In the fabrication of semiconductor devices, such as integrated circuits, memory cells, and the like, a series of manufacturing operations are performed to define features on semiconductor wafers. The wafers include integrated circuit devices in the form of multi-level structures defined on a silicon substrate. At a substrate level, transistor devices with diffusion regions are formed. In subsequent levels, interconnected metallization lines are patterned and electrically connected to the transistor devices to define a desired integrated circuit device. Also, patterned conductive layers are insulated from other conductive layers by dielectric materials.
During the series of manufacturing operations, the wafer surface is exposed to various types of contaminants. Essentially, any material present in a manufacturing operation is a potential source of contamination. For example, sources of contamination may include process gases, chemicals, deposition materials, and liquids, among others. The various contaminants may deposit on the surface of a wafer as particulate matter. If the particulate contamination is not removed, the devices within the vicinity of the contamination will likely be inoperable. Thus, it is necessary to clean contamination from the wafer surface in a substantially complete manner without damaging the features defined on the wafer. The size of particulate contamination is often on the order of critical dimension size of the features being fabricated on the wafer. Removal of such small particulate contamination without adversely affecting the features on the wafer can be a challenge.
Conventional wafer cleaning methods have relied heavily on mechanical force to remove particulate contamination from the wafer. As feature size continues to decrease and become more fragile, the probability of feature damage due to application of mechanical force to the wafer surface increases. For example, features having high aspect ratios are vulnerable to toppling or breaking when impacted by a sufficient mechanical force. To further complicate the cleaning problem, the move toward reduced feature sizes also causes a reduction in the size of particulate contamination that may cause damage. Particulate contamination of sufficiently small size can find its way into difficult-to-reach areas on the wafer surface, such as in a trench surrounded by high-aspect ratio features or bridging of conductive lines, etc. Thus, efficient and non-damaging removal of contaminants during marred and semiconductor fabrication represents continuous challenge to be met by continuing advances in wafer cleaning technology. It should be appreciated that the manufacturing operations for flat panel displays suffer from the same shortcomings of the integrated circuit manufacturing discussed above. Thus, any technology requiring contaminant removal is in need of a more effective and less-abrasive cleaning technique.
Broadly speaking, the present invention fills these needs by providing an improved cleaning technique and cleaning solution. It should be appreciated that the present invention can be implemented in numerous ways, including as a system, an apparatus and a method. Several inventive embodiments of the present invention are described below.
In one embodiment, a method for cleaning a substrate is provided. The method initiates with applying an activation solution to a surface of the substrate. The activation solution and the surface of the substrate are contacted with a surface of a solid cleaning surface. The activation solution is absorbed into a portion of the solid cleaning element and then the substrate or the solid cleaning surface is moved relative to each other to clean the surface of the substrate.
In another embodiment, a cleaning apparatus for cleaning a substrate is provided. The cleaning apparatus includes a solid material having an outer surface, the outer surface configured to become softer relative to a remainder of the solid material when exposed to an activation solution disposed over a surface of the substrate. The cleaning apparatus includes a support structure configured to support the solid material and apply a force causing the outer surface to contact the surface of the substrate.
In yet another embodiment, a cleaning system for cleaning a substrate is provided. The cleaning system includes a support configured to support the substrate and a fluid delivery system configured to deliver an activation solution to a surface of the substrate. The cleaning system includes a solid phase cleaning element having an exposed surface, the exposed surface has a component that softens relative to a remaining portion of the solid phase cleaning element when the exposed surface interfaces with the activation solution. The cleaning system includes a support structure supporting the solid phase cleaning element. The support structure is configured to maintain the exposed surface against a surface of the substrate during a cleaning operation.
In still yet another embodiment a method for cleaning a substrate is provided. The method includes contacting a substrate surface with a surface of a solid cleaning element and forcing the solid cleaning element against the substrate surface. The method also includes moving one of the solid cleaning element or the substrate relative to each other, where the moving causes a plastic deformation of the surface of the solid cleaning element thereby depositing a layer of the solid cleaning element onto the substrate surface. The method further includes rinsing the layer of the solid cleaning element off of the substrate surface.
In another embodiment, a cleaning apparatus for cleaning a substrate is provided. The cleaning apparatus includes a solid material having an outer surface. The outer surface is configured to deform plastically to prevent damage to the substrate in response to a normal and/or a tangential force being applied to the solid material while one of the substrate or the solid material moves relative to each other. The cleaning apparatus includes a support structure configured to support the solid material and transfer the downward force.
Other aspects and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the present invention.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, and like reference numerals designate like structural elements.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
The embodiments described herein provide for a cleaning technique that reduces the abrasive contact and is efficient at cleaning contaminants from a semiconductor substrate which may contain high aspect ratio features. It should be appreciated that while the embodiments provide specific examples related to semiconductor cleaning applications, these cleaning applications may be extended to any technology requiring the removal of contaminants from a surface. The embodiments described herein move a single phase cleaning agent relative to a surface to be cleaned, where materials contained within the solid portion of the single phase cleaning agent provide lifting and removal of particles present on a wafer surface. In one exemplary embodiment, a solid cleaning element is used as the single phase cleaning agent where the cleaning element has a substantially planar surface that is brought in contact with a surface of the substrate to be cleaned. While specific embodiments refer to the element as a solid cleaning element, the solid cleaning element may be referred to as a puck, bar, etc. In one embodiment the solid cleaning element is composed of a fatty acid, however, other materials may be used just as effectively. These other materials may include polymers, alkyl sulfonate, alkyl phosphate, alkyl phosphonate, biopolymers, proteins, etc.
Thus, some material from the solid cleaning element 100 is rubbed off and deposited on substrate 102 as a coating layer 103 shown in
In the embodiment where the element is a fatty acid, the following are exemplary compounds that may be used to compose the element. It should be appreciated that aliphatic acids represent essentially any acid defined by organic compounds in which carbon atoms form open chains. A fatty acid is an example of an aliphatic acid that can be used as the solid cleaning material as discussed above. Examples of fatty acids that may be used as the solid cleaning element include lauric, palmitic, stearic, oleic, linoleic, linolenic, arachidonic, gadoleic, eurcic, butyric, caproic, caprylic, myristic, margaric, behenic, lignoseric, myristoleic, palmitoleic, nervanic, parinaric, timnodonic, brassic, clupanodonic acid, lignoceric acid, cerotic acid, and mixtures thereof, among others. In one embodiment, the solid cleaning element can represent a mixture of fatty acids defined by various carbon chain lengths extending from C-1 to about C-26. Carboxylic acids are defined by essentially any organic acid that includes one or more carboxyl groups (COOH). When used as the solid cleaning element, the carboxylic acids can include mixtures of various carbon chain lengths extending from C-1 through about C-100. Also, the carboxylic acids can include other functional groups such as but not limited to methyl, vinyl, alkyne, amide, primary amine, secondary amine, tertiary amine, azo, nitrile, nitro, nitroso, pyridyl, peroxy, aldehyde, ketone, primary imine, secondary imine, ether, ester, halogen, isocyanate, isothiocyanate, phenyl, benzyl, phosphodiester, sulfhydryl.
The method of
Although the present invention has been described in the context of removing contaminants from a semiconductor wafer, it should be understood that the previously described principles and techniques of the present invention can be equally applied to cleaning surfaces other than semiconductor wafers. For example, the present invention can be used to clean any equipment surface used in semiconductor manufacturing, wherein any equipment surface refers to any surface that is in environmental communication with the wafer, e.g., shares air space with the wafer. The present invention can also be used in other technology areas where contamination removal is important. For example, the present invention can be used to remove contamination on parts used in the space program, or other high technology areas such as surface science, energy, optics, microelectronics, MEMS, flat-panel processing, solar cells, memory devices, etc. It should be understood that the aforementioned listing of exemplary areas where the present invention may be used is not intended to represent an inclusive listing. Furthermore, it should be appreciated that the wafer as used in the exemplary description herein can be generalized to represent essentially any other structure, such as a substrate, a part, a panel, etc.
While this invention has been described in terms of several embodiments, it will be appreciated that those skilled in the art upon reading the preceding specifications and studying the drawings will realize various alterations, additions, permutations and equivalents thereof. Therefore, it is intended that the present invention includes all such alterations, additions, permutations, and equivalents as fall within the true spirit and scope of the invention. In the claims, elements and/or steps do not imply any particular order of operation, unless explicitly stated in the claims.
This application claims the benefit of U.S. Provisional Application No. 60/755,377, filed Dec. 30, 2005. Additionally, this application is a continuation-in-part of prior application Ser. No. 10/608,871, filed Jun. 27, 2003, now abandoned and entitled “Method and Apparatus for Removing a Target Layer From a Substrate Using Reactive Gases.” The disclosure of each of the above-identified applications is incorporated herein by reference for all purposes. This application is related to U.S. patent application Ser. No. 10/816,337, filed on Mar. 31, 2004, and entitled “Apparatuses and Methods for Cleaning a Substrate,” and U.S. patent application Ser. No. 11/173,132, filed on Jun. 30, 2005, and entitled “System and Method for Producing Bubble Free Liquids for Nanometer Scale Semiconductor Processing,” and U.S. patent application Ser. No. 11/153,957, filed on Jun. 15, 2005, and entitled “Method and Apparatus for Cleaning a Substrate Using Non-Newtonian Fluids,” and U.S. patent application Ser. No. 11/154,129, filed on Jun. 15, 2005, and entitled “Method and Apparatus for Transporting a Substrate Using Non-Newtonian Fluid,” and U.S. patent application Ser. No. 11/174,080, filed on Jun. 30, 2005, and entitled “Method for Removing Material from Semiconductor Wafer and Apparatus for Performing the Same,” and U.S. patent application Ser. No. 10/746,114, filed on Dec. 23, 2003, and entitled “Method and Apparatus for Cleaning Semiconductor Wafers using Compressed and/or Pressurized Foams, Bubbles, and/or Liquids,” and U.S. patent application Ser. No. 11/336,215 filed on Jan. 20, 2006, and entitled “Method and Apparatus for Removing Contamination from Substrate,” U.S. patent application Ser. No. 11/346,894 filed on Feb. 3, 2006 and entitled “Method for Removing Contamination from a Substrate and for Making a Cleaning Solution,” U.S. patent application Ser. No. 11/347,154 filed on Feb. 3, 2006 and entitled “Cleaning Compound and Method and System for Using the Cleaning Compound,” U.S. patent application Ser. No. 11/532,491 filed on Sep. 15, 2006 and entitled “Method and material for cleaning a substrate,” U.S. patent application Ser. No. 11/532,493 filed on Sep. 15, 2006 and entitled “Apparatus and system for cleaning a substrate.” The disclosure of each of these related applications is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3037887 | Brenner et al. | Jun 1962 | A |
3212762 | Carroll et al. | Oct 1965 | A |
3436262 | Crowe et al. | Apr 1969 | A |
3617095 | Lissant | Nov 1971 | A |
3978176 | Voegeli | Aug 1976 | A |
4085059 | Smith et al. | Apr 1978 | A |
4133773 | Simmons | Jan 1979 | A |
4156619 | Griesshammer | May 1979 | A |
4238244 | Banks | Dec 1980 | A |
4781764 | Leenaars | Nov 1988 | A |
4817652 | Liu et al. | Apr 1989 | A |
4838289 | Kottman et al. | Jun 1989 | A |
4849027 | Simmons | Jul 1989 | A |
4911761 | McConnell et al. | Mar 1990 | A |
4962776 | Liu et al. | Oct 1990 | A |
5000795 | Chung et al. | Mar 1991 | A |
5048549 | Hethcoat | Sep 1991 | A |
5102777 | Lin et al. | Apr 1992 | A |
5105556 | Kurokawa et al. | Apr 1992 | A |
5113597 | Sylla | May 1992 | A |
5175124 | Winebarger | Dec 1992 | A |
5181985 | Lampert et al. | Jan 1993 | A |
5226969 | Watanabe et al. | Jul 1993 | A |
5242669 | Flor | Sep 1993 | A |
5271774 | Leenaars et al. | Dec 1993 | A |
5288332 | Pustilnik et al. | Feb 1994 | A |
5306350 | Hoy et al. | Apr 1994 | A |
5336371 | Chung et al. | Aug 1994 | A |
5415191 | Mashimo et al. | May 1995 | A |
5417768 | Smith et al. | May 1995 | A |
5464480 | Matthews | Nov 1995 | A |
5472502 | Batchelder | Dec 1995 | A |
5494526 | Paranjpe | Feb 1996 | A |
5498293 | Ilardi et al. | Mar 1996 | A |
5656097 | Olesen et al. | Aug 1997 | A |
5660642 | Britten | Aug 1997 | A |
5674831 | Schulz et al. | Oct 1997 | A |
5705223 | Bunkofske | Jan 1998 | A |
5800626 | Cohen et al. | Sep 1998 | A |
5858283 | Burris | Jan 1999 | A |
5900191 | Gray et al. | May 1999 | A |
5904156 | Advocate, Jr. et al. | May 1999 | A |
5908509 | Olesen et al. | Jun 1999 | A |
5911837 | Matthews | Jun 1999 | A |
5932493 | Akatsu et al. | Aug 1999 | A |
5944581 | Goenka | Aug 1999 | A |
5944582 | Talieh | Aug 1999 | A |
5945351 | Mathuni | Aug 1999 | A |
5951779 | Koyanagi et al. | Sep 1999 | A |
5964954 | Matsukawa et al. | Oct 1999 | A |
5964958 | Ferrell et al. | Oct 1999 | A |
5968285 | Ferrell et al. | Oct 1999 | A |
5997653 | Yamasaka | Dec 1999 | A |
6048409 | Kanno et al. | Apr 2000 | A |
6049996 | Freeman et al. | Apr 2000 | A |
6081650 | Lyons et al. | Jun 2000 | A |
6090217 | Kittle | Jul 2000 | A |
6092538 | Arai et al. | Jul 2000 | A |
6152805 | Takahashi | Nov 2000 | A |
6158445 | Olesen et al. | Dec 2000 | A |
6167583 | Miyashita et al. | Jan 2001 | B1 |
6228563 | Starov et al. | May 2001 | B1 |
6267125 | Bergman et al. | Jul 2001 | B1 |
6270584 | Ferrell et al. | Aug 2001 | B1 |
6272712 | Gockel et al. | Aug 2001 | B1 |
6276459 | Herrick et al. | Aug 2001 | B1 |
6286231 | Bergman et al. | Sep 2001 | B1 |
6290780 | Ravkin | Sep 2001 | B1 |
6296715 | Kittle | Oct 2001 | B1 |
6319801 | Wake et al. | Nov 2001 | B1 |
6352082 | Mohindra et al. | Mar 2002 | B1 |
6386956 | Sato et al. | May 2002 | B1 |
6398975 | Mertens et al. | Jun 2002 | B1 |
6401734 | Morita et al. | Jun 2002 | B1 |
6423148 | Aoki | Jul 2002 | B1 |
6439247 | Kittle | Aug 2002 | B1 |
6457199 | Frost et al. | Oct 2002 | B1 |
6467897 | Wu et al. | Oct 2002 | B1 |
6491043 | Mohindra et al. | Dec 2002 | B2 |
6491764 | Mertens et al. | Dec 2002 | B2 |
6493902 | Lin | Dec 2002 | B2 |
6513538 | Chung et al. | Feb 2003 | B2 |
6514921 | Kakizawa | Feb 2003 | B1 |
6527870 | Gotikis | Mar 2003 | B2 |
6532976 | Huh et al. | Mar 2003 | B1 |
6537915 | Moore et al. | Mar 2003 | B2 |
6562726 | Torek et al. | May 2003 | B1 |
6576066 | Namatsu | Jun 2003 | B1 |
6594847 | Krusell et al. | Jul 2003 | B1 |
6602111 | Fujie et al. | Aug 2003 | B1 |
6616772 | de Larios et al. | Sep 2003 | B2 |
6733596 | Mikhaylichenko et al. | May 2004 | B1 |
6787473 | Andreas | Sep 2004 | B2 |
6797071 | Kittle | Sep 2004 | B2 |
6802911 | Lee et al. | Oct 2004 | B2 |
6846380 | Dickinson et al. | Jan 2005 | B2 |
6851435 | Mertens et al. | Feb 2005 | B2 |
6874516 | Matsuno et al. | Apr 2005 | B2 |
6896826 | Wojtczak et al. | May 2005 | B2 |
6927176 | Verhaverbeke et al. | Aug 2005 | B2 |
6946396 | Miyazawa et al. | Sep 2005 | B2 |
6951042 | Mikhaylichenko et al. | Oct 2005 | B1 |
7122126 | Fuentes | Oct 2006 | B1 |
20010037818 | Harano et al. | Nov 2001 | A1 |
20020072482 | Sachdev et al. | Jun 2002 | A1 |
20020094684 | Hirasaki et al. | Jul 2002 | A1 |
20020121290 | Tang et al. | Sep 2002 | A1 |
20020160608 | Hirabayashi et al. | Oct 2002 | A1 |
20020185164 | Tetsuka et al. | Dec 2002 | A1 |
20020195121 | Kittle | Dec 2002 | A1 |
20030075204 | de Larios et al. | Apr 2003 | A1 |
20030148903 | Bargaje et al. | Aug 2003 | A1 |
20030171239 | Patel et al. | Sep 2003 | A1 |
20030226577 | Orll et al. | Dec 2003 | A1 |
20040002430 | Verhaverbeke | Jan 2004 | A1 |
20040053808 | Raehse et al. | Mar 2004 | A1 |
20040065352 | Yonekura et al. | Apr 2004 | A1 |
20040099290 | Morinaga et al. | May 2004 | A1 |
20040134515 | Castrucci | Jul 2004 | A1 |
20040159335 | Montierth et al. | Aug 2004 | A1 |
20040163681 | Verhaverbeke | Aug 2004 | A1 |
20040223166 | Kimba et al. | Nov 2004 | A1 |
20040261823 | de Larios | Dec 2004 | A1 |
20050045209 | Tan | Mar 2005 | A1 |
20050132515 | Boyd et al. | Jun 2005 | A1 |
20050133060 | Larios et al. | Jun 2005 | A1 |
20050133061 | de Larios et al. | Jun 2005 | A1 |
20050159322 | Min et al. | Jul 2005 | A1 |
20050176606 | Konno et al. | Aug 2005 | A1 |
20050183740 | Fulton et al. | Aug 2005 | A1 |
20060201267 | Liu | Sep 2006 | A1 |
20060283486 | de Larios et al. | Dec 2006 | A1 |
20060285930 | de Larios et al. | Dec 2006 | A1 |
20070000518 | Korolik et al. | Jan 2007 | A1 |
20070084483 | Freer et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
40-38-587 | Jun 1992 | DE |
0827188 | Mar 1998 | EP |
0905746 | Mar 1999 | EP |
11-334874 | Dec 1999 | EP |
0989600 | Mar 2000 | EP |
53-076559 | Jul 1978 | JP |
56-084618 | Jul 1981 | JP |
56-084619 | Jul 1981 | JP |
59-24849 | Feb 1984 | JP |
60-005529 | Jan 1985 | JP |
62-119543 | May 1987 | JP |
63-077510 | Apr 1988 | JP |
02-309638 | Dec 1990 | JP |
5-15857 | Jan 1993 | JP |
06-177101 | Jun 1994 | JP |
07-006993 | Jan 1995 | JP |
11-350169 | Dec 1999 | JP |
2001-064688 | Mar 2001 | JP |
2002-66475 | Mar 2002 | JP |
2002-280330 | Sep 2002 | JP |
2002-309638 | Oct 2002 | JP |
2003-282513 | Oct 2003 | JP |
2005-194294 | Jul 2005 | JP |
WO-9916109 | Apr 1999 | WO |
WO-0033980 | Jun 2000 | WO |
WO-0059006 | Oct 2000 | WO |
WO-0112384 | Feb 2001 | WO |
WO-02101795 | Dec 2002 | WO |
WO-2005006424 | Jan 2005 | WO |
WO 2005064647 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070084483 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60755377 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10608871 | Jun 2003 | US |
Child | 11612352 | US |