Field
Embodiments of the present invention generally relate to a method and apparatus for fabricating devices on a semiconductor substrate. More particularly, embodiments of the present invention provide an apparatus for transferring substrates and confining a processing environment in a chamber.
Description of the Related Art
During manufacturing of semiconductor devices, a substrate is usually processed in a processing chamber, where deposition, etching, and thermal processing may be performed to the substrate. Improving process uniformity and reducing particle contamination are two constant goals for semiconductor processing, especially as dimensions of semiconductor devices rapidly reduce.
A semiconductor processing chamber generally includes a chamber body defining an inner volume for processing a substrate. A substrate support is usually disposed in the inner volume to support the substrate during processing. One or more slit valve doors may be formed through the chamber body to allow passage of the substrate into and out of the inner volume. Gas supply paths and pumping channels are also formed through the chamber body to provide processing gas and pump the inner volume to a desired pressure. The slit valve opening, the gas supply paths, the pumping channels, and the substrate support usually cause the inner wall of the chamber body to be asymmetrical and/or irregular, thus causing non-uniform conductance and/or electric field asymmetries. As a result, different areas on the substrate may be exposed to different processing conditions and uniformity of processing across the substrate decreases. Furthermore, the processing gas may travel to the slit valve area and cause contamination around the slit valve area.
Therefore, there is a need for methods and apparatus for improving process uniformity and reducing contamination in a semiconductor processing chamber.
Embodiments of the present invention generally provide apparatus and methods for processing a substrate. More particularly, embodiments of the present invention provide an apparatus for transferring substrates and confining a processing environment in a chamber.
One embodiment of the present invention provides a hoop assembly for use in a processing chamber. The hoop assembly includes a confinement ring defining a confinement region therein, and three or more lifting fingers extending below the confinement ring. Each of the three or more lifting fingers has a contact tip positioned radially inward from the confinement ring to form a substrate support surface below and spaced apart from the confinement region defined by the confinement ring.
Another embodiment of the present invention provides a chamber for processing a substrate. The chamber includes a chamber body defining a chamber volume therein, a substrate support pedestal assembly disposed in the chamber volume, and a hoop assembly moveable within the chamber volume. The chamber body has a sealable substrate transfer opening. The hoop assembly includes a confinement ring movable between an elevated position and a lowered position. The confinement ring defines a confinement region above the substrate support pedestal assembly in the lowered position.
Yet another embodiment of the present invention provides a method for processing a substrate. The method includes transferring a substrate through an opening of a processing chamber to three or more lifting fingers of a hoop assembly disposed in the processing chamber. The hoop assembly comprises a confinement ring defining a cylindrical confinement region therein. The method further includes lowering the hoop assembly to transfer the substrate from the lifting fingers to a substrate support pedestal assembly disposed in the processing chamber, and positioning the hoop assembly in a processing position. The confinement region is at least immediately above the substrate disposed on the substrate support pedestal assembly with the confinement ring shielding the opening. The method further includes processing the substrate by supplying a processing gas to the confinement region with the hoop assembly in the processing position.
In the method described above, a height of the confinement ring spans from the substrate to a lower surface of a showerhead positioned above the substrate support pedestal assembly when the hoop assembly is in the processing position. The method above may further include elevating the confinement ring into a cavity formed in a ceiling of the processing chamber.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
Embodiments of the present invention provide apparatus and methods for fabricating devices on a semiconductor substrate. More particularly, embodiments of the present invention relate to a substrate transfer apparatus having a structure for bounding a movable confinement region within a process volume of a processing chamber. The structure for bounding a movable confinement region may also be utilized without features for transferring a substrate within the processing chamber.
Embodiments of the present invention provide a hoop assembly for use in a chamber, such as a processing chamber or a load lock chamber. The hoop assembly includes three or more lifting fingers and a confinement ring. A lift actuator may be utilized to move the hoop assembly up and down. The hoop assembly can be used to pick up a substrate from a substrate support pedestal assembly using the lifting fingers, and to allow robot blades to transfer substrates in and out of the chamber by transferring the substrates to and from the lifting fingers. The confinement ring has a cylindrical inner wall that is substantially symmetric and defines and radially bounds a confinement region within a processing volume of the chamber. The confinement ring can be moved to a position circumscribing the substrate and substrate support pedestal assembly to create a symmetric confinement region around and immediately above the substrate by surrounding the substrate with its inner wall, thus eliminating processing non-uniformity cased by asymmetric or irregular shapes of the chamber walls, for example the effects of the slit tunnel area that connects the inner chamber volume to a slit valve door. Additionally, the confinement ring also reduces exposure of the slit tunnel area to process chemistry, thus keeping the slit tunnel area clean. The confinement ring may be formed from quartz material to reduce recombination of radicals around the substrate, theoretically increasing the radical flux to the substrate and subsequent process performance.
The dual load lock chamber 100 includes an upper chamber volume 120 for transferring and processing a substrate 104, and a lower chamber volume 110 for transferring a substrate 104. The upper chamber volume 120 and the lower chamber volume 110 are vertically stacked and are isolated from one another. Each of the lower and upper load lock volumes 110, 120 may be selectively connected to two adjacent external environments (i.e., a factory interface and transfer chamber, both not shown) through two openings for substrate transferring.
The dual load lock chamber 100 includes a chamber body 103. In one embodiment, the chamber body 103 includes an upper chamber body 121 and a lower chamber body 111 coupled together to define the upper and lower chamber volumes 120, 110.
The dual load lock chamber 100 may include a showerhead 129 disposed over the upper chamber volume 120, a substrate support pedestal assembly 132 disposed within the upper chamber volume 120, and a hoop assembly 144 to define a confinement region in the upper chamber volume 120 as well as to load and unload substrates. The dual load lock chamber 100 may include supporting pins 113 for supporting a substrate 104 in the lower chamber volume 110.
The upper chamber volume 120 is defined by sidewalls 124 of the upper chamber body 121, a lid ring 127 disposed over the sidewalls 124, a bottom wall 123 of the upper chamber body 121, and an upper wall 118 of the lower chamber body 111. The lid ring 127 has an inner lip 127a holding the showerhead 129 and a source adapter plate 128. The lid ring 127 forms a portion of the ceiling of the upper chamber volume 120. The source adapter plate 128 has a central opening 128a that matches with a central opening 129e of the showerhead 129. A remote plasma source 130 is in fluid communication with the upper chamber volume 120 through a quartz insert 131 and the showerhead 129.
The remote plasma source 130 is generally connected to one or more gas panels. In one embodiment, the remote plasma source 130 is connected to a first gas panel 101 configured for providing processing gases for an abatement process to remove residual material after etching and a second gas panel 102 configured for providing processing gases for an ashing process to remove photoresist.
It is also contemplated that one or more plasma generators may be optionally utilized to sustain a plasma within the upper chamber volume 120 in lieu of, or in addition to the remote plasma source 130. The plasma generator may be RF driven coils positioned outside of or within the upper chamber volume 120, and/or an RF driven electrode, at least one disposed in the substrate support pedestal assembly 132, above the showerhead 129, or the showerhead 129 itself.
The substrate support pedestal assembly 132 is disposed in the upper chamber volume 120 for supporting and heating the substrate 104 using internal heaters (not shown). A focus ring 151 may be disposed on an outer edge of the substrate support pedestal assembly 132. The focus ring 151 functions to retain the substrate 104 and to modify a processing rate around an edge area of the substrate 104 during processing.
The substrate support pedestal assembly 132 is mounted on an insulator 143 disposed on the upper wall 118 of the lower chamber body 111. The insulator 143 prevents heat transfer between the substrate support pedestal assembly 132 and the chamber body 103. In one embodiment, the insulator 143 aligns with a central axis 132a of the substrate support pedestal assembly 132 to ensure that the substrate support pedestal assembly 132 remains centered during thermal expansion.
A cantilever tube 136 is attached to a backside 134b near the center of the substrate support pedestal assembly 132. The cantilever tube 136 extends radially outwards to connect with a vertical tube 137. The tubes 136, 137 do not contact the upper chamber body 121 or the lower chamber body 111 to further avoid heat exchange between the substrate support pedestal assembly 132 and the chamber bodies 111, 121. The cantilever tube 136 and the vertical tube 137 provide a passage for power supplies, sensors and other wiring to be used by the substrate support pedestal assembly 132. In one embodiment, a heater power source 138, a sensor signal receiver 139 and a chucking control unit 140 are wired to the substrate support pedestal assembly 132 through the passage in the cantilever tube 136 and the vertical tube 137.
A cooling adaptor 141 is coupled to the vertical tube 137 from outside of the lower chamber body 111. A source for cooling fluid 142 is connected to cooling channels 141a disposed in the cooling adaptor 141. The cooling adaptor 141 controls the rate and direction of heat exchange between the vertical tube 137, the cantilever tube 136, and the substrate support pedestal assembly 132. In one embodiment, thermal breaks, such as bimetal connectors, may be used for connecting vertical tube 137, the cantilever tube 136, and the substrate support pedestal assembly 132 to thermally isolate the substrate support pedestal assembly 132 from the chamber body 103, thereby allowing more precise control and rapid response of the temperature of the substrate heated by the pedestal assembly 132.
A more detailed description of the upper and lower chamber bodies can be found in U.S. Provisional Patent Application Ser. No. 61/448,027, filed Mar. 1, 2011, entitled “Abatement and Strip Process Chamber in a Dual Load Lock Configuration”.
A more detailed description of the substrate support pedestal assembly 132 can be found in United States Provisional Patent Application Serial No. 61/448,018, filed Mar. 1, 2011, entitled “Thin Heated Substrate Support”.
The hoop assembly 144 is disposed in the upper chamber volume 120 according one embodiment of the present invention. As previously stated, the hoop assembly 144 may be used in other processing chambers and/or load lock chambers. The hoop assembly 144 has two functions. First, the hoop assembly 144 is vertically positionable to enable transfer of substrates between the substrate support pedestal assembly 132 and substrate transfer devices (e.g., robot end effectors) entering the upper chamber volume 120. Second, the hoop assembly 144 defines a symmetrical confinement region 144a around the substrate 104 and region immediately above the substrate support pedestal assembly 132 during processing, thus, providing a symmetrical processing environment in the upper chamber volume 120 which enhances processing results. The hoop assembly 144 may also be utilized solely for establishing a symmetrical confinement region within a processing volume.
The hoop assembly 144 includes a ring-shaped hoop body 146 disposed within the upper chamber volume 120. The ring-shaped hoop body 146 has an inner diameter which is greater than a diameter of the substrate support pedestal assembly 132. The hoop body 146 is coupled to a shaft 160 that extends through the chamber body 103 to a lift actuator 169. The lift actuator 169, such as a linear actuator or motor, is operable to control the vertical elevation of the hoop body 146 within the upper chamber volume 120. In one embodiment, bellows 161 are provided to prevent leakage between the shaft 160 and the chamber body 103.
The hoop assembly 144 also includes three or more lifting fingers 147 attached to the hoop body 146. The lifting fingers 147 are used to transfer substrates between the substrate support pedestal assembly 132 and substrate transfer devices, such as robots, extending into the upper chamber volume 120 when the hoop assembly 144 is in an upper transfer position, as shown in
The hoop assembly 144 also includes a confinement ring 145 supported by the hoop body 146. The confinement ring 145 extends vertically upwards from the hoop body 146. In one embodiment, the confinement ring 145 is a cylindrical ring having a substantially cylindrical inner wall 145a. The height 145b of the inner wall 145a is much greater than the thickness of the substrate 104 so that the inner wall 145a can confine a portion of the upper processing volume as a symmetrical confinement region 144a around and above the substrate 104. In one embodiment, the height 145b of the inner wall 145a of the confinement ring 145 is much greater than the thickness of the substrate support pedestal assembly 132 to allow the confinement ring 145 to overlap the substrate support pedestal assembly 132 while still extending sufficiently above the substrate 104 disposed on the substrate support pedestal assembly 132. The inner wall 145a of the confinement ring 145 has a diameter greater than the outer diameter of the substrate support pedestal assembly 132. The inner wall 145a of the confinement ring 145 may also have a diameter greater than the outer diameter of the showerhead 129. In one embodiment, the confinement ring 145 has a height 145b sufficient to simultaneously overlap both the substrate support pedestal assembly 132 and showerhead 129 during processing.
During processing, the lift actuator 169 may position the hoop body 146 in a lowered, processing position, as shown in
The lifting fingers 147 of the hoop assembly 144 are aligned with cut outs 155 formed in the substrate support pedestal assembly 132. As the hoop assembly 144 is lowered, the tips 147a of the lifting fingers 147 pass below the upper surface 133a of the substrate support pedestal assembly 132 and into the cut outs 155 thereby transferring the substrate 104 from the tips 147a of the lifting fingers 147 to the upper surface 133a of the substrate support pedestal assembly 132. Conversely, as the hoop body 146 is raised, the lifting fingers 147 move upward through the cut outs 155 to come in contact with and lift the substrate 104 from the upper surface 133a of the substrate support pedestal assembly 132.
Returning back to
The hoop body 146 and the confinement ring 145 have an inner diameter 145d large enough to surround the substrate 104 and substrate support pedestal assembly 132, thereby defining and bounding the symmetrical confinement region 144a directly above the substrate 104. The lifting fingers 147 extend radially inward from the hoop body 146 and the confinement ring 145 to a diameter less than that of the substrate 104 and substrate support pedestal assembly 132, thereby allowing the fingers 147 to support the substrate 104 when lifted above the substrate support pedestal assembly 132.
In the embodiment shown in
As shown in
In one embodiment, the confinement ring 145 is a cylindrical sleeve ring whose inner surface 471 is a cylindrical wall. An upper end 474 and a lower end 472 of the confinement ring 145 may be substantially parallel to one another. The confinement ring 145 may include one or more through holes 402 to allow viewing of the confinement region through the confinement ring 145. In one embodiment, the confinement ring 145 may be formed from quartz. The quartz confinement ring 145 together with the quartz showerhead 129 creates a quartz lining for the plasma during processing, therefore, reducing species recombination and particle contamination.
A substantially vertical ridge 470 is formed on an outer surface 473 of the confinement ring 145. The vertical ridge 470 may not extend completely to the bottom the lower end 472 of the confinement ring 145 to ensure the correct orientation of the confinement ring 145, as further discussed below.
In one embodiment, the hoop body 146 includes a frame portion 486 having a cylindrical inner wall 487 and the handle portion 485 extending radially outward from the frame portion 486 on one side. A substantially vertical notch 480 may be formed in the cylindrical inner wall 487 of the frame portion 486. The notch 480 may not extend completely to the inner lip 483 of the hoop body 146. The notch 480 mates with the vertical ridge 470 of the confinement ring 145, thereby locating the confinement ring 145 to the hoop body 146 when assembled, as illustrated in
Referring to the partial view of the hoop assembly depicted in
To assemble, the ridge 470 of the confinement ring 145 and the notch 480 of the hoop body 146 are first aligned, and the confinement ring 145 is slip-fit inside the cylindrical inner wall 487 so that the lower end 472 of the confinement ring 145 rests on the inner lip 483 of the hoop body 146. The ridge 470 of the confinement ring 145 is locked in the notch 480 preventing relative motions between the confinement ring 145 and the hoop body 146. In one embodiment, the confinement ring 145 is removably disposed on the hoop body 146 to allow easy replacement.
Through holes 481, 482 may be formed through the hoop body 146 for mounting the lifting fingers 147 and the bellows 161 respectively. In one embodiment, both the lifting fingers 147 and the bellows 161 are attached to the hoop body 146 from a lower surface 489 of the hoop body 146.
The vertical portion 677 and horizontal portion 678 of the lifting finger 147 may be formed from a metal. In one embodiment, the vertical portion 677 and horizontal portion 678 are formed from aluminum. The threaded insert 675 may be formed from a wear and galling resistive material, such as NITRONIC® stainless steel. The contact tip 147a may be formed from a ceramic material to reduce particle generation from contacting the substrate. In one embodiment, the contact tip 147a may be formed from silicon nitride. The contact tip 147a may include a ball or other raised feature 602 to reduce the area of surface contact with the substrate.
In one embodiment, the convolutions 761 of the bellows 161 are designed to keep particles away from high stress locations to extend the life time of the bellows 161.
The hoop assembly 144 according to embodiments of the present invention has several advantages. First, the hoop assembly saves space and simplifies the rest of the chamber design. Second, the hoop assembly allows the chamber body geometry to be decoupled from the substrate confinement region geometry, providing a symmetrical or other predetermined substrate confinement region even if the chamber body has an irregular shape to accommodate other components in the chamber. Third, the hoop assembly allows the substrate processing area to be surrounded by material different than that of the chamber body. For example quartz, instead of aluminum, may be used to confine the processing environment to reduce radical recombination of the plasma within the processing area.
Furthermore, the geometry of the confinement ring 145 and the focus ring 151 around the substrate support pedestal assembly 132 may be sized to control the gas conductance therebetween. The conductance between confinement ring 145 and the focus ring 151 may be selected to be high relative to a conductance between the top of the confinement ring 145 and the lid ring 127, thereby causing the majority of gas to flow downward inside the confinement ring 145 through the confinement region where the substrate 104 is located.
Even though a cylindrical hoop is described in the exemplary embodiments, the hoop can be designed to have other shapes to meet design requirements. For example, a rectangular hoop may be used in chambers for transfer or processing of rectangular substrates wherein the rectangular hoop still provides a symmetrical confinement region. Even though embodiments of the present invention are described above in application of load lock chambers, embodiments of the present invention can be applied to any process chamber.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
4139051 | Jones et al. | Feb 1979 | A |
4816638 | Ukai et al. | Mar 1989 | A |
4952299 | Chrisos et al. | Aug 1990 | A |
5071714 | Rodbell et al. | Dec 1991 | A |
5188979 | Filipiak | Feb 1993 | A |
5198634 | Mattson et al. | Mar 1993 | A |
5217501 | Fuse et al. | Jun 1993 | A |
5332443 | Chew et al. | Jul 1994 | A |
5337207 | Jones et al. | Aug 1994 | A |
5356833 | Maniar et al. | Oct 1994 | A |
5376213 | Ueda et al. | Dec 1994 | A |
5522937 | Chew et al. | Jun 1996 | A |
5545289 | Chen et al. | Aug 1996 | A |
5571367 | Nakajima et al. | Nov 1996 | A |
5633073 | Cheung et al. | May 1997 | A |
5641702 | Imai et al. | Jun 1997 | A |
5643366 | Somekh et al. | Jul 1997 | A |
5753133 | Wong et al. | May 1998 | A |
5753891 | Iwata et al. | May 1998 | A |
5840200 | Nakagawa et al. | Nov 1998 | A |
5895549 | Goto et al. | Apr 1999 | A |
5904799 | Donohoe | May 1999 | A |
5948704 | Benjamin et al. | Sep 1999 | A |
5976310 | Levy | Nov 1999 | A |
6000227 | Kroeker | Dec 1999 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6114216 | Yieh et al. | Sep 2000 | A |
6136211 | Qian et al. | Oct 2000 | A |
6143082 | McInerney et al. | Nov 2000 | A |
6148072 | Huang | Nov 2000 | A |
6204141 | Lou | Mar 2001 | B1 |
6228563 | Starov et al. | May 2001 | B1 |
6228739 | Ha et al. | May 2001 | B1 |
6257168 | Ni et al. | Jul 2001 | B1 |
6264706 | Hirano | Jul 2001 | B1 |
6267074 | Okumura | Jul 2001 | B1 |
6270568 | Droopad et al. | Aug 2001 | B1 |
6270582 | Rivkin et al. | Aug 2001 | B1 |
6297095 | Muralidhar et al. | Oct 2001 | B1 |
6299691 | Oda et al. | Oct 2001 | B1 |
6300202 | Hobbs et al. | Oct 2001 | B1 |
6300212 | Inoue et al. | Oct 2001 | B1 |
6319730 | Ramdani et al. | Nov 2001 | B1 |
6326261 | Tsang et al. | Dec 2001 | B1 |
6335207 | Joo et al. | Jan 2002 | B1 |
6348386 | Gilmer | Feb 2002 | B1 |
6358859 | Lo et al. | Mar 2002 | B1 |
6375746 | Stevens et al. | Apr 2002 | B1 |
6399507 | Nallan et al. | Jun 2002 | B1 |
6414280 | Nishitani et al. | Jul 2002 | B1 |
6431807 | Stevens et al. | Aug 2002 | B1 |
6440864 | Kropewnicki et al. | Aug 2002 | B1 |
6458253 | Ando et al. | Oct 2002 | B2 |
6466426 | Mok et al. | Oct 2002 | B1 |
6479801 | Shigeoka et al. | Nov 2002 | B1 |
6485988 | Ma et al. | Nov 2002 | B2 |
6514378 | Ni et al. | Feb 2003 | B1 |
6528427 | Chebi et al. | Mar 2003 | B2 |
6592771 | Yamanaka et al. | Jul 2003 | B1 |
6616767 | Zhao et al. | Sep 2003 | B2 |
6635185 | Demmin et al. | Oct 2003 | B2 |
6688375 | Turner et al. | Feb 2004 | B1 |
6890861 | Bosch | May 2005 | B1 |
6899507 | Yamagishi et al. | May 2005 | B2 |
6935466 | Lubomirsky | Aug 2005 | B2 |
7045014 | Mahon et al. | May 2006 | B2 |
7207766 | Kurita et al. | Apr 2007 | B2 |
7396480 | Kao et al. | Jul 2008 | B2 |
7497414 | Lee et al. | Mar 2009 | B2 |
7506654 | Chandran et al. | Mar 2009 | B2 |
7695232 | Moore et al. | Apr 2010 | B2 |
7732728 | Dhindsa et al. | Jun 2010 | B2 |
7846845 | Bahng et al. | Dec 2010 | B2 |
8033769 | Gage et al. | Oct 2011 | B2 |
8060252 | Gage et al. | Nov 2011 | B2 |
8272825 | Hofmeister et al. | Sep 2012 | B2 |
8662812 | Hofmeister et al. | Mar 2014 | B2 |
8845816 | Diaz et al. | Sep 2014 | B2 |
8992689 | Diaz et al. | Mar 2015 | B2 |
10090181 | Lee et al. | Oct 2018 | B2 |
10204805 | Yousif et al. | Feb 2019 | B2 |
20010055852 | Moise et al. | Dec 2001 | A1 |
20020011207 | Uzawa et al. | Jan 2002 | A1 |
20020025375 | Takamori et al. | Feb 2002 | A1 |
20020046810 | Tanaka et al. | Apr 2002 | A1 |
20020074312 | Ou-Yang et al. | Jun 2002 | A1 |
20020104751 | Drewery et al. | Aug 2002 | A1 |
20020144786 | Chiang et al. | Oct 2002 | A1 |
20030003696 | Gelatos et al. | Jan 2003 | A1 |
20030045131 | Verbeke et al. | Mar 2003 | A1 |
20030057179 | Luo et al. | Mar 2003 | A1 |
20030092278 | Fink | May 2003 | A1 |
20030170986 | Nallan et al. | Sep 2003 | A1 |
20040002223 | Nallan et al. | Jan 2004 | A1 |
20040007176 | Janakiraman et al. | Jan 2004 | A1 |
20040007561 | Nallan et al. | Jan 2004 | A1 |
20040043544 | Asai et al. | Mar 2004 | A1 |
20040177810 | Ohta | Sep 2004 | A1 |
20040203251 | Kawaguchi et al. | Oct 2004 | A1 |
20040226514 | Mahon et al. | Nov 2004 | A1 |
20050183827 | White et al. | Aug 2005 | A1 |
20050189074 | Kasai et al. | Sep 2005 | A1 |
20050208714 | Yamazaki et al. | Sep 2005 | A1 |
20050224181 | Merry et al. | Oct 2005 | A1 |
20060105575 | Bailey et al. | May 2006 | A1 |
20060231027 | Iwabuchi | Oct 2006 | A1 |
20060234178 | Hayashi et al. | Oct 2006 | A1 |
20060245852 | Iwabuchi | Nov 2006 | A1 |
20070062558 | Suzuki et al. | Mar 2007 | A1 |
20070102286 | Scheible et al. | May 2007 | A1 |
20070140814 | Kurita et al. | Jun 2007 | A1 |
20070151514 | Chen et al. | Jul 2007 | A1 |
20070166133 | Lee et al. | Jul 2007 | A1 |
20070240631 | Nijhawan et al. | Oct 2007 | A1 |
20080019666 | Kato et al. | Jan 2008 | A1 |
20080056857 | Hiroki | Mar 2008 | A1 |
20080099040 | Bahng et al. | May 2008 | A1 |
20080105650 | Sugai et al. | May 2008 | A1 |
20090014324 | Kawaguchi et al. | Jan 2009 | A1 |
20090028761 | Devine et al. | Jan 2009 | A1 |
20090031955 | Lu et al. | Feb 2009 | A1 |
20090067823 | Kusuda | Mar 2009 | A1 |
20090127102 | Lee et al. | May 2009 | A1 |
20090142167 | Gage et al. | Jun 2009 | A1 |
20090179365 | Lerner et al. | Jul 2009 | A1 |
20090191030 | Bluck et al. | Jul 2009 | A1 |
20090200269 | Kadkhodayan et al. | Aug 2009 | A1 |
20090206056 | Xu et al. | Aug 2009 | A1 |
20090233449 | Lebouitz | Sep 2009 | A1 |
20100059478 | Lee et al. | Mar 2010 | A1 |
20100133255 | Bahng et al. | Jun 2010 | A1 |
20100147396 | Yamagishi et al. | Jun 2010 | A1 |
20100190343 | Aggarwal et al. | Jul 2010 | A1 |
20100288369 | Chang et al. | Nov 2010 | A1 |
20110031214 | Kim et al. | Feb 2011 | A1 |
20110052833 | Hanawa et al. | Mar 2011 | A1 |
20110236600 | Fox et al. | Sep 2011 | A1 |
20110287632 | Brown et al. | Nov 2011 | A1 |
20110304078 | Lee et al. | Dec 2011 | A1 |
20120222813 | Pal et al. | Sep 2012 | A1 |
20120264051 | Angelov | Oct 2012 | A1 |
20130224953 | Salinas et al. | Aug 2013 | A1 |
20130334199 | Yousif et al. | Dec 2013 | A1 |
20130337655 | Lee et al. | Dec 2013 | A1 |
20130340938 | Tappan et al. | Dec 2013 | A1 |
20140087561 | Lee et al. | Mar 2014 | A1 |
20180247850 | Lee et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
08-148473 | Jun 1996 | JP |
2001-25725 | Sep 2001 | JP |
2003100851 | Apr 2003 | JP |
2004241420 | Aug 2004 | JP |
2008-532287 | Aug 2008 | JP |
10-2007-0031230 | Mar 2007 | KR |
20070031232 | Mar 2007 | KR |
2006091588 | Aug 2006 | WO |
2012118897 | Sep 2012 | WO |
Entry |
---|
International Search Report and Written Opinion, PCT/US2012/027097, dated Oct. 4, 2012. |
TW Office Action in related application TW 101106773 dated Dec. 18, 2015. |
Japanese Office Action in related matter JP 2013-556824 dated Feb. 2, 2016. |
Korean Office Action (with attached English translation) for Application No. 10-2013-7023302; dated Feb. 23, 2018; 10 total pages. |
Number | Date | Country | |
---|---|---|---|
20180247850 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
61448012 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13985843 | US | |
Child | 15963758 | US |