The present disclosure relates generally to semiconductor memory apparatuses and methods, and more particularly to memory cells having heaters with angled sidewalls.
Memory devices are utilized as non-volatile memory for a wide range of electronic applications in need of high memory densities, high reliability, and data retention without power. Non-volatile memory may be used in, for example, personal computers, portable memory sticks, solid state drives (SSDs), digital cameras, cellular telephones, portable music players such as MP3 players, movie players, and other electronic devices.
Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic devices. There are many different types of memory, including random-access memory (RAM), read only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), flash memory, and resistive memory, among others. Types of resistive memory include phase change memory (PCM) and resistive random access memory (RRAM), for instance.
Resistive memory devices, such as PCM devices, can include a resistive variable material such as a phase change material, for instance, which can be programmed into different resistance states to store data. The particular data stored in a phase change memory cell can be read by sensing the cell's resistance, e.g., by sensing current and/or voltage variations based on the resistance of the phase change material.
Programming a phase change memory cell to various resistance states can thermally disturb adjacent phase change memory cells. Thermal disturbance of adjacent phase change memory cells can include an undesired change in the resistance of adjacent phase change memory cells. Such thermal disturbance can reduce the reliability of the memory cells by leading to data loss, for instance.
Memory cells having heaters with angled sidewalls and methods of forming the same are described herein. As an example, a method of forming an array of resistive memory cells can include forming a first resistive memory cell having a first heater element angled with respect to a vertical plane, forming a second resistive memory cell adjacent to the first resistive memory cell and having a second heater element angled with respect to the vertical plane and toward the first heater, and forming a third resistive memory cell adjacent to the first resistive memory cell and having a third heater element angled with respect to the vertical plane and away from the first heater element.
Embodiments of the present disclosure can provide resistive memory cells having decreased thermal disturbance on adjacent resistive memory cells as compared to previous approaches. Embodiments of the present disclosure can also be more immune to data loss due to thermal disturbance as compared to previous approaches, among other benefits.
In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 204 may reference element “4” in
The resistive storage elements 154 can include a resistance variable material, e.g., a phase change material. The phase change material can be a chalcogenide, e.g., a Ge—Sb—Te (GST) material such as Ge2Sb2Te5, Ge1Sb2Te4, Ge1Sb4Te7, etc., among other resistance variable materials. The hyphenated chemical composition notation, as used herein, indicates the elements included in a particular mixture or compound, and is intended to represent all stoichiometries involving the indicated elements. Other phase change materials can include Ge—Te, In—Se, Sb—Te, Ga—Sb, In—Sb, As—Te, Al—Te, Ge—Sb—Te, Te—Ge—As, In—Sb—Te, Te—Sn—Se, Ge—Se—Ga, Bi—Se—Sb, Ga—Se—Te, Sn—Sb—Te, In—Sb—Ge, Te—Ge—Sb—S, Te—Ge—Sn—O, Te—Ge—Sn—Au, Pd—Te—Ge—Sn, In—Se—Ti—Co, Ge—Sb—Te—Pd, Ge—Sb—Te—Co, Sb—Te—Bi—Se, Ag—In—Sb—Te, Ge—Sb—Se—Te, Ge—Sn—Sb—Te, Ge—Te—Sn—Ni, Ge—Te—Sn—Pd, and Ge—Te—Sn—Pt, for example.
The select devices 152 may be field effect transistors, e.g., metal oxide semiconductor field effect transistors (MOSFETs), a bipolar junction transistor (BJT) or a diode, among other types of select devices. Although the select device 152 shown in
In the example illustrated in
In the example illustrated in
The select devices 152 can be operated, e.g., turned on/off, to select/deselect the memory cells 150 in order to perform operations such as programming, e.g., writing, reading, and/or erasing operations. In operation, appropriate voltage and/or current signals, e.g., pulses, can be applied to the bit lines and word lines in order to program data to and/or read data from the memory cells 150. As an example, the data stored by a memory cell 150 of array 100 can be determined by turning on a select device 152, and sensing a current through the resistive storage element 154. The current sensed on the bit line corresponding to the memory cell 152 being read corresponds to a resistance level of the resistance variable material of resistive storage element 154, which in turn may correspond to a particular data state, e.g., a binary value. The resistive memory array 100 can have an architecture other than that illustrated in
In the embodiment shown in
In a number of embodiments, the distance between the heater resistance variable material/heater interfaces associated with front to front memory cells and the distance between the heater resistance variable material/heater interfaces associated with back to back memory cells are different. The difference in the distance between the heater resistance variable material/heater interfaces associated with front to front memory cells and the distance between the heater resistance variable material/heater interfaces associated with back to back memory cells can depend, e.g., can be defined by, the angle of the vertical sidewall portion of the heaters. For instance, in
In a number of embodiments, a number of dielectric materials can be located between adjacent heaters. In this example, dielectric materials 212-1, 212-2, and 214 are formed between heaters 210-1 and 210-2 and include dielectric interface 222-1 and 222-2. Dielectric interface 222-1 is the interface between dielectric materials 212-1 and 214. Dielectric interface 222-2 is the interface between dielectric materials 214 and 212-2. Dielectric materials 212-3, 212-4, and 214 are formed between heaters 210-3 and 210-4 and include dielectric interface 222-3 and 222-4. Dielectric interface 222-3 is the interface between dielectric materials 212-3 and 214. Dielectric interface 222-4 is the interface between dielectric materials 214 and 212-4. In this example, dielectric material 206 is the only material located between heaters 210-2 and 210-3. As such, there are no dielectric interfaces between heaters 210-2 and 210-3. The number of dielectric interfaces between adjacent heaters associated with resistive memory cells, as well as the particular dielectric material, can affect the amount of thermal disturbance between adjacent resistive memory cells. The dielectric materials 206, 212-1, 212-2, and 214 can be materials such as oxides, e.g., silicon oxide, and/or nitrides, e.g., silicon nitride, among various other suitable dielectric materials.
In a number of embodiments, the distance between adjacent heater resistance variable material/heater interfaces associated with memory cells and/or the number of and thermal properties of the materials between adjacent phase change memory cells can affect the amount of thermal disturbance between adjacent memory cells when programming a phase change memory cell to various resistance states. The distance between front to front resistive memory cells and the distance between back to back memory cells can be varied by adjusting the angle of the vertical sidewalls of the heaters associated with the memory cells. Also, the number and kind of dielectric interfaces between front to front resistive memory cells and between back to back resistive memory cells can be varied during fabrication resulting in an asymmetry in the thermal gradients between front to front and back to back memory cells. The distance between front to front memory cells, the distance between back to back memory cells, the type of materials and/or number of dielectric interfaces between front to front memory cells, and/or the type of materials and/or the number of dielectric interfaces between back to back memory cells can be varied to provide improved thermal disturb properties over previous approaches.
In the embodiment shown in
In the embodiment shown in
In a number of embodiments, a number of dielectric materials can be located between adjacent heaters. In this example, dielectric materials 312-1, 312-2, and 314 are formed between heaters 310-1 and 310-2 and include dielectric interface 322-1 and 322-2. Dielectric interface 322-1 is the interface between dielectric materials 312-1 and 314. Dielectric interface 322-2 is the interface between dielectric materials 314 and 312-2. Dielectric materials 312-3, 312-4, and 314 are formed between heaters 310-3 and 310-4 and include dielectric interface 322-3 and 322-4. Dielectric interface 322-3 is the interface between dielectric materials 312-3 and 314. Dielectric interface 322-4 is the interface between dielectric materials 314 and 312-4. In this example, dielectric material 306 is the only material located between heaters 310-2 and 310-3. As such, there are no dielectric interfaces between heaters 310-2 and 310-3. The number of dielectric interfaces between adjacent heaters associated with resistive memory cells, as well as the particular dielectric materials themselves, can affect the amount of thermal disturbance between adjacent resistive memory cells. The dielectric materials 306, 312-1, 312-2, and 314 can be materials such as oxides, e.g., silicon oxide, and/or nitrides, e.g., silicon nitride, among various other suitable dielectric materials.
A dielectric material 406 is formed on the conductive plugs 404 and the dielectric material 402. The dielectric material 406 can be silicon nitride (Si3N4), for example. A planarization process such as a chemical mechanical planarization (CMP) process can be performed on the surface of materials 404 and 402 prior to forming material 406 thereon. A dielectric material 408 can be formed on the dielectric material 406. The dielectric material 408 can be silicon oxide (SiO2), for example.
As shown in
A dielectric material 506 is formed on the conductive plugs 504 and the dielectric material 502. The dielectric material 506 can be silicon nitride (Si3N4), for example. A planarization process such as a chemical mechanical planarization (CMP) process can be performed on the surface of the materials 504 and 502 prior to forming material 506 thereon. A dielectric material 508 can be formed on the dielectric material 506. The dielectric material 508 can be silicon oxide (SiO2), for example.
As shown in
As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, the proportion and the relative scale of the elements provided in the figures are intended to illustrate various embodiments of the present invention and are not to be used in a limiting sense.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of various embodiments of the present disclosure.
It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This application is a Continuation of U.S. application Ser. No. 13/354,966 filed Jan. 20, 2012, the specification of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6617192 | Lowrey et al. | Sep 2003 | B1 |
7348590 | Happ | Mar 2008 | B2 |
7405964 | Philipp et al. | Jul 2008 | B2 |
7714315 | Happ et al. | May 2010 | B2 |
7791058 | Liu | Sep 2010 | B2 |
8962384 | Redaelli | Feb 2015 | B2 |
20050003602 | Lowrey et al. | Jan 2005 | A1 |
20070232015 | Liu | Oct 2007 | A1 |
20070238226 | Lowrey | Oct 2007 | A1 |
20080044632 | Liu et al. | Feb 2008 | A1 |
20080203374 | Chuo et al. | Aug 2008 | A1 |
20080237565 | Chang | Oct 2008 | A1 |
20080311699 | Chen et al. | Dec 2008 | A1 |
20090166603 | Lung | Jul 2009 | A1 |
20090321764 | Lee et al. | Dec 2009 | A1 |
20100186663 | Farr | Jul 2010 | A1 |
20100190321 | Oh et al. | Jul 2010 | A1 |
20100308296 | Pirovano et al. | Dec 2010 | A1 |
20110001111 | Breitwisch et al. | Jan 2011 | A1 |
20110250729 | Lai et al. | Oct 2011 | A1 |
20110291064 | Marsh et al. | Dec 2011 | A1 |
20120126196 | Pio | May 2012 | A1 |
20120261828 | Bruce et al. | Oct 2012 | A1 |
20130140513 | Lai et al. | Jun 2013 | A1 |
20130234100 | An et al. | Sep 2013 | A1 |
20130248811 | Ren | Sep 2013 | A1 |
20130302966 | Oh et al. | Nov 2013 | A1 |
20140027704 | Hwang | Jan 2014 | A1 |
Entry |
---|
Servalli, G. “A 45nm Generation Phase Change Memory Technology”, Electron Devices Meeting (IEDM), 2009 IEEE International, Dec. 7-9, 2009 (4 pp.). |
Number | Date | Country | |
---|---|---|---|
20150200366 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13354966 | Jan 2012 | US |
Child | 14599636 | US |