Method for hafnium nitride deposition

Information

  • Patent Grant
  • 7547952
  • Patent Number
    7,547,952
  • Date Filed
    Tuesday, May 30, 2006
    18 years ago
  • Date Issued
    Tuesday, June 16, 2009
    15 years ago
Abstract
The present invention generally is a method for forming a high-k dielectric layer, comprising depositing a hafnium compound by atomic layer deposition to a substrate, comprising, delivering a hafnium precursor to a surface of the substrate, reacting the hafnium precursor and forming a hafnium containing layer to the surface, delivering a nitrogen precursor to the hafnium containing layer, forming at least one hafnium nitrogen bond and depositing the hafnium compound to the surface.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

Embodiments of the present invention generally relate to methods to deposit materials on substrates, and more specifically, to methods for depositing metal oxides, metal nitrides, metal oxynitrides, metal silicates and metal silicon oxynitrides using atomic layer deposition processes.


In the field of semiconductor processing, flat-panel display processing or other electronic device processing, chemical vapor deposition has played an important role in forming films on substrates. As the geometries of electronic devices continue to shrink and the density of devices continues to increase, the size and aspect ratio of the features are becoming more aggressive, e.g., feature sizes of 0.07 microns and aspect ratios of 10 or greater are being considered. Accordingly, conformal deposition of materials to form these devices is becoming increasingly important.


While conventional chemical vapor deposition has proved successful for device geometries and aspect ratios down to 0.15 microns, the more aggressive device geometries require new, innovative deposition techniques. One technique that is receiving considerable attention is atomic layer deposition (ALD). In the scheme, reactants are sequentially introduced into a processing chamber where each reactant chemisorbs onto the surface of the substrate and a surface reaction occurs. A purge step is typically carried out between the delivery of each reactant gas. The purge step may be a continuous purge with the carrier gas or a pulse purge between the delivery of the reactant gases.


U.S. Pat. No. 6,287,965 describes a method of ALD to form a metal nitride layer having the structure of A-B-N, where A is a metal, B is an element to prevent crystallization and N is nitrogen. The preferred embodiment teaches a method to make TiAIN. No incorporation of oxygen into these films is disclosed; in fact, the invention teaches away from oxygen incorporation by sequentially stacking oxygen diffusion barrier layers between the metal nitride layers for oxygen protection.


U.S. Pat. No. 6,200,893, entitled “Radical-assisted Sequential CVD”, describes a method for CVD deposition on a substrate wherein radical species such as hydrogen and oxygen or hydrogen and nitrogen are used in an alternative step with a molecular precursor to form one cycle. A composite integrated film is produced by repetitive cycles of the method. In a preferred embodiment, the deposited material from the molecular precursor are metals and the radicals, in the alternate steps, are used to remove ligands left from the metal precursor reactions. The radicals oxidize or nitridize the metal surface in subsequent layers in order to respectively yield metal oxide or nitride. In various embodiments of the reference, metallic hafnium and hafnium oxide are made from a halogen-containing precursor. However, the reference does not address complex hafnium compounds (tertiary, quaternary or pentanary) produced from metal organic compounds. Furthermore, the reference requires the use of radicals to incorporate oxygen and/or nitrogen into the film.


Therefore, there is a need for a process for depositing hafnium compounds such as nitrides, silicates, oxynitrides, silicon nitrides, silicon oxynitrides, aluminum oxynitrides and aluminum silicon oxynitrides from organometallic compounds.


SUMMARY OF THE INVENTION

In one embodiment, the present invention is a method for forming a layer comprising hafnium on a substrate surface, sequentially comprising: a) exposing the substrate surface to a hafnium precursor to form a hafnium containing layer on the substrate surface; b) purging the chamber with a purge gas; c) reacting a second precursor with the hafnium containing layer; d) purging the chamber with the purge gas; e) reacting a third precursor with the hafnium containing layer; f) purging the chamber with the purge gas; g) reacting a fourth precursor with the hafnium containing layer; and h) purging the chamber with the purge gas.


In another embodiment, the present invention is a method for growing a layer comprising hafnium, comprising exposing a substrate sequentially to at least four precursors during an ALD cycle to deposit a compound film comprising hafnium and at least three elements selected from the group consisting of silicon, aluminum, oxygen and nitrogen.


In another embodiment, the present invention is a method for depositing a hafnium compound on a substrate in a chamber during an atomic layer deposition process, comprising conducting a first half reaction comprising a hafnium precursor, conducting a second half reaction comprising an oxygen precursor, conducting a third half reaction comprising a nitrogen precursor and conducting a fourth half reaction comprising a silicon precursor.


In another embodiment, the present invention is a composition of a semiconductor material, comprising HfSixOyNz, wherein x is at least about 0.2 and less than about 4, y is at least about 0.5 and less than about 4 and z is at least about 0.05 and less than about 2.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of the invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a scheme to show an example of half reactions that are used to grow a hafnium nitride film.



FIG. 2 is a scheme to show an example of half reactions that are used to grow a hafnium oxide film.



FIGS. 3A-3D are schemes to show an example of half reactions that are used to grow a hafnium silicate film.



FIGS. 4A-4D are schemes to show an example of half reactions that are used to grow a hafnium silicon oxynitride film.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides methods for preparing hafnium compounds used in a variety applications including high k dielectric materials. The methods use atomic layer deposition (ALD) to have elemental control of the composition of hafnium compounds. The elemental control is generally separated by half reactions.


Half reactions are abstractly demonstrated via the reaction:

AC+BD→AB+CD,

wherein AB is the product compound and CD is the secondary compound or secondary product.


For example, a half reaction is demonstrated by each of the following steps:

*NH2+(Et2N)4Hf→*N═Hf(NEt2)2+2HNEt2  (1)
*N═Hf(NEt2)2+NH3→*N═Hf═NH+2HNEt2,  (2)

wherein the half reaction of step 1 is initiated by the functional group NH2 and * is an atom or molecule that is part of the substrate, film or surface group. The hafnium precursor reacts with the NH2 group and forms a Hf—N bond. Ligands are protonated from the hafnium precursor to form a secondary product. During the half reaction in step 2, ammonia reacts with the hafnium complex bound to the surface. The remaining ligands are protonated and removed while another Hf—N bond and another functional group (NH) are formed as the product compound. In each half reaction of steps 1 and 2, diethyl amine (HNEt2) can be made as a secondary compound. Other secondary compounds are amines and hydrazines and include radicals, ions and variations to ligands, such as Et2N, (Et2N)2, EtNH and (EtNH)2. Generally, these secondary compounds are readily removable, such as by vacuum and/or purge. The reaction schemes are not necessarily stoichiometric, but have a wide range of atomic ratios. Throughout the disclosure, reaction examples lack specific stoichiometry, bonding order and bonding connectivity of the product compounds and secondary compounds.


Another example of a half reaction is demonstrated by each of the following steps:

*OH+(Et2N)4Hf→*O—Hf(NEt2)x+HNEt2  (3)
*O—Hf(NEt2)x+H2O→*O—Hf—(OH)+HNEt2,  (4)

wherein the half reaction of step 3 is initiated by the functional OH group and forms a Hf—O bond. Step 4 proceeds to form another Hf—O bond as well as the terminus and functional OH group.


Therefore, in general, a first half reaction initiates with the reaction of a first functional group, establishes at least one product compound bond and establishes a second functional group. The second half reaction initiates with a reaction of the second functional group, establishes at least one product compound bond and establishes a third functional group. The third functional group, in many examples, is the same or similar to the first functional group. However, the second half reaction is still complete even when the third functional group is different. Examples with tertiary, quaternary and higher product compounds require half reactions with more than two precursors. Therefore, half reactions are not limited to only binary product compounds and may contain any number of half reactions. Most half reactions are sequentially separated by gas and/or vacuum purges.


Embodiments of the processes described herein deposit hafnium-containing materials on many substrates and surfaces. Substrates on which embodiments of the invention may be useful include, but are not limited to semiconductor wafers, such as crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, silicon germanium, doped or undoped polysilicon, doped or undoped silicon wafers silicon nitride and patterned or non-patterned wafers. Surfaces include bare silicon wafers, films, layers and materials with dielectric, conductive and barrier properties and include aluminum oxide and polysilicon. Pretreatment of surfaces includes polishing, etching, reduction, oxidation, hydroxylation, annealing and baking.


A substrate can be pretreated to be terminated with a variety of functional groups such as hydroxyls (OH), alkoxy (OR, where R=Me, Et, Pr or Bu), haloxyls (OX, where X=F, Cl, Br or I ), halides (F, Cl, Br or I ), oxygen radicals, aminos (NH or NH2) and amidos (NR or NR2, where R=Me, Et, Pr or Bu). A pretreatment can be accomplished by administering a reagent, such as NH3, B2H6, SiH4, SiH6, H2O , HF, HCl, O2, O3, H2O2, H2, atomic-H, atomic-N, atomic-O, alcohols or amines.


Once the surface of the substrate is pretreated, an ALD cycle is started. For many of the hafnium compounds, the hafnium precursor adsorption is self-limiting under certain process conditions, and generally must be at low temperatures (<500° C.) to exhibit this behavior. Some examples of half reactions that are self-limiting for the hafnium precursor include:

*NH2+(Et2N)4Hf→*N═Hf(NEt2)2+2HNEt2
*NH+(Et2N)4Hf→*N—Hf(NEt2)3+HNEt2
*OH+(Et2N)4Hf→*O—Hf(NEt2)3+HNEt2

wherein, hafnium is added to produce either *O—Hf(NEt2)x or *N—Hf(NEt2)x. An atom, such as a nitrogen or oxygen, can anchor the hafnium atom to the substrate or surface. *Hf(NEt2)x is self-limiting because the hafnium precursor will not react further; therefore, this is the first half reaction. To proceed with other half reactions, either an oxygen source (e.g., water) or a nitrogen source (e.g., ammonia) is added.


The first half reaction with a hafnium precursor initiates a series of many half reactions to make binary, tertiary, quaternary and more complex compounds. The first half reaction does not have to include a hafnium precursor, but can include any precursor to which a particular element is incorporated into the film. The following examples will portray hafnium precursors as the first half reaction in order to more clearly explain aspects of the invention.


One embodiment of the invention is directed to a process which proceeds with the half reaction of NH3 to *Hf(NEt2)x to produce *Hf—NH. Hafnium nitride is synthesized by sequentially proceeding with a half reaction of the hafnium precursor and a half reaction of a nitrogen source. FIG. 1 depicts a half reaction which is initiated by dosing (Et2N)4Hf from about 0.01 second to about 10 seconds, preferably about 0.25 second and dosing an inert gas purge from about 0.01 second to about 20 seconds, preferably about 0.25 second. A second half reaction is then initiated by dosing NH3 from about 0.01 second to about 10 seconds, preferably about 0.25 second and dosing an inert gas purge from about 0.01 second to about 20 seconds, preferably about 0.25 second. The two half reactions are cycled several times to grow a hafnium nitride film at the rate of about 50 ng/cm2 per cycle. By varying the cycle time, temperature, pressure and/or concentration, stoichiometry of the product compound is controlled. Slight variations of the stoichiometry can have an impact on the electrical properties, e.g., Hf3N4 is an insulating material while HfN is a conducting material. In one embodiment, HfN is made from a nitrate-free hafnium precursor. Hafnium nitride films can have oxygen contamination, since nitrates contain an oxygen/nitrogen ratio of three.


In one embodiment, a method for forming a semiconductor material by atomic layer deposition includes pulsing a hafnium precursor and a nitrogen precursor sequentially and cyclically. The hafnium nitride is deposited to the substrate surface wherein the hafnium nitride has a formula HfNx and x is at least about 1.1 and less than about 1.3. In one aspect, the hafnium precursor is TDEAH and the nitrogen precursor is NH3. In another aspect, the hafnium precursor is HfCl4 and the nitrogen precursor is a radical nitrogen, such as atomic nitrogen.


Another embodiment of the invention is directed to a process which proceeds with the half reaction of H2O to *Hf(NEt2)x and produce *Hf—OH. Hafnium oxide is synthesized by sequentially proceeding with a half reaction of the hafnium precursor and a half reaction of an oxygen source. FIG. 2 depicts a half reaction which is initiated by dosing (Et2N)4Hf from about 0.01 second to about 10 seconds and an inert gas purge dosed for about 0.01 second to about 20 seconds. A second half reaction is then initiated by dosing H2O from about 0.01 second to about 10 seconds and an inert gas purge from about 0.01 second to about 20 seconds. The two half reaction are cycled several times to grow a hafnium oxide film at the rate of about 1.2 Å per cycle.


The processes to grow the hafnium nitride or hafnium oxide films, as described above, can be modified to achieve other materials, namely tertiary compounds. Hafnium nitride is porous and reacts with water to form hafnium oxynitride, Hf—O—N. Therefore, to the hafnium nitride cycle, a half reaction of an oxygen source (e.g., water) is added to synthesize hafnium oxynitride. The ratio of Hf:O:N is controlled and varied to the desired characteristics of the product compound. In one embodiment, an oxygen precursor half reaction is included into the half reaction cycle. Such a cycle comprises a hafnium precursor half reaction, a nitrogen precursor half reaction, another hafnium precursor half reaction and an oxygen precursor half reaction. The oxygen precursor half reaction can be added into the cycle at any ratio relative to the hafnium and nitrogen precursor half reactions. As an example, an oxygen precursor half reaction is added at every ten complete cycles of hafnium and nitrogen precursor half reactions. Furthermore, the ratio can be varied in order to control the oxygen stoichiometry by film depth. Hence, a graded film is formed. In one embodiment, the process conditions are as follows, pressure is about 1 Torr, temperature is about 225° C., argon carrier flow is about 200 sccm, H2O and NH3 are dosed into the argon carrier flow in the range from about 1 second to about 4 seconds and TDEAH is dosed at about 20 seconds.


Graded films can be used to transition between various materials. One embodiment uses the method to transition between hafnium nitride and hafnium oxide. Within the hafnium nitride film, the elemental ratios N:Hf:O start out at 10:10:0, progress to 10:10:1, progress to 5:10:5, progress to 1:10:10 and finally 0:10:10, such that the film at the exposed surface following deposition is hafnium oxide. Graded films have advantageous characteristics, such as allowing control of electrical properties throughout the depth of the film, as well as higher levels of film adhesion.


Additional embodiments include methods to synthesize hafnium oxynitride. Due to the porosity of hafnium nitride, multiple layers are susceptible to oxygen enrichment. Instead of incorporating oxygen into each surface layer via half reactions, an excess oxygen precursor (e.g., water) is used to penetrate multiple layers of hafnium nitride and form a hafnium oxynitride graded film such as:

HfN—HfN—HfN—HfN—HfN+xs H2O →HfN—HfN—HfON—HfON—HfON.

Therefore, hafnium nitride can be formed by ALD, CVD, PVD or other techniques and thereafter oxygenated with an oxygen precursor.


Other embodiments of the invention include methods to synthesize tertiary hafnium nitride compounds incorporating silicon. Preferred silicon precursor compounds include (Me2N)4Si and (Me2N)3SiH. In one embodiment, a silicon precursor half reaction is included into the half reaction cycle for hafnium nitride formation. The cycle includes a hafnium precursor half reaction, a nitrogen precursor half reaction, a silicon precursor half reaction and another nitrogen precursor half reaction. The silicon precursor half reaction is added into the cycle at any ratio relative to the hafnium and nitrogen precursor half reactions. As an example, a silicon precursor half reaction is added about at every two complete cycles of hafnium and nitrogen precursor half reactions. Furthermore, the ratio can be varied in order to control the ratio of the silicon incorporated by depth of the film. Similarly to hafnium oxynitride, the method enables control of the Hf:Si:N stoichiometry.


Other embodiments of the invention are methods to synthesize tertiary hafnium oxide compounds incorporating nitrogen. Similarly as discussed above, the method reverses to use of oxygen and nitrogen to synthesize hafnium oxynitride. In one embodiment, a nitrogen precursor half reaction is included into the half reaction cycle of hafnium oxide. The cycle comprises a hafnium precursor half reaction, an oxygen precursor half reaction, another hafnium precursor half reaction and a nitrogen precursor half reaction. The nitrogen precursor half reaction is added into the cycle at any ratio relative to the hafnium and oxygen precursor half reactions. As an example, a nitrogen precursor half reaction is added at every two complete cycles of hafnium and oxygen precursor half reactions. Furthermore, the ratio can be varied in order to control the ratio of the nitrogen incorporated by depth of the growing film.


Other embodiments of the invention include methods to synthesize tertiary hafnium oxide compounds incorporating silicon, namely hafnium silicate (Hf—Si—O), as depicted in FIGS. 3A-3D. In one embodiment, a silicon source half reaction is included into the half reaction cycle of hafnium oxide. The cycle comprises a silicon precursor half reaction, an oxygen precursor half reaction, a hafnium precursor half reaction and another oxygen precursor half reaction. Purges occur between each half reaction. The silicon precursor half reaction can be added into the cycle at any ratio relative to the hafnium and oxygen precursor half reactions. As an example, a silicon precursor half reaction is added at every two complete cycles of hafnium and oxygen precursor half reactions. Furthermore, the ratio can be varied in order to control the ratio of the silicon incorporated by depth of the film.


Embodiments of the invention include multiple methods to synthesize quaternary compounds, especially hafnium silicon oxynitride (HfSiON), as depicted in FIGS. 4A-4D. Methods to synthesize two tertiary compounds (HfSiO and HfSiN) are modified to respectively nitridized or oxidized within the cycles to form the quaternary complex HfSiON. Half reactions of nitrogen, oxygen or silicon precursors are added at particular cycles, providing complete control to the N:O:Si ratios relative to hafnium.


In one embodiment, a nitrogen source half reaction is included into the half reaction cycle of hafnium silicate. Such a cycle comprises a silicon precursor half reaction, an oxygen precursor half reaction, a hafnium precursor half reaction and a nitrogen precursor half reaction. The nitrogen precursor half reaction can be added into the cycle at any ratio relative to the hafnium, silicon and oxygen precursor half reactions. As an example, a nitrogen precursor half reaction can be added at about every two complete cycles of hafnium, silicon and oxygen precursor half reactions. Furthermore, the cycle ratio can be varied in order to control the nitrogen ratio incorporated within film depth. Some embodiments grow hafnium silicon oxynitride graded films with higher concentrations of nitrogen near the top of the film.


In one aspect, the surface is terminated with a *SiOH group. The half reaction cycles are conducted with a hafnium precursor, a nitrogen precursor, a silicon precursor and an oxygen precursor, each separated with a purge. The respective precursors can be TDEAH, ammonia, Tris-DMAS and water. In another aspect, the respective precursors are HfCl4, radical nitrogen, Si2Cl6 and O3. The composition is controlled to form a semiconductor material, comprising HfSixOyNz, wherein x is at least about 0.2 and less than about 4, y is at least about 0.5 and less than about 4 and z is at least about 0.05 and less than about 2.


Embodiments of the invention include multiple methods to synthesize pentanary compounds, especially hafnium aluminum silicon oxynitride (HfAlSiON). Half reactions of hafnium, aluminum, nitrogen, oxygen and silicon precursors are added at particular cycles, providing complete control to the Al:N:O:Si ratios relative to hafnium. In one aspect of the process, one cycle of half reaction pulses will include, in the respective order, water, TDEAH, ammonia, Tris-DMAS, water and TMA. In another aspect of the process, one cycle of half reaction pulses will include, in the respective order, water, HfCl4, ammonia, Tris-DMAS, water and TMA.


Therefore, any stoichiometry of the following compounds is made by methods of the process: HfO, HfN, HfON, HfSiO, HfSiN, HfSiON, HfAlO, HfAlN, HfAlON, HfSiAlO, HfSiAlN, HfSiAlON. Therefore, ALD provides stoichiometric control during the deposition of product compounds. The stoichiometry may be altered by various procedures following the deposition process, such as when Hf3N4 is thermally annealed to form HfN. Stoichiometry is also controlled by altering the precursor ratios during deposition.


Many industrial applications exist for the product compounds synthesized by the various embodiments of the invention. Within the microelectronics industry, the product compounds are used as high-k transistor gate dielectric materials, transistor gate interface engineering, high-k capacitor dielectric materials (DRAMs), seed layers, diffusion barrier layers, adhesion layers, insulator layers, conducting layers and functionalized surface groups for patterned surfaces (e.g., selective deposition). In the realm of microelectromechanical systems (MEMS), the materials formed by the claimed invention are used as insulating, conducting or structural films. The materials can also serve as functionalized surface groups to reduce stiction. Additional functionality of surface groups is used in gas or liquid chromatography, chemical sensors and active sites for chemical attachment, patterned surfaces (e.g., combinatorial chemistry). Silicon nitride is also used as a hardening coating on tools and within optical devices.


Many precursors are within the scope of the invention. One important precursor characteristic is to have a favorable vapor pressure. Precursors may be a plasma, gas, liquid or solid at ambient temperature and pressure. However, within the ALD chamber, precursors are volatilized. Organometallic compounds or complexes include any chemical containing a metal and at least one organic group, such as alkyls, alkoxyls, alkylamidos and anilides. Precursors comprise of organometallic and halide compounds.


Exemplary hafnium precursors include hafnium compounds containing ligands such as alkylamidos, cyclopentadienyls, halides, alkyls, alkoxides and combinations thereof. Alkylamido hafnium compounds used as hafnium precursors include (RR′N)4Hf, where R or R′ are independently hydrogen, methyl, ethyl, propyl or butyl. Specific hafnium precursors include: (Et2N)4Hf, (Me2N)4Hf, (EtMeN)4Hf, (tBuC5H4)2HfCl2, (C5H5)2HfCl2, (EtC5H4)2HfCl2, (Me5C5)2HfCl2, (Me5C5)HfCl3, (iPrC5H4)2HfCl2, (iPrC5H4)HfCl3, (tBuC5H4)2HfMe2, (acac)4Hf, (hfac)4Hf, (tfac)4Hf, (thd)4Hf, Br4Hf, Cl4Hf, I4Hf, (NO3)4Hf, (tBuO)4Hf, (iPrO)4Hf, (EtO)4Hf and (MeO)4Hf.


Exemplary silicon precursors include: alkylamidosilanes (e.g, (Me2N)4Si, (Me2N)3SiH, (Me2N)2SiH2, (Me2N)SiH3, (Et2N)4Si, (Et2N)3SiH), Si(NCO)4, MeSi(NCO)3, SiH4, Si2H6, SiCl4, Si2Cl6, MeSiCl3, HSiCl3, Me2SiCl2, H2SiCl2, silanols (e.g., MeSi(OH)3, Me2Si(OH)2), (EtO)4Si and various alkoxy silanes (e.g., (RO)4-nSiLn, where R=methyl, ethyl, propyl and butyl and L=H, OH, F, Cl, Br or I and mixtures thereof). Also, higher silanes are used as silicon precursors by processes of the invention. Higher silanes are disclosed in U.S. provisional patent applications, 60/419,426, 60/419,376 and 60/419,504, each filed on Oct. 18, 2002, assigned to Applied Material, Inc., and each entitled, “Low temperature deposition with silicon compounds” and are incorporated herein by reference in entirety for the purpose of describing silicon precursors.


Exemplary nitrogen precursors include: NH3, N2, hydrazines (e.g., N2H4 or MeN2H3), amines (e.g., Me3N, Me2NH or MeNH2), anilines (e.g., C6H5NH2), organic azides (e.g., MeN3 or Me3SiN3), inorganic azides (e.g., NaN3 or CP2CoN3) and radical nitrogen compounds (e.g., N3, N2, N, NH or NH2). Radical nitrogen compounds can be produced by heat, hot-wires and/or plasma.


Exemplary oxygen precursors include: H2O, H2O2, O3, O2, NO, N2O, NO2, N2O5, alcohols (e.g., ROH, where R=Me, Et, Pr and Bu), peroxides (organic and inorganic) carboxylic acids and radical oxygen compounds (e.g., O, O2, O3 and OH radicals). Radical oxygen compounds can be produced by heat, hot-wires and/or plasma.


Exemplary aluminum precursors include: aluminum alkyls such as: Me3Al, Et3Al, Pr3Al, Bu3Al, Me2AlH, Et2AlH, Me2AlCl, Et2AlCl, aluminum alkoxyls such as: (MeO)3Al, (EtO)3Al, (PrO)3Al and (BuO)3Al, aluminum dimmers, aluminum halides and aluminum hydrides.


The processes of the invention can be carried out in equipment known in the art of ALD. The apparatus brings the sources into contact with a heated substrate on which the films are grown. Hardware that can be used to deposit films is an ALD apparatus as disclosed in U.S. patent application Ser. No. 10/251,715, filed Sep. 20, 2002, assigned to Applied Material, Inc., Santa Clara, Calif. and entitled “An Apparatus for the Deposition of High Dielectric Constant Films”, and is incorporated herein by reference in entirety for the purpose of describing the apparatus. Carrier gases or purge gases include N2, Ar, He, H2, forming gas and mixtures thereof.


In one embodiment, hydrogen gas is applied as a carrier gas, purge and/or a reactant gas to reduce halogen contamination from the film. Precursors that contain halogen atoms (e.g., HfCl4, SiCl4 and Si2Cl6) readily contaminate the film. Hydrogen is a reductant and will produce hydrogen chloride as a volatile and removable by-product. Therefore, hydrogen is used as a carrier gas or reactant gas when combined with a precursor compound (i.e., hafnium, silicon, aluminum, oxygen or nitrogen precursors) and can include another carrier gas (e.g., Ar or N2). In one aspect, a water/hydrogen mixture, at a temperature in the range from about 250° C. to about 650° C., is used to reduce the halogen concentration and increase the oxygen concentration of the film.


The present invention provides methods for preparing the following compounds. The subscripts (w, x, y, z) imply that stoichiometry is intentionally varied (i.e., compositionally controlled) via ALD dosing sequences to form the following product compounds:















hafnium aluminate:
HfAlxOy


hafnium oxide:
HfO2 and HfOx


hafnium nitride:
Hf3N4, HfN and HfNx


hafnium oxynitride:
HfOxNy


hafnium aluminum oxynitride:
HfAlxOyNz


hafnium silicate:
HfSiO4, Hf4SiO10, Hf3SiO8,



Hf2SiO6, HfSiO2, HfxSiyO2(x+y)



and HfxSiyO


aluminum silicate:
Al6Si2O13 and AlxSiyO


hafnium aluminum silicate:
Hf2Al6Si4O21 and HfxAlySizO


hafnium silicon nitride:
HfxSiyN


hafnium silicon oxynitride:
Hf2Si2N2O5 and HfSixOyNz


aluminum silicon oxynitride:
AlSixOyNz


hafnium aluminum silicon oxynitride:
HfAlwSixOyNz










The list of product compounds is only partial and other materials are prepared with the methods of the invention. Other elements, such as carbon, titanium, tungsten, ruthenium, tantalum, zirconium, molybdenum, iridium, nickel, copper, tin, boron or phosphorus may be incorporated into the films as product compounds. Therefore, a product compound may comprise hafnium silicon oxynitride and carbon. Examples of half reactions are listed below. Note, that *=surface species.


Reactivity of Precursors with Surface Hydroxyl Groups (—OH)

Al—OH*+TDMAS(g)→Al—O—Si(N(CH3)2)*+xs HN(CH3)2(g)
Al—OH*+TrisDMAS(g)→Al—O—SiH(N(CH3)2)*+xs HN(CH3)2(g)
Al—OH*+TrisDMAS(g)→Al—O—Si(N(CH3)2)*+xs HN(CH3)2(g)+H2(g)
Al—OH*+TDEAH(g)→Al—O—Hf(N(CH2CH3)2)*+xs HN(CH2CH3)2(g)
Al—OH*+TMA(g)→Al—O—AlCH3*+xs CH4(g)
Hf—OH*+TDMAS(g)→Hf—O—Si(N(CH3)2)*+xs HN(CH3)2(g)
Hf—OH*+TrisDMAS(g)→Hf—O—SiH(N(CH3)2)*+xs HN(CH3)2(g)
Hf—OH*+TrisDMAS(g)→Hf—O—Si(N(CH3)2)*+xs HN(CH3)2(g)+H2(g)
Hf—OH*+TDEAH(g)→Hf—O—Hf(N(CH2CH3)2)*+xs HN(CH2CH3)2(g)
Hf—OH*+TMA(g)→OH—AlCH3*+xs CH4(g)
Si—OH*+TDMAS(g)→Si—O—Si(N(CH3)2)*+xs HN(CH3)2(g)
Si—OH*+TrisDMAS(g)→Si—O—SiH(N(CH3)2)*+xs HN(CH3)2(g)
Si—OH*+TrisDMAS(g)→Si—O—Si(N(CH3)2)*+xs HN(CH3)2(g)+H2(g)
Si—OH*+TDEAH(g)→Si—O—Hf(N(CH2CH3)2)*+xs HN(CH2CH3)2(g)
Si—OH*+TMA(g)→Si—O—AlCH3*+xs CH4(g)

Reactivity of Surface Products with H2O(g) to Regenerate Surface Hydroxyl (—OH) Groups.

Al—O—Si(N(CH3)2)*+H2O→Al—O—Si(OH)*+xs HN(CH3)2(g)
Al—O—SiH(N(CH3)2)*+H2O→Al—O—SiH(OH)*+xs HN(CH3)2(g)
Al—O—SiH(N(CH3)2)*+H2O→Al—O—Si(OH)*+xs HN(CH3)2(g)+H2(g)
Al—O—Si(N(CH3)2)*+H2O→Al—O—Si(OH)*+xs HN(CH3)2(g)
Al—O—Hf(N(CH2CH3)2)*+H2O→Al—O—Hf(OH)*+xs HN(CH2CH3)2(g)
Al—O—AlCH3*+H2O→Al—O—Al(OH)*+xs CH4(g)
Hf—O—Si(N(CH3)2)*+H2O→Hf—O—Si(OH)*+xs HN(CH3)2(g)
Hf—O—SiH(N(CH3)2)*+H2O→Hf—O—SiH(OH)*+xs HN(CH3)2(g)
Hf—O—SiH(N(CH3)2)*+H2O→Hf—O—Si(OH)*+xs HN(CH3)2(g)+H2(g)
Hf—O—Si(N(CH3)2)*+H2O→Hf—O—Si(OH)*+xs HN(CH3)2(g)
Hf—O—Hf(N(CH2CH3)2)*+H2O→Hf—O—Hf(OH)*+xs HN(CH2CH3)2(g)
Hf—O—AlCH3*+H2O→Hf—O—Al(OH)*+xs CH4(g)
Si—O—Si(N(CH3)2)*+H2O→Si—O—Si(OH)*+xs HN(CH3)2(g)
Si—O—SiH(N(CH3)2)*+H2O→Si—O—SiH(OH)*+xs HN(CH3)2(g)
Si—O—SiH(N(CH3)2)*+H2O→Si—O—Si(OH)*+xs HN(CH3)2(g)+H2(g)
Si—O—Si(N(CH3)2)*+H2O→Si—O—Si(OH)*+xs HN(CH3)2(g)
Si—O—Hf(N(CH2CH3)2)*+H2O→Si—O—Hf(OH)*+xs HN(CH2CH3)2(g)
Si—O—AlCH3*+H2O→Si—O—Al(OH)*+xs CH4(g)

Reactivity of Surface Products with NH3(g) to Generate Surface Amine (—NH2, —NH) Groups.

Al—O—Si(N(CH3)2)*+NH3→Al—O—Si(NH2)*+xs HN(CH3)2(g)
Al—O—SiH(N(CH3)2)*+NH3→Al—O—SiH(NH2)*+xs HN(CH3)2(g)
Al—O—SiH(N(CH3)2)*+NH3→Al—O—Si(NH)*+xs HN(CH3)2(g)+H2(g)
Al—O—Si(N(CH3)2)*+NH3→Al—O—Si(NH2)*+xs HN(CH3)2(g)
Al—O—Hf(N(CH2CH3)2)*+NH3→Al—O—Hf(NH2)*+xs HN(CH2CH3)2(g)
Al—O—AlCH3*+NH2(p)→Al—O—Al(NH2)*+xs CH4(g)
Hf—O—Si(N(CH3)2)*+NH3→Hf—O—Si(OH)*+xs HN(CH3)2(g)
Hf—O—SiH(N(CH3)2)*+NH3→Hf—O—SiH(NH)*+xs HN(CH3)2(g)
Hf—O—SiH(N(CH3)2)*+NH3→Hf—O—Si(NH)*+xs HN(CH3)2(g)+H2(g)
Hf—O—Si(N(CH3)2)*+NH3→Hf—O—Si(NH)*+xs HN(CH3)2(g)
Hf—O—Hf(N(CH2CH3)2)*+NH3→Hf—O—Hf(NH)*+xs HN(CH2CH3)2(g)
Hf—O—AlCH3*+NH2(p)→Hf—O—Al(NH)*+xs CH4(g)
Si—O—Si(N(CH3)2)*+NH3→Si—O—Si(NH)*+xs HN(CH3)2(g)
Si—O—SiH(N(CH3)2)*+NH3→Si—O—SiH(NH)*+xs HN(CH3)2(g)+H2(g)
Si—O—SiH(N(CH3)2)*+NH3→Si—O—Si(NH)*+xs HN(CH3)2(g)+H2(g)
Si—O—Si(N(CH3)2)*+NH3→Si—O—Si(NH)*+xs HN(CH3)2(g)
Si—O—Hf(N(CH2CH3)2)*+NH3→Si—O—Hf(NH)*+xs HN(CH2CH3)2(g)
Si—O—AlCH3*+NH2(p)→Si—O—Al(NH)*+xs CH4(g)

Reactivity of Precursors with Surface Amine Groups (—NH or —NH2)

Hf—NH*+TrisDMAS(g)→Hf—N—SiH(N(CH3)2)*+xs HN(CH3)2(g)
Hf—NH*+TrisDMAS(g)→Hf—N—Si(N(CH3)2)*+xs HN(CH3)2(g)+H2(g)
Hf—NH*+TDEAH(g)→Hf—N—Hf(N(CH2CH3)2)*+xs HN(CH2CH3)2(g)
Hf—NH*+TMA(g)→Hf—N—AlCH3*+xs CH4(g)
Si—NH*+TrisDMAS(g)→Si—N—SiH(N(CH3)2)*+xs HN(CH3)2(g)
Si—NH*+TrisDMAS(g)→Si—N—Si(N(CH3)2)*+xs HN(CH3)2(g)+H2(g)
Si—NH*+TDEAH(g)→Si—N—Hf(N(CH2CH3)2)*+xs HN(CH2CH3)2(g)
Si—NH*+TMA(g)→Si—N—Al(CH3)*+xs HN(CH2CH3)2(g)

Reactivity of Surface products with NH3 to Regenerate Surface Amine Groups.

Hf—N—SiH(N(CH3)2)*+NH3(g)→Hf—N—Si(NH)*+xs HN(CH3)2(g)+H2(g)
Hf—N—SiH(N(CH3)2)*+NH3(g)→Hf—N—SiH(NH2)*+xs HN(CH3)2(g)
Hf—N—Si(N(CH3)2)*+NH3(g)→Hf—N—Si(NH2)*+xs HN(CH3)2(g)
Hf—N—Hf(N(CH2CH3)2)*+NH3(g)→Hf—N—Hf(NH2)*+xs HN(CH2CH3)2(g)
Hf—N—AlCH3*+NH2(p)→Hf—N—Al(NH2)*+xs HN(CH2CH3)2(g)
Hf—N—SiH(N(CH3)2)*+NH3(g)→Si—N—Si(NH)*+xs HN(CH3)2(g)+H2(g)
Hf—N—SiH(N(CH3)2)*+NH3(g)→Si—N—SiH(NH2)*+xs HN(CH3)2(g)
Si—N—Si(N(CH3)2)*+NH3(g)→Si—N—Si(NH2)*+xs HN(CH3)2(g)
Si—N—Hf(N(CH2CH3)2)*+NH3(g)→Si—N—Hf(NH2)*+xs HN(CH2CH3)2(g)
Si—N—Al(CH3)*+NH2(p)→Si—N—Al(NH2)*+xs HN(CH2CH3)2(g)

Reactivity of Surface Products with H2O(g) to Generate Surface Hydroxyl Groups

Hf—N—SiH(N(CH3)2)*+H2O→Hf—N—Si(OH)*+xs HN(CH3)2(g)+H2(g)
Hf—N—SiH(N(CH3)2)*+H2O→Hf—N—SiH(OH)*+xs HN(CH3)2(g)
Hf—N—Si(N(CH3)2)*+H2O→Hf—N—Si(OH)*+xs HN(CH3)2(g)
Hf—N—Hf(N(CH2CH3)2)*H2O→Hf—N—Hf(OH)*+xs HN(CH2CH3)2(g)
Hf—N—AlCH3*+H2O→Hf—N—Al(OH)*+xs CH4(g)
Si—N—SiH(N(CH3)2)*+H2O→Si—N—Si(OH)*+xs HN(CH3)2(g)+H2(g)
Si—N—SiH(N(CH3)2)*+H2O→Si—N—SiH(OH)*+xs HN(CH3)2(g)
Si—N—Si(N(CH3)2)*+H2O→Si—N—Si(OH)*+xs HN(CH3)2(g)
Si—N—Hf(N(CH2CH3)2)*+H2O→Si—N—Hf(OH)*+xs HN(CH2CH3)2(g)
Si—N—Al(CH3)*+H2O→Si—N—Al(OH)*+xs HN(CH2CH3)2(g)


EXAMPLES



  • TDEAH=tetrakisdiethylamidohafnium=(Et2N)4Hf

  • TDMAS=tetrakisdimethlaminosilicon=(Me2N)4Si

  • TrisDMAS=trisdimethylaminosilicon=(Me2N)3SiH

  • TMA=trimethyl aluminum=Me3Al



The ALD processes are maintained in a temperature range from about 20° C. to about 650° C., preferably from about 150° C. to about 300° C., more preferably at about 225° C. Materials grown may be similar throughout a wider temperature range assuming that saturating ALD behavior is maintained. The ALD processes are conducted with a pressure in the range from about 0.1 Torr to about 100 Torr, preferably in the range from about 1 Torr to about 10 Torr. Materials grown may be similar from high vacuum to high pressures assuming saturating ALD behavior is maintained. The flow is maintained viscous to encourage reactant separation. Carrier gas (e.g., N2) is maintained in the range from about 50 sccm to about 1,000 sccm, preferably at about 300 sccm with a speed of about 1 m/s. Higher speeds may create particle transport issues while lower speeds could allow particle formation due to inefficient purging, affecting electrical behavior of thin films. Films are deposited with thickness in the range from about 2 Å to about 1,000 Å, preferably, from about 5 Å to about 100 Å, and more preferably in the range from about 10 Å to about 50 Å.


In one example, a hafnium oxide film is grown by ALD in the presence of hydrogen gas. Hydrogen is used to reduce levels of halogen contaminates (e.g., F or Cl) within hafnium-containing films. Flow A, containing hafnium tetrachloride and at least one carrier gas (e.g., Ar, N2 and H2), is pulsed sequentially with Flow B, containing water, hydrogen and an optional carrier gas. Flows A and B are each pulsed for about 1 second and purge flows of argon are pulsed for about 1 second between each pulse of Flows A and B. The temperature is maintained in the range from about 250° C. to about 650° C.


In another example, a hafnium silicate film is grown by ALD in the presence of hydrogen gas. Flow A, containing hafnium tetrachloride and at least one carrier gas (e.g., Ar, N2 and H2), is pulsed sequentially with Flow B, containing water, hydrogen and an optional carrier gas and Flow C, containing Tris-DMAS and at least one carrier gas. Flows A, B and C are each pulsed for about 1 second and purge flows of argon are pulsed for about 1 second between each pulse of Flows A, B and C. The temperature is maintained in the range from about 450° C. to about 650° C.


In another example, a hafnium silicon oxynitride film is grown by ALD in the presence of hydrogen gas. Flow A, containing hafnium tetrachloride and at least one carrier gas (e.g., Ar, N2 and H2), is pulsed sequentially with Flow B, containing water, hydrogen and an optional carrier gas and Flow C, containing Tris-DMAS and at least one carrier gas and Flow D, containing a nitrogen plasma and an optional carrier gas. Flows A, B, C and D are each pulsed for about 1 second and purge flows of argon are pulsed for about 1 second between each pulse of Flows A, B, C and D. The temperature is maintained in the range from about 450° C. to about 650° C.


Materials are deposited by dosing chemicals separately in an alternating fashion to achieve the desired film composition or characteristics with selected half reactions. The above half reactions, however, do not dictate the exact bonding connectivity or the stoichiometry of the resulting film. Stoichiometry is largely controlled by thermodynamics; however, kinetically controlled films may be achieved. Thus, the dosing sequence may be modified to effect the overall composition and qualities of the film. The types of thin-film materials that can be grown with ALD half reactions generally are:

  • 1. Binary Materials: Repetitive cycles of reactants {A+B}: e.g., Hf3N4
  • 2. Direct Alloys: Repetitive cycles of reactants {A+B+C+D}: e.g., HfSiO4
  • 3. Compositionally Controlled Alloys: Repetitive cycles of reactants {y(A+B)+z(C+D)} (where either y or z=1 and either z or y is >1, respectively): e.g., HfxSi(2-x)O4
  • 4. Compositionally Controlled Gradient Materials: Similar to 3, however, y or z is varied during deposition.
  • 5. Layered or laminate materials: Deposition of two different materials in discrete physical layers. Repetitive cycles of reactants {y(A+B+C+D)+z(E+F)} (where y and z are typically ≧4): e.g., nanolaminates of hafnia and alumina


    ALD of hafnium aluminates (HfxAlyO)
  • Direct: 1 cycle=(TDEAH+H2O+TMA+H2O)
  • half reactions(s)=4.03+5.03+4.08+5.08
  • Compositionally Controlled: 1 cycle=n(TDEAH+H2O)+m(TMA+H2O) where typically n is one and m is varied or m is one and n is varied.
  • half reactions (second) (e.g., n=3, m=1)=4.03+5.03+4.07+5.07+4.07+5.07+4.08+5.08
  • Layered: 1 layer=p(TDEAH+H2O)+q(TMA+H2O) where p and q are typically≧4
  • half reactions (second) (e.g., n=4, m=4)=4.03+5.03+(4.07+5.07+4.07+5.07+4.07+5.07)+4.08+5.08+(4.04+5.04+4.04+5.05+4.04+5.04)


    ALD of hafnium nitrides (Hf3N4 or HfN)
  • Direct: 1 cycle=(TDEAH+NH3).
  • half reactions (second)=7.02+8.02


    In this case, deposition at these temperatures may produce Hf3N4. Annealing to higher temperatures may produce HfN.


    ALD of hafnium oxynitrides (HfOxNy)
  • Direct: 1 cycle=(TDEAH+H2O+TDEAH+NH3)
  • half reactions (second)=7.02+9.02+4.07+6.07
  • Compositionally Controlled: 1 cycle=n(TDEAH+H2O)+m(TDEAH+NH3) where typically n is one and m is varied or m is one and n is varied.
  • Layered: 1 layer=p(TDEAH+H2O)+q(TDEAH+NH3) where p and q are typically≧4


    ALD of hafnium aluminum oxynitrides (HfwAlxOyNz)
  • Direct: 1 cycle=(TDEAH+NH3+TMA+H2O) hafnium oxynitride/alumina oxynitride alloy
  • Variations possible: 1 cycle=(TDEAH+NH3+TDEAH+H2O+TMA+H2O)


    Note: The different dosing sequence effects the bonding connectivity, especially when grown at lower temperatures <300° C. and without a higher-temperature anneal. In the top example, one might predict —O—Hf—N—Al—O— connectivity. This may be thought of as a hafnium oxynitride/aluminum oxynitride alloy. In the bottom example, one might predict —O—Hf—N—Hf—O—Al—O— connectivity. This may be thought of as a hafnium oxynitride/alumina alloy.


    ALD of hafnium silicates (HfSiO4 and HfxSiyO)
  • Direct: 1 cycle=(TDEAH+H2O+TrisDMAS+H2O)=HfSiO4
  • Silica-rich hafnium silicates: 1 cycle=(TDEAH+H2O)+3(TrisDMAS+H2O)=Hf2Si5O14

    Compositional control (Hf:Si) from pure HfO2 to silica-rich (>70%) hafnium silicates are possible.


    ALD of aluminum silicate (Al6Si2O13 and AlxSiyO)
  • Direct: 1 cycle=(TMA+H2O+TrisDMAS+H2O)=Al6Si2O13
  • Silica-rich aluminum silicates: 1 cycle=(TMA+H2O)+3(TrisDMAS+H2O)=Al2Si2O7

    Compositional control (Al:Si) from pure Al2O3 to silica-rich (>50%) aluminum silicates are possible.


    ALD of hafnium aluminum silicate (Hf2Al6Si4O21 and HfxAlySizO)
  • e.g., 1 cycle=(TDEAH+H2O+TrisDMAS+H2O+TMA+H2O+TrisDMAS+H2O)=Hf2Al6Si4O21

    ALD of hafnium silicon nitride (HfxSiyN)
  • Direct: 1 cycle =(TDEAH+NH3+TrisDMAS+NH3)


    ALD of hafnium silicon oxynitride (HfSixOyNz)
  • e.g., (TDEAH+H2O+TrisDMAS+NH3)
  • e.g., (TDEAH+NH3+TDEAH+H2O+TrisDMAS+H2O+TrisDMAS+NH3)


    ALD of aluminum silicon oxynitride (AlSixOyNz)
  • e.g., (TMA+H2O+TrisDMAS+NH3)


    ALD of hafnium aluminum silicon oxynitride (HfAlwSixOyNz)
  • e.g., (TDEAH+NH3+TMA+H2O+TrisDMAS+H2O)
  • e.g., (TDEAH+NH3+TDEAH+H2O+TrisDMAS+NH3+TMA+H2O)


    Continuous ALD of silica (SiO2)
  • e.g., Direct: 1 cycle=Si(NCO)4+H2O
    • This process may allow laminate layers of pure SiO2 or more easy control of Si concentration in mixed allows. Si(NCO)4 is very reactive with Hf—OH* groups making silica incorporation easy (since TDEAH is reactive with SiOH*).
  • e.g., Consider several (TrisDMAS+H2O) cycles with an occasional (TDEAH+H2O) or (TMA+H2O) cycle or (flash anneal >700° C.+H2O) to reform surface hydroxal groups to reinitiate growth.


    Si3N4, (e.g. Non-Continuous Seed Layer or Capping Layer)
  • e.g., Direct: 1 cycle=(TrisDMAS+NH3)


    SixOyN, (e.g., Non-Continuous Seed Layer or Capping Layer)
  • e.g., Direct: 1 cycle=(TrisDMAS+NH3+TrisDMAS+H2O )


    AlN
  • e.g., 1 cycle=(TMA+NH3)
  • AlxSiyN:
  • AlxOyN:
  • HfxAlyN:


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A composition of a semiconductor material, comprising: a film comprising a plurality of layers and having the chemical formula of HfSiXOYNZ, wherein x is at least about 0.2 and less than about 4;y is at least about 0.5 and less than about 4;z is at least about 0.05 and less than 2; and wherein the plurality of layers comprises: a first hafnium layer;a first nitrogen layer disposed on the first hafnium layer;a first silicon layer disposed on the first nitrogen layer; anda first oxygen layer disposed on the first silicon layer.
  • 2. The composition of claim 1, wherein the film has a thickness within a range from about 2 Å to about 1,000 Å.
  • 3. The composition of claim 2, wherein the thickness is within a range from about 10 Å to about 50 Å.
  • 4. The composition of claim 1, further comprising: a first aluminum layer disposed on the first oxygen layer.
  • 5. The composition of claim 1, further comprising: a second hafnium layer disposed over the first oxygen layer;a second nitrogen layer disposed on the second hafnium layer;a second silicon layer disposed on the second nitrogen layer; anda second oxygen layer disposed on the second silicon layer.
  • 6. A composition of a semiconductor material, comprising: a film comprising a plurality of layers and having the chemical formula of HfSiXOYNZ, wherein x is at least about 0.2 and less than about 4;y is at least about 0.5 and less than about 4;z is at least about 0.05 and less than 2; and wherein the plurality of layers comprises: a first hafnium layer;a first oxygen layer disposed on the first hafnium layer;a first nitrogen layer disposed on the first oxygen layer; anda first silicon layer disposed on the first nitrogen layer.
  • 7. The composition of claim 6, further comprising: a first aluminum layer disposed on the first silicon layer.
  • 8. The composition of claim 6, further comprising: a second hafnium layer disposed on the first silicon layer;a second oxygen layer disposed on the second hafnium layer;a second nitrogen layer disposed on the second oxygen layer; anda second silicon layer disposed on the second nitrogen layer.
  • 9. The composition of claim 6, wherein the film has a thickness within a range from about 2 Å to about 1,000 Å.
  • 10. The composition of claim 9, wherein the thickness is within a range from about 10 Å to about 50 Å.
  • 11. A composition of a semiconductor material, comprising: a film comprising a plurality of layers and having the chemical formula of HfSIXOYNZ, wherein x is at least about 0.2 and less than about 4;y is at least about 0.5 and less than about 4;z is at least about 0.05 and less than 2; and wherein the plurality of layers comprises: a first hafnium layer;a first silicon layer disposed on the first hafnium layer;a first oxygen layer disposed on the first silicon layer; anda first nitrogen layer disposed on the first oxygen layer.
  • 12. The composition of claim 11, further comprising: a first aluminum layer disposed on the first nitrogen layer.
  • 13. The composition of claim 11, further comprising: a second hafnium layer disposed on the first nitrogen layer;a second silicon layer disposed on the second hafnium layer;a second oxygen layer disposed on the second silicon layer; anda second nitrogen layer disposed on the second oxygen layer.
  • 14. The composition of claim 11, wherein the film has a thickness within a range from about 2 Å to about 1,000 Å.
  • 15. The composition of claim 14, wherein the thickness is within a range from about 10 Å to about 50 Å.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of co-pending U.S. patent application Ser. No. 10/407,930, filed Apr. 4, 2003, which is incorporated by reference herein.

US Referenced Citations (332)
Number Name Date Kind
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4415275 Dietrich Nov 1983 A
4486487 Skarp Dec 1984 A
4693208 Sakai Sep 1987 A
4761269 Conger et al. Aug 1988 A
4834831 Nishizawa et al. May 1989 A
4975252 Nishizawa et al. Dec 1990 A
4993357 Scholz Feb 1991 A
5027746 Frijlink et al. Jul 1991 A
5173327 Sandhu et al. Dec 1992 A
5178681 Moore et al. Jan 1993 A
5225366 Yoder Jul 1993 A
5261959 Gasworth Nov 1993 A
5281274 Yoder Jan 1994 A
5290609 Horiike et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5306666 Izumi Apr 1994 A
5338362 Imahashi Aug 1994 A
5374570 Nasu et al. Dec 1994 A
5441703 Jurgensen Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5674786 Turner et al. Oct 1997 A
5711811 Suntola et al. Jan 1998 A
5730802 Ishizumi et al. Mar 1998 A
5796116 Nakata et al. Aug 1998 A
5807792 Ilg et al. Sep 1998 A
5835677 Li et al. Nov 1998 A
5855680 Soininen et al. Jan 1999 A
5879459 Gadgli et al. Mar 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
6013553 Wallace et al. Jan 2000 A
6015590 Suntola et al. Jan 2000 A
6020243 Wallace et al. Feb 2000 A
6025627 Forbes et al. Feb 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6060755 Ma et al. May 2000 A
6071572 Mosely et al. Jun 2000 A
6124158 Dautartas et al. Sep 2000 A
6139700 Kang et al. Oct 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6183563 Choi et al. Feb 2001 B1
6197683 Kang et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6231672 Choi et al. May 2001 B1
6238734 Senzaki et al. May 2001 B1
6270572 Kim et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291283 Wilk Sep 2001 B1
6291867 Wallace et al. Sep 2001 B1
6297539 Ma et al. Oct 2001 B1
6299294 Regan Oct 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6335240 Kim et al. Jan 2002 B1
6342277 Sherman Jan 2002 B1
6348386 Gilmer Feb 2002 B1
6354395 Cheng et al. Mar 2002 B1
6358829 Yoon et al. Mar 2002 B2
6372598 Kang et al. Apr 2002 B2
6391785 Satta et al. May 2002 B1
6391803 Kim et al. May 2002 B1
6395650 Callegari et al. May 2002 B1
6399208 Baum et al. Jun 2002 B1
6399491 Jeon et al. Jun 2002 B2
6416577 Suntoloa et al. Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
6432283 Fairlie et al. Aug 2002 B1
6447607 Soininen et al. Sep 2002 B2
6451119 Sneh et al. Sep 2002 B2
6451695 Sneh Sep 2002 B2
6452229 Krivokapic Sep 2002 B1
6462367 Marsh et al. Oct 2002 B2
6468924 Lee et al. Oct 2002 B2
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6481945 Hasper et al. Nov 2002 B1
6482262 Elers et al. Nov 2002 B1
6489214 Kim et al. Dec 2002 B2
6492283 Raaijmakers et al. Dec 2002 B2
6511539 Raaijmakers Jan 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6551406 Kilpi Apr 2003 B2
6572705 Suntola et al. Jun 2003 B1
6578287 Aswad Jun 2003 B2
6579372 Park Jun 2003 B2
6593484 Yasuhara et al. Jul 2003 B2
6599572 Saanila et al. Jul 2003 B2
6607973 Jeon Aug 2003 B1
6620723 Byun et al. Sep 2003 B1
6630030 Suntola et al. Oct 2003 B1
6630201 Chiang et al. Oct 2003 B2
6632279 Ritala et al. Oct 2003 B1
6632747 Niimi et al. Oct 2003 B2
6660126 Nguyen et al. Dec 2003 B2
6674138 Halliyal et al. Jan 2004 B1
6716287 Santiago et al. Apr 2004 B1
6718126 Lei Apr 2004 B2
6734020 Lu et al. May 2004 B2
6772072 Ganguli et al. Aug 2004 B2
6773507 Jallepally et al. Aug 2004 B2
6777352 Tepman et al. Aug 2004 B2
6778762 Shareef et al. Aug 2004 B1
6803272 Halliyal et al. Oct 2004 B1
6815285 Choi et al. Nov 2004 B2
6818094 Yudovsky Nov 2004 B2
6821563 Yudovsky Nov 2004 B2
6866746 Lei et al. Mar 2005 B2
6868859 Yudovsky Mar 2005 B2
6881437 Ivanov et al. Apr 2005 B2
6902624 Seidel et al. Jun 2005 B2
6921062 Gregg et al. Jul 2005 B2
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010013312 Soininen et al. Aug 2001 A1
20010014371 Kilpi Aug 2001 A1
20010021589 Wilk Sep 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010024871 Yagi Sep 2001 A1
20010028924 Sherman Oct 2001 A1
20010029092 Park et al. Oct 2001 A1
20010029891 Oh et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042523 Kesala Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
20010050039 Park Dec 2001 A1
20010054377 Lindfors et al. Dec 2001 A1
20010054730 Kim et al. Dec 2001 A1
20020000196 Park Jan 2002 A1
20020000598 Kang et al. Jan 2002 A1
20020005556 Cartier et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020008297 Park et al. Jan 2002 A1
20020009544 McFeely et al. Jan 2002 A1
20020009896 Sandhu et al. Jan 2002 A1
20020014647 Seidl et al. Feb 2002 A1
20020015790 Baum et al. Feb 2002 A1
20020016084 Todd Feb 2002 A1
20020017242 Hamaguchi et al. Feb 2002 A1
20020021544 Cho et al. Feb 2002 A1
20020029092 Gass Mar 2002 A1
20020031618 Sherman Mar 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020043666 Parsons et al. Apr 2002 A1
20020047151 Kim et al. Apr 2002 A1
20020048635 Kim et al. Apr 2002 A1
20020052097 Park May 2002 A1
20020064970 Chooi et al. May 2002 A1
20020066411 Chiang et al. Jun 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020074588 Lee Jun 2002 A1
20020076481 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020081826 Rotondaro et al. Jun 2002 A1
20020081844 Jeon et al. Jun 2002 A1
20020086106 Park et al. Jul 2002 A1
20020086111 Byun et al. Jul 2002 A1
20020092471 Kang et al. Jul 2002 A1
20020093046 Moriya et al. Jul 2002 A1
20020093781 Bachhofer et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020106451 Skarp et al. Aug 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020108570 Lindfors et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020115886 Yasuhara et al. Aug 2002 A1
20020121241 Nguyen et al. Sep 2002 A1
20020121342 Lu et al. Sep 2002 A1
20020127745 Lu et al. Sep 2002 A1
20020134307 Choi Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020146511 Chiang et al. Oct 2002 A1
20020146895 Ramdani et al. Oct 2002 A1
20020151152 Shimamoto et al. Oct 2002 A1
20020153579 Yamamoto Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020168553 Lee et al. Nov 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020173130 Pomerede et al. Nov 2002 A1
20020175393 Baum et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20020182320 Leskela et al. Dec 2002 A1
20020187256 Elers et al. Dec 2002 A1
20020187631 Kim et al. Dec 2002 A1
20020195643 Harada Dec 2002 A1
20020196591 Hujanen et al. Dec 2002 A1
20020197881 Ramdani et al. Dec 2002 A1
20020197883 Niimi et al. Dec 2002 A1
20030004723 Chihara Jan 2003 A1
20030010451 Tzu et al. Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030015764 Raaijmakers et al. Jan 2003 A1
20030017697 Choi et al. Jan 2003 A1
20030022338 Ruben et al. Jan 2003 A1
20030031807 Elers et al. Feb 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030042630 Babcoke et al. Mar 2003 A1
20030049931 Byun et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030053799 Lei Mar 2003 A1
20030057527 Chung et al. Mar 2003 A1
20030060057 Raaijmakers et al. Mar 2003 A1
20030068437 Nakamura et al. Apr 2003 A1
20030072913 Chou et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030082296 Elers et al. May 2003 A1
20030082301 Chen et al. May 2003 A1
20030089308 Raaijmakers May 2003 A1
20030089942 Bhattacharyya May 2003 A1
20030096473 Shih et al. May 2003 A1
20030101927 Raaijmakers Jun 2003 A1
20030101938 Ronsse et al. Jun 2003 A1
20030104710 Visokay et al. Jun 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030109114 Niwa Jun 2003 A1
20030113187 Lei et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116804 Visokay et al. Jun 2003 A1
20030121469 Lindfors et al. Jul 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030133861 Bowen et al. Jul 2003 A1
20030140854 Kilpi Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030143747 Bondestam et al. Jul 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030168750 Basceri et al. Sep 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030186495 Saanila et al. Oct 2003 A1
20030186561 Law et al. Oct 2003 A1
20030188682 Tois et al. Oct 2003 A1
20030189232 Law et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030194493 Chang et al. Oct 2003 A1
20030194853 Jeon Oct 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030205729 Basceri et al. Nov 2003 A1
20030213560 Wang et al. Nov 2003 A1
20030213987 Basceri et al. Nov 2003 A1
20030216981 Tillman Nov 2003 A1
20030219942 Choi et al. Nov 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224107 Lindfors et al. Dec 2003 A1
20030227033 Ahn et al. Dec 2003 A1
20030232501 Kher et al. Dec 2003 A1
20030232506 Metzner et al. Dec 2003 A1
20030232511 Metzner et al. Dec 2003 A1
20030234417 Raaijmakers et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040005749 Choi et al. Jan 2004 A1
20040007747 Visokay et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009675 Eissa et al. Jan 2004 A1
20040011404 Ku et al. Jan 2004 A1
20040011504 Ku et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040014320 Chen et al. Jan 2004 A1
20040015300 Ganguli et al. Jan 2004 A1
20040016404 Gregg et al. Jan 2004 A1
20040016973 Rotondaro et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018747 Lee et al. Jan 2004 A1
20040023461 Ahn et al. Feb 2004 A1
20040023462 Rotondaro et al. Feb 2004 A1
20040025370 Guenther et al. Feb 2004 A1
20040028952 Cartier et al. Feb 2004 A1
20040029321 Ang et al. Feb 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040036111 Nishikawa et al. Feb 2004 A1
20040038554 Ahn et al. Feb 2004 A1
20040040501 Vaartstra Mar 2004 A1
20040043149 Gordon et al. Mar 2004 A1
20040043569 Ahn et al. Mar 2004 A1
20040043630 Vaarstra et al. Mar 2004 A1
20040046197 Basceri et al. Mar 2004 A1
20040048491 Jung et al. Mar 2004 A1
20040051152 Nakajima Mar 2004 A1
20040053484 Kumar et al. Mar 2004 A1
20040065255 Yang et al. Apr 2004 A1
20040069227 Ku et al. Apr 2004 A1
20040071897 Verplancken et al. Apr 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040144308 Yudovsky Jul 2004 A1
20040144311 Chen et al. Jul 2004 A1
20040203254 Conley, Jr. et al. Oct 2004 A1
20040216670 Gutsche et al. Nov 2004 A1
20040219784 Kang et al. Nov 2004 A1
20040224506 Choi et al. Nov 2004 A1
20040235285 Kang et al. Nov 2004 A1
20050006799 Gregg et al. Jan 2005 A1
20050059240 Choi et al. Mar 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050070126 Senzaki Mar 2005 A1
20050095859 Chen et al. May 2005 A1
20050104142 Narayanan et al. May 2005 A1
20050110101 Kaneko et al. May 2005 A1
20050153571 Senzaki Jul 2005 A1
20050233156 Senzaki et al. Oct 2005 A1
20050255243 Senzaki Nov 2005 A1
Foreign Referenced Citations (96)
Number Date Country
0 464 515 Jan 1992 EP
0 497 267 Aug 1992 EP
0 973 189 Jan 2000 EP
0 973 191 Jan 2000 EP
1 146 141 Oct 2001 EP
1 167 569 Jan 2002 EP
1 170 804 Jan 2002 EP
1321973 Jun 2003 EP
2 355 727 May 2001 GB
52-009228 Jan 1977 JP
58-098917 Jun 1983 JP
01-082671 Mar 1989 JP
64-82671 Mar 1989 JP
1-43221 Jun 1989 JP
01-143221 Jun 1989 JP
2-14513 Jan 1990 JP
2-230690 Sep 1990 JP
02-230690 Sep 1990 JP
2-246161 Oct 1990 JP
02-246161 Oct 1990 JP
3-234025 Oct 1991 JP
03-234025 Oct 1991 JP
04-291916 Oct 1992 JP
5-29228 Feb 1993 JP
05-047666 Feb 1993 JP
05-074724 Mar 1993 JP
5-74724 Mar 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-251339 Sep 1993 JP
5-251339 Sep 1993 JP
05-270997 Oct 1993 JP
06-177381 Jun 1994 JP
6-177381 Jun 1994 JP
06-196809 Jul 1994 JP
6-196809 Jul 1994 JP
06-224138 Aug 1994 JP
06-230421 Aug 1994 JP
6-230421 Aug 1994 JP
07-086269 Mar 1995 JP
7-86269 Mar 1995 JP
10-308283 Nov 1998 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
2000-31387 Jan 2000 JP
2000-58777 Feb 2000 JP
2000-058777 Feb 2000 JP
2000-212752 Aug 2000 JP
2000-319772 Nov 2000 JP
2001-020075 Jan 2001 JP
2001-111000 Apr 2001 JP
2001-172767 Jun 2001 JP
2001-220294 Aug 2001 JP
2001-328900 Nov 2001 JP
2002-000513 Jan 2002 JP
2002-060944 Feb 2002 JP
2002-60944 Feb 2002 JP
2002-069641 Mar 2002 JP
2002-69641 Mar 2002 JP
2002-093801 Mar 2002 JP
2002-93804 Mar 2002 JP
2002-167672 Jun 2002 JP
2002-172767 Jun 2002 JP
WO 9617107 Jun 1996 WO
WO 9901595 Jan 1999 WO
9929924 Jun 1999 WO
WO 9965064 Dec 1999 WO
0016377 Mar 2000 WO
WO 0013235 Mar 2000 WO
0054320 Sep 2000 WO
0070674 Nov 2000 WO
WO 0079576 Dec 2000 WO
0115220 Mar 2001 WO
0117692 Mar 2001 WO
0125502 Apr 2001 WO
0127346 Apr 2001 WO
0127347 Apr 2001 WO
0129280 Apr 2001 WO
0129891 Apr 2001 WO
0129893 Apr 2001 WO
WO 0136702 May 2001 WO
0140541 Jun 2001 WO
0166832 Sep 2001 WO
0182390 Nov 2001 WO
WO 0199166 Dec 2001 WO
0201628 Jan 2002 WO
0209167 Jan 2002 WO
WO 0208488 Jan 2002 WO
0227063 Apr 2002 WO
0231875 Apr 2002 WO
0243115 May 2002 WO
0245167 Jun 2002 WO
WO 0245871 Jun 2002 WO
02065525 Aug 2002 WO
02067319 Aug 2002 WO
WO 03023835 Mar 2003 WO
Related Publications (1)
Number Date Country
20060208215 A1 Sep 2006 US
Divisions (1)
Number Date Country
Parent 10407930 Apr 2003 US
Child 11420928 US