The present invention relates to the field of semiconductor manufacturing, in particular to a bonding method and a bonding structure formed with the bonding method.
Currently, methods for Cu—Cu bonding mainly include thermosonic bonding, thermocompression bonding, and surface modification bonding, etc., all of these bonding methods have drawbacks such as high bonding temperature, high bonding pressure, or high surface modification cost, etc. Owing to the excessively high bonding temperature and pressure, it is unable to carry out bonding of wafer with semiconductor devices or bonding of thin chips in the semiconductor manufacturing process.
To overcome the above-mentioned drawbacks in the Cu—Cu bonding, the present invention provides a bonding method and a bonding structure formed with the bonding method.
The present invention provides a bonding method, comprising:
generating bonding structures capable of being mutually mechanical interlocked, wherein, the frictional heat generated by the bonding structures capable of being mutually mechanical interlocked is higher than the bonding energy therebetween; and
utilizing the frictional heat generated by the bonding structures capable of being mutually mechanical interlocked to bond the bonding structures capable of being mutually mechanical interlocked.
The present invention further provides a bonding structure formed with the above-mentioned bonding method.
Since the bonding method and the bonding structure according to the present invention utilize the frictional heat generated by the bonding structures capable of being mutually mechanical interlocked which is higher than the bonding energy therebetween to accomplish bonding, the bonding can be conducted at normal temperature and low pressure.
The accompanying drawings are provided here to facilitate further understanding on the present invention, and constitute a part of this document. They are used in conjunction with the following embodiments to explain the present invention, but shall not be comprehended as constituting any limitation to the present invention, wherein:
Hereafter the embodiments of the present invention will be detailed, with reference to the accompanying drawings. It should be appreciated that the embodiments described here are only provided to describe and explain the present invention, but shall not be deemed as constituting any limitation to the present invention.
As shown in
S11. generating bonding structures capable of being mutually mechanical interlocked, wherein, the frictional heat generated by the bonding structures capable of being mutually mechanical interlocked is higher than the bonding energy therebetween.
The types of bonding structures capable of being mutually mechanical interlocked can be those shown in
S12. utilizing the frictional heat generated by the bonding structures capable of being mutually mechanical interlocked to bond the bonding structures capable of being mutually mechanical interlocked.
Preferably, in the step S11, the procedure of generating bonding structures capable of being mutually mechanical interlocked may comprise: forming a first under-bump metal (UBM) layer pattern on a substrate; forming a second UBM layer pattern on the first UBM layer pattern; and, forming a bump on the second UBM layer pattern, so as to form the bonding structures capable of being mutually mechanical interlocked, wherein, the bump can be bonded with the first UBM layer pattern when the bonding structures capable of being mutually mechanical interlocked are bonded.
Preferably, the bump is bonded with the first UBM layer pattern by pressurized thermal annealing. Preferably, the first UBM layer pattern is composed of an adhesion layer on the substrate and a seed layer on the adhesion layer. Preferably, the adhesion layer is formed by a metal material that can adhere to the substrate (e.g., silicon substrate, silicon dioxide substrate, etc.), for example, the metal material can be at least one of TiN, TiW, Ti, Cr, Ta, Mo, and Co, etc. Preferably, the seed layer is also formed by a metal material, such as Cu, Au, or Ni, etc.
In addition, the bump may also be formed by a metal material.
First, as shown in
Then, as shown in
Next, as shown in
Next, as shown in
Thus, by utilizing the frictional heat generated by the bumps which is higher than the bonding energy between the bumps, the bonding at the bump-to-bump interface can be realized by applying very low force (as long as the force is higher than the friction force between the bumps) in the bonding process. To relieve the stress and enhance the strength of the bonding interface, in the step shown in
The bonding principle of the bonding method according to the present invention is as follows:
According to the formula of maximum static frictional force: f=μ×N, where, μ is maximum static friction coefficient (for example, in the case that the bump 7 is made of copper, the Cu—Cu static friction coefficient is 1.6 (please see the Table 3.1 in Vol. I “Mechanics” of “Berkeley Physics Tutorial” by C. Kittel, et al), N is positive pressure, and N=τ×S, where, τ is the maximum critical shearing stress of the bump (in the case of a bump made of copper, the theoretical maximum critical shearing stress of copper is 1500 MPa, but the practical value is much lower than that value), S is the lateral stressed area of the bump. The frictional heat is W=f×H=μ×N×H=μ×τ×S×H, where, W is frictional heat, f is maximum static frictional force, and H is the height of the bump. For example, for the bonding structures capable of being mutually mechanical interlocked as shown in
If the frictional heat per unit area is higher than the bonding energy between the bumps, bonding can be accomplished without external heat. In the case that the bump 7 is made of copper, since the bonding energy of copper is 3 J/m2, bonding can be realized as long as the L1 is at the order of micrometer, and the required pressure only has to be higher than the maximum static frictional force. The calculated frictional force is much lower than 1N when the L of the bump 7 is 6 μm, which means the required pressure is very low; in other words, the bonding can be accomplished by applying very low pressure only. Hence, the bonding method disclosed in the present invention can be used to accomplish wafer-level bump bonding at normal temperature and low pressure.
The present invention further provides a bonding structure formed with the above-mentioned bonding method. Since illustrative bonding structures capable of being mutually mechanical interlocked have been described above in detail in conjunction with the bonding method according to the present invention, the bonding structure will not be further detailed here. In addition, the bonding method according to the present invention can not only be applied for wafer-level bonding but also for chip-level and system-level bonding.
While the present invention is disclosed as above in some embodiments, the embodiments shall not be deemed as constituting any limitation to the present invention. Those skilled in the art can easily make various alternations and modifications to the embodiments without departing from the spirit and scope of the present invention. Therefore, the protected domain of the present invention shall be only confined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0263865 | Jun 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/071483 | 1/26/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/206086 | 12/31/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7485968 | Enquist | Feb 2009 | B2 |
9273724 | Rosenholm | Mar 2016 | B1 |
20030209288 | Huang | Nov 2003 | A1 |
20040079634 | Wickersham, Jr. | Apr 2004 | A1 |
20040121576 | Su | Jun 2004 | A1 |
20050012212 | Gilleo | Jan 2005 | A1 |
20070037379 | Enquist | Feb 2007 | A1 |
20070084719 | Wickersham, Jr. | Apr 2007 | A1 |
20090068831 | Enquist | Mar 2009 | A1 |
20100084110 | Strom | Apr 2010 | A1 |
20100089980 | Maeda | Apr 2010 | A1 |
20100093131 | Maeda | Apr 2010 | A1 |
20100178062 | Zhang | Jul 2010 | A1 |
20140272248 | Chamberlain | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
101479841 | Jul 2008 | CN |
101558483 | Oct 2009 | CN |
101558483 | Oct 2009 | CN |
101681850 | Mar 2010 | CN |
103354210 | Oct 2013 | CN |
103354210 | Oct 2013 | CN |
WO-2007021639 | Feb 2007 | WO |
2007126228 | Nov 2007 | WO |
Entry |
---|
International Search Report mailed in corresponding PCT/CN2014/071483 on May 5, 2014, consisting of 5 pp. |
Number | Date | Country | |
---|---|---|---|
20160172326 A1 | Jun 2016 | US |