance with said tilting motion into lateral scrubbing movement across said electrical device, each contact remaining supported by said elastic assembly along substantially all of said length during the tilting motion, wherein said plurality of contacts further includes a first conductive material that defines said contacting portion of said plurality of contacts and a second conductive material that supports said first conductive material, wherein said first conductive material is different from said second conductive material, and further wherein a thickness of said first conductive material in a direction that is perpendicular to said elastic assembly and at a point of contact between said electrical device and said contacting portion is greater than a thickness of said first conductive material in a direction that is perpendicular to a side of said first conductive material and in a location where said second conductive material supports said first conductive material.
  • 2. The probing assembly of claim 1 including a base, said elastic assembly being tiltably coupled to said base so as to enable said elastic assembly to automatically tilt relative to said base toward a position parallel to said electrical device in response to pressing engagement between respective ones of said contacts and said electrical device.
  • 3. The probing assembly of claim 1 wherein said contacts are provided in adjacent pairs and the respective lateral scrubbing movements of said contacts in each adjacent pair are in opposite directions.
  • 4. The probing assembly of claim 1 wherein each contact is supported by a continuous portion of said elastic assembly.
  • 5. The probing assembly of claim 1, wherein said contacting portion is configured to contact said electrical device, and further wherein said contacting portion includes at least one of a roughened surface pattern, a sharp ridge, a waffle pattern, and a pair of projections, wherein a spacing between said pair of projections is less than a diameter of a solder bump of said electrical device that said contacting portion is configured to contact.
  • 6. The probing assembly of claim 1, wherein each of said plurality of contacts includes at least one substantially flat surface inclined relative to a perpendicular direction relative to said elastic assembly and defining an acute angle relative thereto.
  • 7. The probing assembly of claim 1, wherein each of said plurality of contacts includes an elongate portion that defines the length, wherein said contacting portion is disposed in elevational relationship to said elongate portion, and further wherein said contacting portion and said elongate portion are integral with each other and formed free from interfacial layers.
  • 8. The probing assembly of claim 1, wherein the probing assembly is configured to form a Kelvin connection with the electrical device, wherein said plurality of contacts is arranged in adjacent pairs, wherein each adjacent pair includes a first contact and a second contact, wherein the first contact is configured to provide an electric current to a contact pad of the electrical device, and further wherein the second contact is configured to detect a voltage of the contact pad.
  • 9. A probing assembly for probing an electrical device comprising: (a) a plurality of contacts formed by locating conductive material within a plurality of depressions of a sacrificial substrate, said plurality of contacts being substantially asymmetric, each of said contacts having a length and being electrically connected to a corresponding conductor; and(b) an elastic assembly supporting said contacts, said elastic assembly operating in respect to each contact to urge each contact, when placed into pressing engagement with said electrical device, into tilting motion so that each contact is driven in accordance with said tilting motion into lateral scrubbing movement across said electrical device, and each contact remaining supported by said elastic assembly along substantially all of said length during the tilting motion, wherein said plurality of contacts further includes a plurality of contacting portions, wherein a first conductive material defines said contacting portion of said contacts and a second conductive material supports said first conductive material, wherein said first conductive material is different from said second conductive material, and further wherein a thickness of said first conductive material in a direction that is perpendicular to said elastic assembly and at a point of contact between said electrical device and said contacting portion is greater than a thickness of said first conductive material in a direction that is perpendicular to a side of said first conductive material and in a location where said second conductive material supports said first conductive material.
  • 10. The probing assembly of claim 9 including a base, said elastic assembly being tiltably coupled to said base so as to enable said elastic assembly to automatically tilt relative to said base toward a position parallel to said electrical device in response to pressing engagement between respective ones of said contacts and said electrical device.
  • 11. The probing assembly of claim 9 wherein each contact includes a contact bump fixedly joined in an off-centered location on said contact.
  • 12. The probing assembly of claim 9 wherein said contacts are provided in adjacent pairs and the respective lateral scrubbing movements of said contacts in each adjacent pair are in opposite directions.
  • 13. The probing assembly of claim 9 wherein each contact is supported by a continuous portion of said elastic assembly.
  • 14. The probing assembly of claim 9, wherein each of said plurality of contacts includes a contacting portion, wherein said contacting portion is configured to contact said electrical device, and further wherein said contacting portion includes at least one of a roughened surface pattern, a sharp ridge, a waffle pattern, and a pair of projections, wherein a spacing between said pair of projections is less than a diameter of a solder bump of said electrical device that said contacting portion is configured to contact.
  • 15. The probing assembly of claim 9, wherein each of said plurality of contacts includes at least one substantially flat surface inclined relative to a perpendicular direction relative to said elastic assembly and defining an acute angle relative thereto.
  • 16. The probing assembly of claim 9, wherein each of said plurality of contacts includes an elongate portion that defines the length and a contacting portion in elevational relationship to said elongate portion, and further wherein said contacting portion and said elongate portion are integral with each other and formed free from interfacial layers.
  • 17. The probing assembly of claim 9, wherein the probing assembly is configured to form a Kelvin connection with the electrical device, wherein said plurality of contacts is arranged in adjacent pairs, wherein each adjacent pair includes a first contact and a second contact, wherein the first contact is configured to provide an electric current to a contact pad of the electrical device, and further wherein the second contact is configured to detect a voltage of the contact pad.
  • 18. A probing assembly for probing an electrical device comprising: (a) a plurality of contacts formed by locating conductive material within a plurality of depressions of a sacrificial substrate, each of said contacts having a length and a contacting portion spaced apart from an axis of moment of said contact, and each contact being electrically connected to a corresponding conductor, wherein the probing assembly is configured to form a Kelvin connection with the electrical device, wherein said plurality of contacts is arranged in adjacent pairs, wherein each adjacent pair includes a first contact and a second contact, wherein the first contact is configured to provide an electric current to a contact pad of the electrical device, and further wherein the second contact is configured to detect a voltage of the contact pad; and(b) an elastic assembly including a surface supporting said plurality of contacts, said elastic assembly operating in respect to each contact to urge each contact, when in pressing engagement with said electrical device, into tilting motion so that each contact is driven in accordance with said tilting motion into lateral scrubbing movement across said electrical device, each contact remaining supported by said elastic assembly along substantially all of said length during the tilting motion.
  • 19. A probing assembly for probing an electrical device comprising: (a) a plurality of contacts formed by locating conductive material within a plurality of depressions of a sacrificial substrate, said plurality of contacts being substantially asymmetric, each of said contacts having a length and being electrically connected to a corresponding conductor, wherein the probing assembly is configured to form a Kelvin connection with the electrical device, wherein said plurality of contacts is arranged in adjacent pairs, wherein each adjacent pair includes a first contact and a second contact, wherein the first contact is configured to provide an electric current to a contact pad of the electrical device, and further wherein the second contact is configured to detect a voltage of the contact pad; and(b) an elastic assembly supporting said contacts, said elastic assembly operating in respect to each contact to urge each contact, when placed into pressing engagement with said electrical device, into tilting motion so that each contact is driven in accordance with said tilting motion into lateral scrubbing movement across said electrical device, and each contact remaining supported by said elastic assembly along substantially all of said length during the tilting motion.
  • 20. A probing assembly for probing an electrical device comprising: (a) a plurality of contacts formed by locating conductive material within a plurality of depressions of a sacrificial substrate, each of said contacts having a length and a contacting portion spaced apart from an axis of moment of said contact, and each contact being electrically connected to a corresponding conductor, wherein said contacting portion is configured to contact said electrical device, and further wherein said contacting portion includes at least one of a roughened surface pattern, a sharp ridge, a waffle pattern, and a pair of projections, wherein a spacing between said pair of projections is less than a diameter of a solder bump of said electrical device that said contacting portion is configured to contact; and(b) an elastic assembly including a surface supporting said plurality of contacts, said elastic assembly operating in respect to each contact to urge each contact, when in pressing engagement with said electrical device, into tilting motion so that each contact is driven in accordance with said tilting motion into lateral scrubbing movement across said electrical device, each contact remaining supported by said elastic assembly along substantially all of said length during the tilting motion.
  • 21. A probing assembly for probing an electrical device comprising: (a) a plurality of contacts formed by locating conductive material within a plurality of depressions of a sacrificial substrate, said plurality of contacts being substantially asymmetric, each of said contacts having a length and being electrically connected to a corresponding conductor, wherein each of said plurality of contacts includes a contacting portion, wherein said contacting portion is configured to contact said electrical device, and further wherein said contacting portion includes at least one of a roughened surface pattern, a sharp ridge, a waffle pattern, and a pair of projections, wherein a spacing between said pair of projections is less than a diameter of a solder bump of said electrical device that said contacting portion is configured to contact; and(b) an elastic assembly supporting said contacts, said elastic assembly operating in respect to each contact to urge each contact, when placed into pressing engagement with said electrical device, into tilting motion so that each contact is driven in accordance with said tilting motion into lateral scrubbing movement across said electrical device, and each contact remaining supported by said elastic assembly along substantially all of said length during the tilting motion.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of application U.S. patent application Ser. No. 10/705,014 filed Nov. 10, 2003 which is a continuation of Ser. No. 10/814,593, filed Mar. 22, 2001 and now U.S. Pat. No. 6,708,386; which is a continuation of application Ser. No. 09/115,571, filed Jul. 14, 1998, now U.S. Pat. No. 6,256,882.

US Referenced Citations (948)
Number Name Date Kind
1337866 Whitaker Apr 1920 A
2142625 Zoethout Jan 1939 A
2376101 Tyzzer May 1945 A
2389668 Johnson Nov 1945 A
3176091 Hanson et al. Mar 1965 A
3193712 Harris Jul 1965 A
3230299 Radziejowski Jan 1966 A
3401126 Miller et al. Sep 1968 A
3429040 Miller Feb 1969 A
3441315 Paes et al. Apr 1969 A
3442831 Dickstein et al. May 1969 A
3445770 Harmon May 1969 A
3484679 Hodgson et al. Dec 1969 A
3541222 Parks et al. Nov 1970 A
3595228 Simon et al. Jul 1971 A
3596228 Reed, Jr. et al. Jul 1971 A
3609539 Gunthert Sep 1971 A
3634807 Grobe et al. Jan 1972 A
3654585 Wickersham Apr 1972 A
3680037 Nellis et al. Jul 1972 A
3700998 Lee et al. Oct 1972 A
3710251 Hagge et al. Jan 1973 A
3714572 Ham et al. Jan 1973 A
3740900 Youmans et al. Jun 1973 A
3806801 Bove Apr 1974 A
3829076 Sofy Aug 1974 A
3839672 Anderson Oct 1974 A
3849728 Evans Nov 1974 A
3858212 Tompkins et al. Dec 1974 A
3862790 Davies et al. Jan 1975 A
3866093 Kusters et al. Feb 1975 A
3936743 Roch Feb 1976 A
3952156 Lahr Apr 1976 A
3970934 Aksu Jul 1976 A
3971610 Buchoff et al. Jul 1976 A
3976959 Gaspari Aug 1976 A
3992073 Buchoff et al. Nov 1976 A
4008900 Khoshaba Feb 1977 A
4027935 Byrnes et al. Jun 1977 A
4038599 Bove et al. Jul 1977 A
4038894 Knibbe et al. Aug 1977 A
4049252 Bell Sep 1977 A
4066943 Roch Jan 1978 A
4072576 Arwin et al. Feb 1978 A
4093988 Scott Jun 1978 A
4099120 Aksu Jul 1978 A
4115735 Stanford Sep 1978 A
4135131 Larsen et al. Jan 1979 A
4184729 Parks et al. Jan 1980 A
4275446 Blaess Jun 1981 A
4277741 Faxvog et al. Jul 1981 A
4284033 del Rio Aug 1981 A
4284682 Frosch et al. Aug 1981 A
4287473 Sawyer Sep 1981 A
4312117 Robillard et al. Jan 1982 A
4327180 Chen Apr 1982 A
4330783 Toia May 1982 A
4357575 Uren et al. Nov 1982 A
4376920 Smith Mar 1983 A
4383217 Shiell May 1983 A
4401945 Juengel Aug 1983 A
4425395 Negishi et al. Jan 1984 A
4453142 Murphy Jun 1984 A
4468629 Choma, Jr. Aug 1984 A
4487996 Rabinowitz et al. Dec 1984 A
4515133 Roman May 1985 A
4515439 Esswein May 1985 A
4528504 Thornton, Jr. et al. Jul 1985 A
4531474 Inuta Jul 1985 A
4552033 Marzhauser Nov 1985 A
4567321 Harayama Jan 1986 A
4581679 Smolley Apr 1986 A
4588950 Henley May 1986 A
4593243 Lao et al. Jun 1986 A
4621169 Petinelli et al. Nov 1986 A
4626618 Takaoka et al. Dec 1986 A
4636722 Ardezzone Jan 1987 A
4636772 Yasunaga Jan 1987 A
4641659 Sepponen Feb 1987 A
4642417 Ruthrof et al. Feb 1987 A
4646005 Ryan Feb 1987 A
4649339 Grangroth et al. Mar 1987 A
4651115 Wu Mar 1987 A
4663840 Ubbens et al. May 1987 A
4673839 Veenendaal Jun 1987 A
4684883 Ackerman et al. Aug 1987 A
4691163 Blass et al. Sep 1987 A
4697143 Lockwood et al. Sep 1987 A
4705447 Smith Nov 1987 A
4707657 Boegh-Petersen Nov 1987 A
4711563 Lass Dec 1987 A
4713347 Mitchell et al. Dec 1987 A
4725793 Igarashi Feb 1988 A
4727391 Tajima et al. Feb 1988 A
4727637 Buckwitz et al. Mar 1988 A
4742571 Letron May 1988 A
4744041 Strunk et al. May 1988 A
4746857 Sakai et al. May 1988 A
4749942 Sang et al. Jun 1988 A
4754239 Sedivec Jun 1988 A
4755746 Mallory et al. Jul 1988 A
4755747 Sato Jul 1988 A
4755874 Esrig et al. Jul 1988 A
4757255 Margozzi Jul 1988 A
4766384 Kleinberg et al. Aug 1988 A
4772846 Reeds Sep 1988 A
4780670 Cherry Oct 1988 A
4791363 Logan Dec 1988 A
4793814 Zifcak et al. Dec 1988 A
4795962 Yanagawa et al. Jan 1989 A
4805627 Klingenbeck et al. Feb 1989 A
4812754 Tracy et al. Mar 1989 A
4827211 Strid et al. May 1989 A
4831494 Arnold et al. May 1989 A
4837507 Hechtman Jun 1989 A
4839587 Flatley et al. Jun 1989 A
4849689 Gleason et al. Jul 1989 A
4853624 Rabjohn Aug 1989 A
4853627 Gleason et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4864227 Sato Sep 1989 A
4871883 Guiol Oct 1989 A
4871964 Boll et al. Oct 1989 A
4891584 Kamieniecki et al. Jan 1990 A
4893914 Hancock et al. Jan 1990 A
4894612 Drake et al. Jan 1990 A
4899998 Teramachi Feb 1990 A
4904933 Snyder et al. Feb 1990 A
4904935 Calma et al. Feb 1990 A
4906920 Huff et al. Mar 1990 A
4912399 Greub et al. Mar 1990 A
4916002 Carver Apr 1990 A
4916398 Rath Apr 1990 A
4918383 Huff et al. Apr 1990 A
4922128 Dhong et al. May 1990 A
4922186 Tsuchiya et al. May 1990 A
4922192 Gross et al. May 1990 A
4929893 Sato et al. May 1990 A
4975638 Evans et al. Dec 1990 A
4980637 Huff et al. Dec 1990 A
4983910 Majidi-Ahy et al. Jan 1991 A
4987100 McBride et al. Jan 1991 A
4991290 MacKay Feb 1991 A
4998062 Ikeda Mar 1991 A
5001423 Abrami et al. Mar 1991 A
5003253 Majidi-Ahy et al. Mar 1991 A
5020219 Leedy Jun 1991 A
5021186 Ota et al. Jun 1991 A
5030907 Yih et al. Jul 1991 A
5041782 Marzan Aug 1991 A
5045781 Gleason et al. Sep 1991 A
5059898 Barsotti et al. Oct 1991 A
5061192 Chapin et al. Oct 1991 A
5061823 Carroll Oct 1991 A
5066357 Smyth, Jr. et al. Nov 1991 A
5069628 Crumly Dec 1991 A
5082627 Stanbro Jan 1992 A
5084671 Miyata et al. Jan 1992 A
5089774 Nakano Feb 1992 A
5091692 Ohno et al. Feb 1992 A
5091732 Mileski et al. Feb 1992 A
5095891 Reitter Mar 1992 A
5097101 Trobough Mar 1992 A
5097207 Blanz Mar 1992 A
5107076 Bullock et al. Apr 1992 A
5126286 Chance Jun 1992 A
5133119 Afshari et al. Jul 1992 A
5134365 Okubo et al. Jul 1992 A
5136237 Smith et al. Aug 1992 A
5142224 Smith et al. Aug 1992 A
5145552 Yoshizawa et al. Sep 1992 A
5148103 Pasiecznik, Jr. Sep 1992 A
5159264 Anderson Oct 1992 A
5159267 Anderson Oct 1992 A
5159752 Mahant-Shetti et al. Nov 1992 A
5160883 Blanz Nov 1992 A
5164319 Hafeman et al. Nov 1992 A
5166606 Blanz Nov 1992 A
5172049 Kiyokawa et al. Dec 1992 A
5172050 Swapp Dec 1992 A
5172051 Zamborelli Dec 1992 A
5177438 Littlebury et al. Jan 1993 A
5180977 Huff Jan 1993 A
5187443 Bereskin Feb 1993 A
5198752 Miyata et al. Mar 1993 A
5198753 Hamburgen Mar 1993 A
5202558 Barker Apr 1993 A
5207585 Byrnes et al. May 1993 A
5214243 Johnson May 1993 A
5214374 St. Onge May 1993 A
5225037 Elder et al. Jul 1993 A
5227730 King et al. Jul 1993 A
5232789 Platz et al. Aug 1993 A
5233197 Bowman et al. Aug 1993 A
5233306 Misra Aug 1993 A
5245292 Milesky et al. Sep 1993 A
5266889 Harwood et al. Nov 1993 A
5267088 Nomura Nov 1993 A
5270664 McMurtry et al. Dec 1993 A
5274336 Crook et al. Dec 1993 A
5280156 Niori et al. Jan 1994 A
5293175 Hemmie et al. Mar 1994 A
5298972 Heffner Mar 1994 A
5304924 Yamano et al. Apr 1994 A
5313157 Pasiecznik, Jr. May 1994 A
5315237 Iwakura et al. May 1994 A
5321352 Takebuchi Jun 1994 A
5321453 Mori et al. Jun 1994 A
5326412 Schreiber et al. Jul 1994 A
5355079 Evans et al. Oct 1994 A
5357211 Bryson et al. Oct 1994 A
5363050 Guo et al. Nov 1994 A
5367165 Toda et al. Nov 1994 A
5368634 Hackett Nov 1994 A
5369368 Kassen et al. Nov 1994 A
5371654 Beaman et al. Dec 1994 A
5373231 Boll et al. Dec 1994 A
5374938 Hatazawa et al. Dec 1994 A
5376790 Linker et al. Dec 1994 A
5389885 Swart Feb 1995 A
5395253 Crumly Mar 1995 A
5397855 Ferlier Mar 1995 A
5404111 Mori et al. Apr 1995 A
5408188 Katoh Apr 1995 A
5408189 Swart et al. Apr 1995 A
5412330 Ravel et al. May 1995 A
5412866 Woith et al. May 1995 A
5414565 Sullivan et al. May 1995 A
5416429 McQuade et al. May 1995 A
5422574 Kister Jun 1995 A
5441690 Ayala-Esquilin et al. Aug 1995 A
5451722 Gregoire Sep 1995 A
5451884 Sauerland Sep 1995 A
5453404 Leedy Sep 1995 A
5457398 Schwindt et al. Oct 1995 A
5467024 Swapp Nov 1995 A
5469324 Henderson et al. Nov 1995 A
5475316 Hurley et al. Dec 1995 A
5476211 Khandros Dec 1995 A
5477011 Singles et al. Dec 1995 A
5478748 Akins, Jr. et al. Dec 1995 A
5479108 Cheng Dec 1995 A
5479109 Lau et al. Dec 1995 A
5481196 Nosov Jan 1996 A
5481936 Yanagisawa Jan 1996 A
5487999 Farnworth Jan 1996 A
5488954 Sleva et al. Feb 1996 A
5493070 Habu Feb 1996 A
5493236 Ishii et al. Feb 1996 A
5500606 Holmes Mar 1996 A
5505150 James et al. Apr 1996 A
5506498 Anderson et al. Apr 1996 A
5506515 Godshalk et al. Apr 1996 A
5510792 Ono et al. Apr 1996 A
5511010 Burns Apr 1996 A
5512835 Rivera et al. Apr 1996 A
5517126 Yamaguchi May 1996 A
5521518 Higgins May 1996 A
5521522 Abe et al. May 1996 A
5523694 Cole, Jr. Jun 1996 A
5528158 Sinsheimer et al. Jun 1996 A
5530372 Lee et al. Jun 1996 A
5531022 Beaman et al. Jul 1996 A
5532608 Behfar-Rad et al. Jul 1996 A
5537372 Albrecht et al. Jul 1996 A
5539323 Davis, Jr. Jul 1996 A
5539676 Yamaguchi Jul 1996 A
5565788 Burr et al. Oct 1996 A
5565881 Phillips et al. Oct 1996 A
5569591 Kell et al. Oct 1996 A
5571324 Sago et al. Nov 1996 A
5578932 Adamian Nov 1996 A
5583445 Mullen Dec 1996 A
5584120 Roberts Dec 1996 A
5584608 Gillespie Dec 1996 A
5589781 Higgins et al. Dec 1996 A
5600256 Woith et al. Feb 1997 A
5601740 Eldridge et al. Feb 1997 A
5610529 Schwindt Mar 1997 A
5617035 Swapp Apr 1997 A
5623213 Liu et al. Apr 1997 A
5623214 Pasiecznik, Jr. Apr 1997 A
5628057 Phillips et al. May 1997 A
5631571 Spaziani et al. May 1997 A
5633780 Cronin May 1997 A
5634267 Farnworth et al. Jun 1997 A
5635846 Beaman et al. Jun 1997 A
5642298 Mallory et al. Jun 1997 A
5644248 Fujimoto Jul 1997 A
5653939 Hollis et al. Aug 1997 A
5656942 Watts et al. Aug 1997 A
5659421 Rahmel et al. Aug 1997 A
5666063 Abercrombie et al. Sep 1997 A
5669316 Faz et al. Sep 1997 A
5670322 Eggers et al. Sep 1997 A
5670888 Cheng Sep 1997 A
5672816 Park et al. Sep 1997 A
5675499 Lee et al. Oct 1997 A
5675932 Mauney Oct 1997 A
5676360 Boucher et al. Oct 1997 A
5685232 Inoue Nov 1997 A
5686317 Akram et al. Nov 1997 A
5700844 Hedrick et al. Dec 1997 A
5704355 Bridges Jan 1998 A
5715819 Svenson et al. Feb 1998 A
5720098 Kister Feb 1998 A
5723347 Hirano et al. Mar 1998 A
5726211 Hedrick et al. Mar 1998 A
5731920 Katsuragawa Mar 1998 A
5742174 Kister et al. Apr 1998 A
5744383 Fritz Apr 1998 A
5744971 Chan et al. Apr 1998 A
5748506 Bockelman May 1998 A
5751252 Phillips May 1998 A
5756021 Hedrick et al. May 1998 A
5767690 Fujimoto Jun 1998 A
5772451 Dozier, II et al. Jun 1998 A
5773780 Eldridge et al. Jun 1998 A
5777485 Tanaka et al. Jul 1998 A
5785538 Beaman et al. Jul 1998 A
5792668 Fuller et al. Aug 1998 A
5793213 Bockelman et al. Aug 1998 A
5794133 Kashima Aug 1998 A
5804607 Hedrick et al. Sep 1998 A
5804982 Lo et al. Sep 1998 A
5804983 Nakajima et al. Sep 1998 A
5806181 Khandros et al. Sep 1998 A
5807107 Bright et al. Sep 1998 A
5810607 Shih et al. Sep 1998 A
5811751 Leong et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5813847 Eroglu et al. Sep 1998 A
5814847 Shihadeh et al. Sep 1998 A
5818249 Momohara Oct 1998 A
5820014 Dozier, II et al. Oct 1998 A
5821763 Beaman et al. Oct 1998 A
5824494 Feldberg Oct 1998 A
5829128 Eldridge et al. Nov 1998 A
5829437 Bridges Nov 1998 A
5831442 Heigl Nov 1998 A
5832601 Eldridge et al. Nov 1998 A
5833601 Swartz et al. Nov 1998 A
5838160 Beaman et al. Nov 1998 A
5841288 Meaney et al. Nov 1998 A
5846708 Hollis et al. Dec 1998 A
5847569 Ho et al. Dec 1998 A
5848500 Kirk Dec 1998 A
5852232 Samsavar et al. Dec 1998 A
5854608 Leisten Dec 1998 A
5864946 Eldridge et al. Feb 1999 A
5867073 Weinreb et al. Feb 1999 A
5869326 Hofmann Feb 1999 A
5869974 Akram et al. Feb 1999 A
5874361 Collins et al. Feb 1999 A
5876082 Kempf et al. Mar 1999 A
5878486 Eldridge et al. Mar 1999 A
5883522 O'Boyle Mar 1999 A
5883523 Ferland et al. Mar 1999 A
5884398 Eldridge et al. Mar 1999 A
5888075 Hasegawa et al. Mar 1999 A
5892539 Colvin Apr 1999 A
5896038 Budnaitis et al. Apr 1999 A
5900737 Graham et al. May 1999 A
5900738 Khandros et al. May 1999 A
5903143 Mochizuki et al. May 1999 A
5905421 Oldfield May 1999 A
5910727 Fujihara et al. Jun 1999 A
5912046 Eldridge et al. Jun 1999 A
5914613 Gleason et al. Jun 1999 A
5914614 Beaman et al. Jun 1999 A
5916689 Collins et al. Jun 1999 A
5917707 Khandros et al. Jun 1999 A
5926029 Ference et al. Jul 1999 A
5926951 Khandros et al. Jul 1999 A
5944093 Viswanath Aug 1999 A
5945836 Sayre et al. Aug 1999 A
5949383 Hayes et al. Sep 1999 A
5949579 Baker Sep 1999 A
5959461 Brown et al. Sep 1999 A
5963364 Leong et al. Oct 1999 A
5970429 Martin Oct 1999 A
5973504 Chong Oct 1999 A
5974662 Eldridge et al. Nov 1999 A
5981268 Kovacs et al. Nov 1999 A
5982166 Mautz Nov 1999 A
5983493 Eldridge et al. Nov 1999 A
5990695 Daugherty, Jr. Nov 1999 A
5993611 Moroney, III et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
5995914 Cabot Nov 1999 A
5996102 Haulin Nov 1999 A
5998228 Eldridge et al. Dec 1999 A
5998768 Hunter et al. Dec 1999 A
5998864 Khandros et al. Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6001760 Katsuda et al. Dec 1999 A
6002426 Back et al. Dec 1999 A
6013586 McGhee et al. Jan 2000 A
6019612 Hasegawa et al. Feb 2000 A
6020745 Taraci Feb 2000 A
6023103 Chang et al. Feb 2000 A
6028435 Nikawa Feb 2000 A
6029344 Khandros et al. Feb 2000 A
6031383 Streib et al. Feb 2000 A
6032356 Eldridge et al. Mar 2000 A
6032714 Fenton Mar 2000 A
6033935 Dozier, II et al. Mar 2000 A
6034533 Tervo et al. Mar 2000 A
6037785 Higgins Mar 2000 A
6042712 Mathieu Mar 2000 A
6043563 Eldridge et al. Mar 2000 A
6049216 Yang et al. Apr 2000 A
6049976 Khandros Apr 2000 A
6050829 Eldridge et al. Apr 2000 A
6051422 Kovacs et al. Apr 2000 A
6052653 Mazur et al. Apr 2000 A
6054651 Fogel et al. Apr 2000 A
6054869 Hutton et al. Apr 2000 A
6059982 Palagonia et al. May 2000 A
6060888 Blackham et al. May 2000 A
6060892 Yamagata May 2000 A
6061589 Bridges et al. May 2000 A
6062879 Beaman et al. May 2000 A
6064213 Khandros et al. May 2000 A
6064217 Smith May 2000 A
6064218 Godfrey et al. May 2000 A
6066911 Lindemann et al. May 2000 A
6078183 Cole, Jr. Jun 2000 A
6078500 Beaman et al. Jun 2000 A
6090261 Mathieu Jul 2000 A
6091236 Piety et al. Jul 2000 A
6091255 Godfrey Jul 2000 A
6096567 Kaplan et al. Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104201 Beaman et al. Aug 2000 A
6104206 Verkuil Aug 2000 A
6110823 Eldridge et al. Aug 2000 A
6114864 Soejima et al. Sep 2000 A
6114865 Lagowski et al. Sep 2000 A
6118287 Boll et al. Sep 2000 A
6118894 Schwartz et al. Sep 2000 A
6124725 Sato Sep 2000 A
6127831 Khoury et al. Oct 2000 A
6137302 Schwindt Oct 2000 A
6144212 Mizuta Nov 2000 A
6147502 Fryer et al. Nov 2000 A
6147851 Anderson Nov 2000 A
6150186 Chen et al. Nov 2000 A
6160407 Nikawa Dec 2000 A
6160412 Martel et al. Dec 2000 A
6166333 Crumly et al. Dec 2000 A
6166553 Sinsheimer Dec 2000 A
6168974 Chang et al. Jan 2001 B1
6169410 Grace et al. Jan 2001 B1
6172337 Johnsgard et al. Jan 2001 B1
6174744 Watanabe et al. Jan 2001 B1
6175228 Zamborelli et al. Jan 2001 B1
6176091 Kishi et al. Jan 2001 B1
6181144 Hembree et al. Jan 2001 B1
6181149 Godfrey et al. Jan 2001 B1
6181297 Leisten Jan 2001 B1
6181416 Falk Jan 2001 B1
6184053 Eldridge et al. Feb 2001 B1
6184587 Khandros et al. Feb 2001 B1
6184845 Leisten et al. Feb 2001 B1
6191596 Abiko Feb 2001 B1
6194720 Li et al. Feb 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208225 Miller Mar 2001 B1
6211663 Moulthrop et al. Apr 2001 B1
6211837 Crouch et al. Apr 2001 B1
6215196 Eldridge et al. Apr 2001 B1
6215295 Smith, III Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218910 Miller Apr 2001 B1
6222031 Wakabayashi et al. Apr 2001 B1
6229327 Boll et al. May 2001 B1
6232149 Dozier, II et al. May 2001 B1
6232787 Lo et al. May 2001 B1
6232788 Schwindt et al. May 2001 B1
6233613 Walker et al. May 2001 B1
6236223 Brady et al. May 2001 B1
6242803 Khandros et al. Jun 2001 B1
6242929 Mizuta Jun 2001 B1
6245692 Pearce et al. Jun 2001 B1
6246247 Eldridge et al. Jun 2001 B1
6251595 Gordon et al. Jun 2001 B1
6255126 Mathieu et al. Jul 2001 B1
6256882 Gleason et al. Jul 2001 B1
6257564 Avneri et al. Jul 2001 B1
6265950 Schmidt et al. Jul 2001 B1
6268015 Mathieu et al. Jul 2001 B1
6268016 Bhatt et al. Jul 2001 B1
6271673 Furuta et al. Aug 2001 B1
6274823 Khandros et al. Aug 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6278051 Peabody Aug 2001 B1
6278411 Ohlsson et al. Aug 2001 B1
6281691 Matsunaga et al. Aug 2001 B1
6286208 Shih et al. Sep 2001 B1
6292760 Burns Sep 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300775 Peach et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6307161 Grube et al. Oct 2001 B1
6307387 Gleason et al. Oct 2001 B1
6307672 DeNure Oct 2001 B1
6310483 Taura et al. Oct 2001 B1
6320372 Keller Nov 2001 B1
6320396 Nikawa Nov 2001 B1
6327034 Hoover et al. Dec 2001 B1
6329827 Beaman et al. Dec 2001 B1
6330164 Khandros et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6335625 Bryant et al. Jan 2002 B1
6339338 Eldridge et al. Jan 2002 B1
6340568 Hefti Jan 2002 B2
6340895 Uher et al. Jan 2002 B1
6351885 Suzuki et al. Mar 2002 B2
6352454 Kim et al. Mar 2002 B1
6359456 Hembree et al. Mar 2002 B1
6362792 Sawamura et al. Mar 2002 B1
6366247 Sawamura et al. Apr 2002 B1
6369776 Leisten et al. Apr 2002 B1
6376258 Hefti Apr 2002 B2
6384614 Hager et al. May 2002 B1
6395480 Hefti May 2002 B1
6396296 Tarter et al. May 2002 B1
6396298 Young et al. May 2002 B1
6400168 Matsunaga et al. Jun 2002 B2
6404211 Hamel et al. Jun 2002 B2
6404213 Noda Jun 2002 B2
6407562 Whiteman Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
6414478 Suzuki Jul 2002 B1
6415858 Getchel et al. Jul 2002 B1
6418009 Brunette Jul 2002 B1
6419500 Kister Jul 2002 B1
6420722 Moore et al. Jul 2002 B2
6420887 Kister et al. Jul 2002 B1
6424164 Kister Jul 2002 B1
6424316 Leisten Jul 2002 B1
6429029 Eldridge et al. Aug 2002 B1
6441315 Eldridge et al. Aug 2002 B1
6442831 Khandros et al. Sep 2002 B1
6447339 Reed et al. Sep 2002 B1
6448788 Meaney et al. Sep 2002 B1
6448865 Miller Sep 2002 B1
6452406 Beaman et al. Sep 2002 B1
6452411 Miller et al. Sep 2002 B1
6456099 Eldridge et al. Sep 2002 B1
6456103 Eldridge et al. Sep 2002 B1
6459343 Miller Oct 2002 B1
6459739 Vitenberg Oct 2002 B1
6468098 Eldridge Oct 2002 B1
6475822 Eldridge et al. Nov 2002 B2
6476333 Khandros et al. Nov 2002 B1
6476442 Williams et al. Nov 2002 B1
6476630 Whitten et al. Nov 2002 B1
6479308 Eldridge Nov 2002 B1
6480013 Nayler et al. Nov 2002 B1
6480978 Roy et al. Nov 2002 B1
6481939 Gillespie et al. Nov 2002 B1
6482013 Eldridge et al. Nov 2002 B2
6483327 Bruce et al. Nov 2002 B1
6488405 Eppes et al. Dec 2002 B1
6490471 Svenson et al. Dec 2002 B2
6491968 Mathieu et al. Dec 2002 B1
6499121 Roy et al. Dec 2002 B1
6501343 Miller Dec 2002 B2
6509751 Mathieu et al. Jan 2003 B1
6512482 Nelson et al. Jan 2003 B1
6520778 Eldridge et al. Feb 2003 B1
6525552 Kister Feb 2003 B2
6525555 Khandros et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6528984 Beaman et al. Mar 2003 B2
6528993 Shin et al. Mar 2003 B1
6529844 Kapetanic et al. Mar 2003 B1
6530148 Kister Mar 2003 B1
6534856 Dozier, II et al. Mar 2003 B1
6538214 Khandros Mar 2003 B2
6538538 Hreish et al. Mar 2003 B2
6539531 Miller et al. Mar 2003 B2
6548311 Knoll Apr 2003 B1
6549022 Cole, Jr. et al. Apr 2003 B1
6549106 Martin Apr 2003 B2
6551884 Masuoka Apr 2003 B2
6559671 Miller et al. May 2003 B2
6566079 Hefti May 2003 B2
6573702 Marcuse et al. Jun 2003 B2
6578264 Gleason et al. Jun 2003 B1
6580283 Carbone et al. Jun 2003 B1
6582979 Coccioli et al. Jun 2003 B2
6586956 Aldaz et al. Jul 2003 B2
6587327 Devoe et al. Jul 2003 B1
6597187 Eldridge et al. Jul 2003 B2
6603322 Boll et al. Aug 2003 B1
6603323 Miller et al. Aug 2003 B1
6603324 Eldridge et al. Aug 2003 B2
6605951 Cowan Aug 2003 B1
6605955 Costello et al. Aug 2003 B1
6606014 Miller Aug 2003 B2
6606575 Miller Aug 2003 B2
6608494 Bruce et al. Aug 2003 B1
6611417 Chen Aug 2003 B2
6615485 Eldridge et al. Sep 2003 B2
6616966 Mathieu et al. Sep 2003 B2
6617862 Bruce Sep 2003 B1
6621082 Morita et al. Sep 2003 B2
6621260 Eldridge et al. Sep 2003 B2
6622103 Miller Sep 2003 B1
6624648 Eldridge et al. Sep 2003 B2
6627461 Chapman et al. Sep 2003 B2
6627483 Ondricek et al. Sep 2003 B2
6627980 Eldridge Sep 2003 B2
6628503 Sogard Sep 2003 B2
6628980 Atalar et al. Sep 2003 B2
6633174 Satya et al. Oct 2003 B1
6636182 Mehltretter Oct 2003 B2
6639461 Tam et al. Oct 2003 B1
6640415 Eslamy et al. Nov 2003 B2
6640432 Mathieu et al. Nov 2003 B1
6642625 Dozier, II et al. Nov 2003 B2
6643597 Dunsmore Nov 2003 B1
6644982 Ondricek et al. Nov 2003 B1
6646520 Miller Nov 2003 B2
6653903 Leich et al. Nov 2003 B2
6655023 Eldridge et al. Dec 2003 B1
6657455 Eldridge et al. Dec 2003 B2
6657601 McLean Dec 2003 B2
6661316 Hreish et al. Dec 2003 B2
6664628 Khandros et al. Dec 2003 B2
6669489 Dozier, II et al. Dec 2003 B1
6672875 Mathieu et al. Jan 2004 B1
6677744 Long Jan 2004 B1
6678850 Roy et al. Jan 2004 B2
6678876 Stevens et al. Jan 2004 B2
6680659 Miller Jan 2004 B2
6685817 Mathieu Feb 2004 B1
6686754 Miller Feb 2004 B2
6690185 Khandros et al. Feb 2004 B1
6701265 Hill et al. Mar 2004 B2
6701612 Khandros et al. Mar 2004 B2
6707548 Kreimer et al. Mar 2004 B2
6708386 Gleason et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6710798 Hershel et al. Mar 2004 B1
6713374 Eldridge et al. Mar 2004 B2
6714828 Eldridge et al. Mar 2004 B2
6717426 Iwasaki Apr 2004 B2
6720501 Henson Apr 2004 B1
6722032 Beaman et al. Apr 2004 B2
6724205 Hayden et al. Apr 2004 B1
6724928 Davis Apr 2004 B1
6727579 Eldridge et al. Apr 2004 B1
6727580 Eldridge et al. Apr 2004 B1
6727716 Sharif Apr 2004 B1
6729019 Grube et al. May 2004 B2
6731804 Carrieri et al. May 2004 B1
6734687 Ishitani et al. May 2004 B1
6737920 Jen et al. May 2004 B2
6741085 Khandros et al. May 2004 B1
6741092 Eldridge et al. May 2004 B2
6744268 Hollman Jun 2004 B2
6753679 Kwong et al. Jun 2004 B1
6753699 Stockstad Jun 2004 B2
6759311 Eldridge et al. Jul 2004 B2
6764869 Eldridge Jul 2004 B2
6768328 Self et al. Jul 2004 B2
6770955 Coccioli et al. Aug 2004 B1
6771806 Satya et al. Aug 2004 B1
6777319 Grube et al. Aug 2004 B2
6778140 Yeh Aug 2004 B1
6778406 Grube et al. Aug 2004 B2
6780001 Eldridge et al. Aug 2004 B2
6784674 Miller Aug 2004 B2
6784677 Miller et al. Aug 2004 B2
6784679 Sweet et al. Aug 2004 B2
6788093 Aitren et al. Sep 2004 B2
6788094 Khandros et al. Sep 2004 B2
6791176 Mathieu et al. Sep 2004 B2
6794888 Kawaguchi et al. Sep 2004 B2
6794950 Du Toit et al. Sep 2004 B2
6798225 Miller Sep 2004 B2
6798226 Altmann et al. Sep 2004 B2
6806724 Hayden et al. Oct 2004 B2
6806836 Ogawa et al. Oct 2004 B2
6807734 Eldridge et al. Oct 2004 B2
6809533 Anlage et al. Oct 2004 B1
6811406 Grube Nov 2004 B2
6812691 Miller Nov 2004 B2
6812718 Chong et al. Nov 2004 B1
6815963 Gleason et al. Nov 2004 B2
6816031 Miller Nov 2004 B1
6817052 Grube Nov 2004 B2
6818840 Khandros Nov 2004 B2
6822463 Jacobs Nov 2004 B1
6822529 Miller Nov 2004 B2
6825052 Eldridge et al. Nov 2004 B2
6825422 Eldridge et al. Nov 2004 B2
6827584 Mathieu et al. Dec 2004 B2
6835898 Eldridge et al. Dec 2004 B2
6836962 Khandros et al. Jan 2005 B2
6838885 Kamitani Jan 2005 B2
6838890 Tervo et al. Jan 2005 B2
6839964 Henson Jan 2005 B2
6845491 Miller et al. Jan 2005 B2
6856129 Thomas et al. Feb 2005 B2
6856150 Sporck et al. Feb 2005 B2
6860009 Gleason et al. Mar 2005 B2
6862727 Stevens Mar 2005 B2
6864105 Grube et al. Mar 2005 B2
6864694 McTigue Mar 2005 B2
6870381 Grube Mar 2005 B2
6882239 Miller Apr 2005 B2
6882546 Miller Apr 2005 B2
6887723 Ondricek et al. May 2005 B1
6888362 Eldridge et al. May 2005 B2
6891385 Miller May 2005 B2
6900646 Kasukabe et al. May 2005 B2
6900647 Yoshida et al. May 2005 B2
6900652 Mazur May 2005 B2
6900653 Yu et al. May 2005 B2
6902416 Feldman Jun 2005 B2
6902941 Sun Jun 2005 B2
6903563 Yoshida et al. Jun 2005 B2
6906506 Reano et al. Jun 2005 B1
6906539 Wilson et al. Jun 2005 B2
6906542 Sakagawa et al. Jun 2005 B2
6906543 Lou et al. Jun 2005 B2
6907149 Slater Jun 2005 B2
6908364 Back et al. Jun 2005 B2
6909297 Ji et al. Jun 2005 B2
6909300 Lu et al. Jun 2005 B2
6909983 Sutherland Jun 2005 B2
6910268 Miller Jun 2005 B2
6911814 Miller et al. Jun 2005 B2
6911826 Plotnikov et al. Jun 2005 B2
6911834 Mitchell et al. Jun 2005 B2
6911835 Chraft et al. Jun 2005 B2
6912468 Marin et al. Jun 2005 B2
6913468 Dozier, II et al. Jul 2005 B2
6914244 Alani Jul 2005 B2
6914427 Gifford et al. Jul 2005 B2
6914430 Hasegawa et al. Jul 2005 B2
6914580 Leisten Jul 2005 B2
6917195 Hollman Jul 2005 B2
6917210 Miller Jul 2005 B2
6917211 Yoshida et al. Jul 2005 B2
6917525 Mok et al. Jul 2005 B2
6917732 Miyata et al. Jul 2005 B2
6919732 Yoshida et al. Jul 2005 B2
6922069 Jun Jul 2005 B2
6924653 Schaeffer et al. Aug 2005 B2
6924655 Kirby Aug 2005 B2
6927078 Saijyo et al. Aug 2005 B2
6927079 Fyfield Aug 2005 B1
6927586 Thiessen Aug 2005 B2
6927587 Yoshioka Aug 2005 B2
6927598 Lee et al. Aug 2005 B2
6930498 Tervo et al. Aug 2005 B2
6933713 Cannon Aug 2005 B2
6933717 Dogaru et al. Aug 2005 B1
6933725 Lim et al. Aug 2005 B2
6933736 Kobayashi et al. Aug 2005 B2
6933737 Sugawara Aug 2005 B2
6937020 Munson et al. Aug 2005 B2
6937037 Eldridge et al. Aug 2005 B2
6937039 Barr et al. Aug 2005 B2
6937040 Maeda et al. Aug 2005 B2
6937042 Yoshida et al. Aug 2005 B2
6937045 Sinclair Aug 2005 B2
6937341 Woollam et al. Aug 2005 B1
6940264 Ryken, Jr. et al. Sep 2005 B2
6940283 McQueeney Sep 2005 B2
6943563 Martens Sep 2005 B2
6943571 Worledge Sep 2005 B2
6943574 Altmann et al. Sep 2005 B2
6944380 Hideo et al. Sep 2005 B1
6946375 Hattori et al. Sep 2005 B2
6946859 Karavakis et al. Sep 2005 B2
6946860 Cheng et al. Sep 2005 B2
6948391 Brassell et al. Sep 2005 B2
6948981 Pade Sep 2005 B2
6970001 Chheda et al. Nov 2005 B2
6987483 Tran Jan 2006 B2
7001785 Chen Feb 2006 B1
7002133 Beausoleil et al. Feb 2006 B2
7002363 Mathieu Feb 2006 B2
7002364 Kang et al. Feb 2006 B2
7003184 Ronnekleiv et al. Feb 2006 B2
7005842 Fink et al. Feb 2006 B2
7005868 McTigue Feb 2006 B2
7005879 Robertazzi Feb 2006 B1
7006046 Aisenbrey Feb 2006 B2
7007380 Das et al. Mar 2006 B2
7009188 Wang Mar 2006 B2
7009383 Harwood et al. Mar 2006 B2
7009415 Kobayashi et al. Mar 2006 B2
7011531 Egitto et al. Mar 2006 B2
7012425 Shoji Mar 2006 B2
7012441 Chou et al. Mar 2006 B2
7013221 Friend et al. Mar 2006 B1
7014499 Yoon Mar 2006 B2
7015455 Mitsuoka et al. Mar 2006 B2
7015689 Kasajima et al. Mar 2006 B2
7015690 Wang et al. Mar 2006 B2
7015703 Hopkins et al. Mar 2006 B2
7015707 Cherian Mar 2006 B2
7015708 Beckous et al. Mar 2006 B2
7015709 Capps et al. Mar 2006 B2
7015710 Yoshida et al. Mar 2006 B2
7015711 Rothaug et al. Mar 2006 B2
7019541 Kittrell Mar 2006 B2
7019544 Jacobs et al. Mar 2006 B1
7019701 Ohno et al. Mar 2006 B2
7020360 Satomura et al. Mar 2006 B2
7020363 Johannessen Mar 2006 B2
7022976 Santana, Jr. et al. Apr 2006 B1
7022985 Knebel et al. Apr 2006 B2
7023225 Blackwood Apr 2006 B2
7023226 Okumura et al. Apr 2006 B2
7023231 Howland, Jr. et al. Apr 2006 B2
7025628 LaMeres et al. Apr 2006 B2
7026832 Chaya et al. Apr 2006 B2
7026833 Rincon et al. Apr 2006 B2
7026834 Hwang Apr 2006 B2
7026835 Farnworth et al. Apr 2006 B2
7030599 Douglas Apr 2006 B2
7030827 Mahler et al. Apr 2006 B2
7032307 Matsunaga et al. Apr 2006 B2
7034553 Gilboe Apr 2006 B2
7035738 Matsumoto et al. Apr 2006 B2
7088981 Chang Aug 2006 B2
7096133 Martin et al. Aug 2006 B1
7148711 Tervo et al. Dec 2006 B2
7187188 Andrews et al. Mar 2007 B2
7188037 Hidehira Mar 2007 B2
7266889 Gleason et al. Sep 2007 B2
7368927 Smith et al. May 2008 B2
7681312 Gleason et al. Mar 2010 B2
7761986 Gleason et al. Jul 2010 B2
7888957 Smith et al. Feb 2011 B2
7893704 Gleason et al. Feb 2011 B2
7956627 Kasukabe et al. Jun 2011 B2
7960989 Breinlinger et al. Jun 2011 B2
8111080 Kister Feb 2012 B2
8253428 Komoto Aug 2012 B2
RE43739 Romanov Oct 2012 E
8305101 Desta et al. Nov 2012 B2
20010002794 Draving et al. Jun 2001 A1
20010009061 Gleason et al. Jul 2001 A1
20010009377 Schwindt et al. Jul 2001 A1
20010010468 Gleason et al. Aug 2001 A1
20010020283 Sakaguchi Sep 2001 A1
20010024116 Draving Sep 2001 A1
20010030549 Gleason et al. Oct 2001 A1
20010043073 Montoya Nov 2001 A1
20010044152 Burnett Nov 2001 A1
20010045511 Moore et al. Nov 2001 A1
20010054906 Fujimura Dec 2001 A1
20020005728 Babson et al. Jan 2002 A1
20020008533 Ito et al. Jan 2002 A1
20020009377 Shafer Jan 2002 A1
20020009378 Obara Jan 2002 A1
20020011859 Smith et al. Jan 2002 A1
20020011863 Takahashi et al. Jan 2002 A1
20020050828 Seward, IV et al. May 2002 A1
20020070743 Felici et al. Jun 2002 A1
20020070745 Johnson et al. Jun 2002 A1
20020079911 Schwindt Jun 2002 A1
20020109514 Brandorff et al. Aug 2002 A1
20020118034 Laureanti Aug 2002 A1
20020149377 Hefti et al. Oct 2002 A1
20020153909 Petersen et al. Oct 2002 A1
20020163769 Brown Nov 2002 A1
20020168659 Hefti et al. Nov 2002 A1
20020180466 Hiramatsu et al. Dec 2002 A1
20020197709 van der Weide et al. Dec 2002 A1
20030010877 Landreville et al. Jan 2003 A1
20030030822 Finarov Feb 2003 A1
20030032000 Liu et al. Feb 2003 A1
20030040004 Hefti et al. Feb 2003 A1
20030057513 Leedy Mar 2003 A1
20030057957 McQuade et al. Mar 2003 A1
20030062915 Arnold et al. Apr 2003 A1
20030072549 Facer et al. Apr 2003 A1
20030077649 Cho et al. Apr 2003 A1
20030088180 vanVeen et al. May 2003 A1
20030119057 Gascoyne et al. Jun 2003 A1
20030139662 Seidman Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030155939 Lutz et al. Aug 2003 A1
20030170898 Gundersen et al. Sep 2003 A1
20030184332 Tomimatsu et al. Oct 2003 A1
20040015060 Samsoondar et al. Jan 2004 A1
20040021475 Ito et al. Feb 2004 A1
20040061514 Schwindt et al. Apr 2004 A1
20040066181 Thies Apr 2004 A1
20040069776 Fagrell et al. Apr 2004 A1
20040090223 Yonezawa May 2004 A1
20040095145 Boudiaf et al. May 2004 A1
20040095641 Russum et al. May 2004 A1
20040100276 Fanton May 2004 A1
20040100297 Tanioka et al. May 2004 A1
20040108847 Stoll et al. Jun 2004 A1
20040113640 Cooper et al. Jun 2004 A1
20040124861 Zaerpoor Jul 2004 A1
20040130787 Thome-Forster et al. Jul 2004 A1
20040132222 Hembree et al. Jul 2004 A1
20040134899 Hiramatsu et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040162689 Jamneala et al. Aug 2004 A1
20040175294 Ellison et al. Sep 2004 A1
20040186382 Modell et al. Sep 2004 A1
20040193382 Adamian et al. Sep 2004 A1
20040197771 Powers et al. Oct 2004 A1
20040199350 Blackham et al. Oct 2004 A1
20040207072 Hiramatsu et al. Oct 2004 A1
20040207424 Hollman Oct 2004 A1
20040239338 Jonsson et al. Dec 2004 A1
20040246004 Heuermann Dec 2004 A1
20040251922 Martens et al. Dec 2004 A1
20050024069 Hayden et al. Feb 2005 A1
20050026276 Chou Feb 2005 A1
20050030047 Adamian Feb 2005 A1
20050054029 Tomimatsu et al. Mar 2005 A1
20050062533 Vice Mar 2005 A1
20050083130 Grilo Apr 2005 A1
20050101846 Fine et al. May 2005 A1
20050156675 Rohde et al. Jul 2005 A1
20050164160 Gunter et al. Jul 2005 A1
20050165316 Lowery et al. Jul 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050174191 Brunker et al. Aug 2005 A1
20050178980 Skidmore et al. Aug 2005 A1
20050195124 Puente Baliarda et al. Sep 2005 A1
20050236587 Kodama et al. Oct 2005 A1
20050237102 Tanaka Oct 2005 A1
20060052075 Galivanche et al. Mar 2006 A1
20060155270 Hancock et al. Jul 2006 A1
20060226864 Kramer Oct 2006 A1
20070024506 Hardacker Feb 2007 A1
20070030021 Cowan et al. Feb 2007 A1
20090178277 Gleason et al. Jul 2009 A1
20100271060 Gleason et al. Oct 2010 A1
Foreign Referenced Citations (7)
Number Date Country
0230348 Jul 1987 EP
0259163 Mar 1988 EP
0304868 Mar 1989 EP
WO 9807040 Feb 1998 WO
WO 0073905 Dec 2000 WO
WO 0107207 Feb 2001 WO
WO 0169656 Sep 2001 WO
Non-Patent Literature Citations (53)
Entry
English-language abstract of Chinese Patent No. CN 1083975, Mar. 16, 1994.
English-language abstract of German Patent No. DE 3637549, May 11, 1988.
English-language abstract of German Patent No. DE 19522774, Jan. 2, 1997.
English-language abstract of German Patent No. DE 10000324, Jul. 19, 2001.
English-language abstract of Japanese Patent No. JP 53-037077, Apr. 5, 1978.
English-language abstract of Japanese Patent No. JP 53-052354, May 12, 1978.
English-language abstract of Japanese Patent No. JP 55-115383, Sep. 5, 1980.
English-language abstract of Japanese Patent No. JP 56-007439, Jan. 26, 1981.
English-language abstract of Japanese Patent No. JP 57-075480, May 12, 1982.
English-language abstract of Japanese Patent No. JP 62-098634, May 8, 1987.
English-language abstract of Japanese Patent No. JP 63-143814, Jun. 16, 1988.
English-language abstract of Japanese Patent No. JP 63-318745, Dec. 27, 1988.
English-language abstract of Japanese Patent No. JP 1-296167, Nov. 29, 1989.
English-language abstract of Japanese Patent No. JP 2-124469, May 11, 1990.
English-language abstract of Japanese Patent No. JP 51-57790, Jun. 25, 1993.
English-language abstract of Japanese Patent No. JP 51-66893, Jul. 2, 1993.
English-language abstract of Japanese Patent No. JP 60-71425, Mar. 15, 1994.
English-language abstract of Japanese Patent No. JP 7-005078, Jan. 10, 1995.
English-language abstract of Japanese Patent No. JP 10-116866, May 6, 1998.
English-language abstract of Japanese Patent No. JP 11-023975, Jan. 29, 1999.
English-language abstract of Japanese Patent No. JP 2001-189285, Jul. 10, 2001.
English-language abstract of Japanese Patent No. JP 2001-189378, Jul. 10, 2001.
English-language abstract of Japanese Patent No. JP 2002-243502, Aug. 28, 2002.
English-language abstract of PCT Patent Application Publication No. WO 2004/065944, Aug. 5, 2004.
English-language abstract of PCT Patent Application Publication No. WO 2004/079299, Sep. 16, 2004.
English-language abstract of PCT Patent Application Publication No. WO 2005/062025, Jul. 7, 2005.
Aebersold, Ruedi, et al., “insight review articles, Mass spectrometry-based proteomics,” Nature, vol. 422, Mar. 13, 2003, pp. 198-207.
Afsar, Mohammed Nurul, et al., “The Measurement of the Properties of Materials,” Proceedings of the IEEE, vol. 74, No. 1, Jan. 1986, pp. 183-199.
Basu, Saswata, et al., “A Membrane Quadrant Probe for R&D Applications,” Microwave Symposium Digest, 1997, IEEE MTT-S International, Jun. 8-13, 1997, vol. 3, pp. 1671-1673.
Basu, Saswata, et al., “An SOLR Calibration for Accurate Measurement of Orthogonal On-Wafer DUTS,” 1997 IEEE MTT-S Digest, pp. 1335-1338.
Boguski, Mark S., et al., “Biomedical informatics for proteomics,” insight: review article, Nature, vol. 422, pp. 233-237, Mar. 13, 2003; doi:10.1038/nature01515.
Cascade Microtech, Inc., “Probe Heads, Care and cleaning of coaxial input microwave probes,” Microwave Probe Care and Cleaning Instruction Manual, 1990, 28 pages.
Cascade Microtech, Inc., “Information Sheet for Pyramid Probe,” 5 pages, 2001.
Fink, Donald G., et al., “Bridge Circuits, Detectors, and Amplifiers, Principles of Bridge Measurements,” Electronics Engineers' Handbook, First Edition, McGraw-Hill Book Company, New York, 1975, pp. 17-22-17-27.
Grober, Robert D., et al., “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70 (11), Mar. 17, 1997, American Institute of Physics, 1997, pp. 1354-1356.
Hanash, Sam, “insight review articles, Disease proteomics,” Nature, vol. 422, Mar. 13, 2003, pp. 226-232.
Hayden, Leonard, “A Multi-Line TRL Calibration,” Feb. 2, 1994, 5 pages.
Kim, Yong-Dae, et al., “Fabrication of a Silicon Micro-Probe for Vertical Probe Card Application,” Japanese Journal of Applied Physics, vol. 37, pp. 7070-7073, 1998.
Kraszewski, Andrzej W., et al., “Use of a Microwave Cavity for Sensing Dielectric Properties of Arbitrarily Shaped Biological Objects,” IEEE Transactions on Microwave Theory and Techniques, vol. 338, No. 7, Jul. 1990, pp. 858-863.
Liang, Qingqing, et al., “Accurate ac Transistor Characterization to 110 GHz Using a New Four-port Self-Calibrated Extraction Technique,” IEEE, 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 282-285.
Marte, Barbara, Senior Editor, “Nature Insight Proteomics,” Nature, vol. 422, Mar. 13, 2003, pp. 191-194.
Martens, J., “Multiport SOLR Calibrations: Performance and an Analysis of Some Standards Dependencies,” ARFTG Microwave Measurements Conference, Dec. 4-5, 2003, pp. 205-213.
Phizicky, Eric, et al., “insight: review article, Protein analysis on a proteomic scale,” Nature, vol. 422, pp. 208-215, Mar. 13, 2003; doi: 10.1038/nature01512.
Purroy, Francesc, et al., “New Theoretical Analysis of the LRRM Calibration Technique for Vector Network Analyzers,” IEEE Transactions on Instrumentation and Measurement, vol. 50, No. 5, Oct. 2001, pp. 1307-1313.
Risacher, Christophe, et al., “Waveguide-to-Microstrip Transition With Integrated Bias-T,” IEEE Microwave and Wireless Components Letters, vol. 13, No. 7, Jul. 2003, pp. 262-264.
Sali, Andrej, et al., “insight: review article, From words to literature in structural proteomics,” Nature, vol. 422, pp. 216-225, Mar. 13, 2003; doi: 10.1038/nature01513.
Seguinot, Christophe, et al., “Multimode TRL—A New Concept in Microwave Measurements: Theory and Experimental Verification,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, No. 5, May 1998, pp. 536-542.
Sohn, L. L., et al., “Capacitance cytometry: Measuring biological cells one by one,” PNAS Sep. 26, 2000, vol. 97, No. 20, pp. 10687-10690, www.pnas.org.
Tinti, Roberto, et al., “Proposed System Solution for 1/f Noise Parameter Extraction,” Agilent Technologies, Inc., www.agilent.com, 2008, 8 pages.
Tyers, Mike, et al., “insight overview, From genomics to proteomics,” Nature, vol. 422, Mar. 13, 2003, pp. 193-197.
van der Weide, Daniel, “THz Frequency Science & Technology, Biomolecular Interaction Sensing with Sub-Terahertz Fields,” University of Wisconsin-Madison, 2 pages.
Venkatesh, M. S., et al., “An overview of dielectric properties measuring techniques,” Canadian Biosystems Engineering, vol. 47, 2005, pp. 7.15-7.30.
Xu, Deming, et al., “Measurement of the Dielectric Properties of Biological Substances Using an Improved Open-Ended Coaxial Line Resonator Method,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-35, No. 12, Dec. 1987, pp. 1424-1428.
Related Publications (1)
Number Date Country
20100271060 A1 Oct 2010 US
Continuations (3)
Number Date Country
Parent 10705014 Nov 2003 US
Child 12818521 US
Parent 09814593 Mar 2001 US
Child 10705014 US
Parent 09115571 Jul 1998 US
Child 09814593 US