Microelectromechanical systems (MEMS) are the technology of forming micro-structures with dimensions in the micrometer scale (one millionth of a meter). Significant parts of the technology have been adopted from integrated circuit (IC) technology. Most of the devices are built on silicon wafers and realized in thin films of materials. There are three basic building blocks in MEMS technology, which are the ability to deposit thin films of material on a substrate, to apply a patterned mask on top of the films by photolithographic imaging, and to etch the films selectively to the mask. A MEMS process is usually a structured sequence of these operations to form actual devices.
MEMS applications include inertial sensors applications, such as motion sensors, accelerometers, and gyroscopes. Other MEMS applications include optical applications such as movable mirrors, and RF applications such as RF switches and resonators.
For a more complete understanding of the present embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
a through 1k illustrate steps in the manufacture of an illustrative embodiment of a MEMS device;
a through 3f illustrate steps in the manufacture of a second illustrative embodiment of a MEMS device;
a and 6b illustrate in plan views illustrative embodiments of the MEMS device in
Various steps in the formation of a MEMS device will be described with reference to
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be appreciated that the following figures are not drawn to scale; rather, these figures are merely intended for illustration.
Embodiments will be described with respect to a specific context, namely a MEMS motion sensor device with a supporting post structure. Other embodiments may also be applied, however, to other MEMS devices, such as accelerometers and gyroscopes.
With reference to
The wafer 100 may include active and passive devices (not shown in
The dielectric layer 101 is formed on the wafer 100. The dielectric layer 101 may be made of one or more suitable dielectric materials such as silicon oxide, silicon nitride, low-k dielectrics such as carbon doped oxides, extremely low-k dielectrics such as porous carbon doped silicon dioxide, a polymer such as polyimide, or a combination thereof. The dielectric layer 101 may be deposited through a process such as chemical vapor deposition (CVD), a spin-on-glass process, although any acceptable process may be utilized. It is in the dielectric layer 101 that an upper cavity 102 is formed (see
b illustrates the patterning of the dielectric layer 101 to form openings in the dielectric layer 101. The patterning process may be accomplished by depositing a commonly used mask material (not shown) such as photoresist or silicon oxide over the dielectric layer 101. The mask material is then patterned and the dielectric layer 101 is etched in accordance with the pattern.
In
d illustrates the patterning of the wafer 200 into a movable element 203 and static elements 202. The patterning process may be accomplished by depositing a commonly used mask material (not shown) such as photoresist or silicon oxide over the wafer 100. The mask material is then patterned and the wafer 200 is etched in accordance with the pattern. The movable element 203 is not movable in
e illustrates the formation and patterning of bonding material 204 on the static elements 202 and the movable element 203. The bonding material 204 may be made of aluminum copper, germanium, gold, the like, or a combination thereof. The bonding material 204 may act as a eutectic bonding material for subsequent bonding processes. The bonding material 204 may be formed using physical vapor deposition (PVD), such as sputtering or evaporation, the like, a combination thereof, or other acceptable methods, and may be patterned using acceptable lithography techniques.
In
In
The wafer 300 may include active and passive devices (not shown in
The contact pad 302 may be formed on a top surface of wafer 300 and in electrical contact with the interconnect structure 301 in order to provide external connections to the active and passive devices, the movable element 203, and the static elements 202. The contact pad 302 may comprise aluminum, copper, the like, or a combination thereof. The contact pad 302 may be formed using a deposition process, such as sputtering, to form a layer of material (not shown) and portions of the layer of material may then be removed through a suitable process (such as photolithographic masking and etching) to form the contact pad 302. However, any other suitable process may be utilized to form the contact pad 302.
The interconnect structure 301 may be formed on the top surface of the wafer 300. The interconnect structure 301 may provide electrical and physical connections between and/or to the active and passive devices, the movable element 203, and the static elements 202 and external devices through the contact pads 403 and the through substrate via (“TSV”) 400 (also known as a “through semiconductor via” or a “through silicon via”) (see
The IMD layers can be an oxide dielectric, such as a silicon dioxide (SiO2), borophosphosilicate glass (BPSG), or other dielectric materials. The conductive material of the metallization layers may be, for example, copper, nickel, aluminum, copper aluminum, tungsten, titanium, gold, silver, combinations of these, such as alloys, or the like. The metallization layers may include barrier layers between the conductive material and the IMD material, and other dielectric layers, such as etch stop layers made of, for example, silicon nitride, may be formed between the IMD layers.
The dielectric layer 303 is formed on the interconnect structure 301. The dielectric layer 303 may be made of one or more suitable dielectric materials such as silicon oxide, silicon nitride, low-k dielectrics such as carbon doped oxides, extremely low-k dielectrics such as porous carbon doped silicon dioxide, a polymer such as polyimide, or a combination thereof. The dielectric layer 303 may be deposited through a process such as chemical vapor deposition (CVD), a spin-on-glass process, although any acceptable process may be utilized.
h illustrates the formation and patterning of bonding material 304 on the dielectric layer 303. The bonding material 304 may be made of aluminum copper, germanium, gold, the like, or a combination thereof. The bonding material 304 may be formed using PVD, such as sputtering or evaporation, the like, a combination thereof, or other acceptable methods. The bonding material 304 may be patterned using acceptable lithography techniques.
In
The resulting structure, as illustrated in
j illustrates the thinning of the wafers 100 and 300 after the bonding process. The thinning process may include grinding and CMP processes, etch back processes, or other acceptable processes. Wafer 300 may be thinned to reduce the amount of processing time for the subsequent TSV formation process. Further, wafers 100 and 300 may be thinned to reduce the overall package size of the MEMS device 1. In an embodiment the wafer 100 may be thinned to a thickness between about 300 μm and 100 μm and the wafer 300 may be thinned to a thickness less than 100 μm, such as 80 μm.
The thinning of wafer 300 and wafer 100 may reduce the overall strength of the MEMS device 1. The inventors discovered that the formation of the supporting post 500 may reduce the deformation of wafer 300 that may be caused by the pressure difference between the cavities and the external area, the process strain, and external force. The supporting post 500 may reduce the strain impact on wafer 300 by up to 80%. The supporting post 500 may also provide additional points for the movable element 203 to be anchored to the static elements 202 by hinges, springs, beams, or the like. In an embodiment, the movable element 203 may be anchored to only the outer static elements 202. In another embodiment, the movable element may be anchored only to the center static element 202 of the supporting post 500. In yet another embodiment, the movable element 203 may be anchored to both the outer static elements 202 and the center static element 202. This configuration flexibility may also allow flexibility in the layout of the active and passive devices and interconnects in the interconnect structure 301 and wafer 300.
In
Although the present embodiment is described in relation to a motion sensor, other types of MEMS devices are also within the contemplated scope of this disclosure. For example, a device structure including a supporting post could be applied to an accelerometer device or a gyroscope device. Further, the device structure could be applied to any MEMS device structure having a low pressure cavity or a thin capping wafer.
a through 3e illustrate a method of forming another embodiment of a MEMS device 1. Details regarding this embodiment that are similar to those for the previously described embodiment will not be repeated herein. In this embodiment, the wafer 200 and wafer 300 are formed together and then bonded to wafer 100 to form the cavities surrounding the movable element 203. The upper cavity 102 is formed by recessing the wafer 100 and the lower cavity 305 is formed by removing portions of the dielectric layer 303.
a illustrates a wafer 100 at an intermediate stage of processing. In
In
In
d illustrates the formation of vias 205 and the forming and patterning of bonding material 204. The vias 205 are formed through the static elements 202 and the dielectric layer 303 to a metal interconnect on a top surface of the interconnect structure 301. The vias 205 may provide for electrical and physical connection between the wafer 200 and the interconnect structure 301 which may allow for connections to external devices through the contact pads 403 and the TSV 400 (see
In
In
As shown in
a illustrates a plan view of the static elements 202, the movable element 203, and center static element 202 of the supporting post 500 of the embodiment illustrated in 5. As shown in
b illustrates another plan view of the static elements 202, the movable element 203, and center static element 202 of the supporting post 500 of the embodiment illustrated in 5. As shown in
An embodiment is a method for forming a microelectromechanical system (MEMS) device comprising forming a MEMS structure over a first substrate, wherein the MEMS structure comprises a movable element and an adjacent static element; forming a cavity surrounding the movable element; forming an interconnect structure on a second substrate; depositing a first dielectric layer on the interconnect structure; and bonding the MEMS structure to the first dielectric layer, wherein the static element forms a first supporting post in the cavity, the first supporting post configured to support the second substrate.
Another embodiment is a method of forming a MEMS device comprising forming an interconnect structure on a first substrate; depositing a dielectric layer on the interconnect structure; patterning the dielectric layer to form a central portion and two outer portions; bonding or depositing a MEMS wafer to the patterned dielectric layer; patterning the MEMS wafer to form a movable element, a central static element, and an outer static element, the movable element encircling the central static element, and the outer static element encircling the movable element; and depositing a first bonding material on the central static element and the outer static element. The method further comprising forming two recesses in a second substrate, wherein the recesses form a central raised portion of the second substrate and two outer raised portions of the second substrate; depositing a second bonding material on the central raised portion and the outer raised portions of the second substrate; and bonding the MEMS wafer to the second substrate, wherein the central portion of the dielectric layer, the central static element, the first bonding material on the central static element, the second bonding material on the central raised portion, and the central raised portion form a first supporting post.
A further embodiment is a MEMS device comprising a MEMS structure above a first substrate, wherein the MEMS structure comprises a movable element, a central static element, and an outer static element, wherein the movable element is suspended above the first substrate, the movable element is laterally separated from the outer static element by a first spacing, and the movable element is laterally separated from the central static element by a second spacing; and a central portion of a bonding material between the first substrate and a bottom surface of the central static element. The device further comprising a second substrate above the MEMS structure; a central portion of a first dielectric layer between the second substrate and a top surface of the central static element; and a supporting post, the supporting post comprising the central portion of the bonding material, the central static element, and the central portion of the first dielectric layer.
Although the present embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
5391917 | Gilmour et al. | Feb 1995 | A |
5510298 | Redwine | Apr 1996 | A |
5767001 | Bertagnolli et al. | Jun 1998 | A |
5998292 | Black et al. | Dec 1999 | A |
6184060 | Siniaguine | Feb 2001 | B1 |
6322903 | Siniaguine et al. | Nov 2001 | B1 |
6448168 | Rao et al. | Sep 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6472293 | Suga | Oct 2002 | B1 |
6538333 | Kong | Mar 2003 | B2 |
6599778 | Pogge et al. | Jul 2003 | B2 |
6639303 | Siniaguine | Oct 2003 | B2 |
6664129 | Siniaguine | Dec 2003 | B2 |
6693361 | Siniaguine et al. | Feb 2004 | B1 |
6740582 | Siniaguine | May 2004 | B2 |
6800930 | Jackson et al. | Oct 2004 | B2 |
6841883 | Farnworth et al. | Jan 2005 | B1 |
6882030 | Siniaguine | Apr 2005 | B2 |
6924551 | Rumer et al. | Aug 2005 | B2 |
6962867 | Jackson et al. | Nov 2005 | B2 |
6962872 | Chudzik et al. | Nov 2005 | B2 |
7030481 | Chudzik et al. | Apr 2006 | B2 |
7049170 | Savastiouk et al. | May 2006 | B2 |
7060601 | Savastiouk et al. | Jun 2006 | B2 |
7071546 | Fey et al. | Jul 2006 | B2 |
7111149 | Eilert | Sep 2006 | B2 |
7122912 | Matsui | Oct 2006 | B2 |
7157787 | Kim et al. | Jan 2007 | B2 |
7193308 | Matsui | Mar 2007 | B2 |
7262495 | Chen et al. | Aug 2007 | B2 |
7297574 | Thomas et al. | Nov 2007 | B2 |
7335972 | Chanchani | Feb 2008 | B2 |
7355273 | Jackson et al. | Apr 2008 | B2 |
20090261430 | Suzuki et al. | Oct 2009 | A1 |
20100252898 | Tanaka et al. | Oct 2010 | A1 |
20110042761 | Karlin et al. | Feb 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130277777 A1 | Oct 2013 | US |