This application is based on Japanese Patent Applications No. 2014-11643 filed on Jan. 24, 2014, and No. 2014-246956 filed on Dec. 5, 2014, the disclosures of which are incorporated herein by reference.
The present disclosure relates to a method for manufacturing a semiconductor device having a trench gate.
Conventionally, to reduce an on-state resistance in a vertical MOSFET, a pitch of cell is narrowed, and therefore, a density of a channel is increased. This type of the vertical MOSFET having a trench gate structure is proposed. In the vertical MOSFET having the trench gate structure, the channel is formed on a sidewall of the trench gate, so that the channel is formed along a normal line of a surface of a semiconductor substrate. Accordingly, a pitch of the cell in the vertical MOSFET having the trench gate structure is narrower than a vertical MOSFET having a planar structure, in which the channel is formed to be in parallel to the surface of the semiconductor substrate. However, in the vertical MOSFET, a source electrode is formed on a surface side of the semiconductor substrate through a contact hole, which is formed in an interlayer insulation film. Thus, it is necessary to provide a contact area, and therefore, there is a limit for narrowing the pitch.
Further, in the MOSFET having the trench gate structure, a technical object arises such that an electric field concentration is generated on a bottom of the trench in the trench gate structure. To reduce the electric field concentration, a deep layer is formed to be deeper than the bottom of the trench. In such an electric field relaxation structure, when the deep layer is designed, a distance between the trench and the deep layer and a protrusion amount from the trench are main design parameters. However, when the pitch of the cell is narrowed, it is difficult to secure a positioning accuracy among the trench, the deep layer and the interlayer insulation film. Specifically, in a silicon device, when the deep layer is formed by an ion implantation method of an impurity and a thermal diffusion method of the impurity, the range of the deep layer is expanded because of the thermal diffusion. Thus, it is necessary to create a margin. Thus, it is difficult to narrow the pitch of the cell.
In order to achieve the above object, for example, Patent literature No. 1 teaches a vertical MOSFET. In the vertical MOSFET, a trench is formed in a N type drift layer. A P type deep layer is epitaxially grown in the trench. Thus, the electric field concentration on the bottom of the trench is restricted. Further, it is not necessary to create the margin of the expansion of the P type deep layer caused by the thermal diffusion. Further, the trench is formed in a contact portion in the semiconductor layer, which is electrically connected to the source electrode, and the source electrode is embedded in the trench. Thus, a contact area between the source electrode and the semiconductor layer is increased, and the pitch is narrower, compared with a case where the contact portion is flat.
Patent Literature 1: JP-2009-260253-A
However, in the vertical MOSFET disclosed in the Patent Literature No. 1, it is necessary to provide an etching step for forming the trench in the contact portion. Thus, a technical object arises such that the number of steps for manufacturing increases.
Specifically, the vertical MOSFET disclosed in the Patent Literature No. 1 is manufactured by the following manufacturing method.
First, the N type drift layer is formed on the N type semiconductor substrate. After that, the trench is formed at a P-type-deep-layer to-be-formed place in the N type drift layer. Then, the P type layer is deposited so as to fill the trench. Then, the P type layer is flattened until the N type drift layer is exposed. Thus, the surface of the P type layer and the surface of the N type drift layer are flat, and the P type layer provides the P type deep layer. Then, the P type channel layer is formed on the P type deep layer and the N type drift layer. Further, the N type source region is formed on the P type channel layer.
Further, the N type source region and the P type channel layer above the P type deep layer are etched, so that the trench for providing the contact portion is formed. After that, another trench for forming the trench gate structure is formed at a position different from the trench for providing the contact portion. Then, the inner wall of the trench is covered with a gate insulation film. Further, the gate electrode is formed on the gate insulation film. Then, the interlayer insulation film is formed, and the contact hole is formed in the interlayer insulation film. Then, the source electrode is formed so as to connect to the N type source region and the P type deep layer through the contact hole. Finally, the drain electrode is formed on the back side of the N type semiconductor substrate. Thus, the vertical MOSFET is manufactured.
In the above manufacturing process, in order to form the trench in the contact portion, the N type source region and the P type channel layer above the P type deep layer are etched. Accordingly, as described above, the number of steps in the manufacturing process increases.
In view of the above points, it is an object of the present disclosure to provide a method for manufacturing a semiconductor device having a vertical MOSFET, in which a deep layer is formed to relax an electric field on the bottom of a trench for providing a trench gate structure, and a trench is formed in a contact portion so that a pitch of a cell is narrowed, without performing an etching step for forming the trench in the contact portion.
According to an aspect of the present disclosure, in a method for manufacturing a semiconductor device, a drift layer having a first conductive type with an impurity concentration lower than a semiconductor substrate is formed on the semiconductor substrate having the first conductive type or a second conductive type. After a mask is arranged on a surface of the drift layer, a plurality of first concavities is formed to be separated from each other on a cross section in parallel to a surface of the semiconductor substrate by removing a part of the drift layer in an etching process using the mask. After the mask is removed, a second conductive type impurity layer for providing a plurality of deep layers having the second conductive type in the plurality of first concavities and for providing a channel layer having the second conductive type on the surface of the drift layer is formed. A trench gate structure is formed by forming a trench between the plurality of deep layers to penetrate the channel layer from a surface of the second conductive type impurity layer, to reach the drift layer and to be shallower than the plurality of deep layers, by forming a gate insulation film on an inner surface of the trench, and by forming a gate electrode on the gate insulation film in the trench. A source region having the first conductive type with a concentration higher than the drift layer is formed by ion-implanting a first conductive type impurity in a surface portion of the channel layer. A contact region having the second conductive type with a concentration higher than the channel layer is formed by ion-implanting a second conductive type impurity in a surface portion of the channel layer corresponding to a center position of each first concavity. A source electrode electrically connected to the source region and the contact region is formed. A drain electrode is formed on a back side of the semiconductor substrate.
In the forming of the second conductive type impurity layer, an epitaxial growth is performed under a growth condition that a contact trench provided by a recess is formed on a surface of a part of the second conductive type impurity layer corresponding to the center position of each first concavity. In the forming of the contact region, the contact region is formed on a bottom of the contact trench.
In the above method for manufacturing the semiconductor device, when the second conductive type impurity layer is formed, the recess remains on the part of the second conductive type impurity layer corresponding to the center position of each first concavity. The recess provides the contact trench. Accordingly, it is not necessary to perform an etching process for forming the contact trench. Thus, the number of steps of the manufacturing process is not increased. In addition, the contact trench is formed by a self-alignment of the deep layer.
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
Embodiments of the present disclosure will be explained with reference to drawings. Here, the same part or an equivalent part in each embodiment will be explained with using the same reference numeral.
A first embodiment of the present disclosure will be explained. First, a structure of a SiC semiconductor device having an inversion type vertical MOSFET with a trench gate structure, which is manufactured by a manufacturing method according to the present embodiment, will be explained with reference to
As shown in
Further, a concavity (i.e., a first concavity) 2a is formed in the N type drift layer 2 by being partially concaved. A P type impurity layer 3 made of SiC is formed by doping a P type impurity in the surface of the N type drift layer 2 including an inner surface of the concavity 2a. Thus, a P type channel layer 3a and a P type deep layer 3b are formed. In the present embodiment, an impurity concentration in the P type impurity layer 3 is homogeneous ion a depth direction. For example, the impurity concentration is in a range between 1×1017 cm−3 and 1×1018 cm−3.
The P type channel layer 3a is a layer for providing a channel of the vertical MOSFET. The channel layer 3a is formed on both sides of a trench 6 so as to contact a sidewall of the trench 6, which provides a later-described trench gate structure.
The P type deep layer 3b is arranged on both sides of the trench 6 so as to be spaced apart from the sidewall of the trench 6. Further, the distance between the P type deep layer 3b and the sidewall of the trench 6 is designed in order to deplete the N type drift layer 2, which is disposed between the trench 6 and the P type deep layer 3b, as much as possible when a depletion layer is expanded, and further, in order to generate an electric field relaxation effect. The bottom of the P type deep layer 3b is deeper than the bottom of the trench 6, and is disposed to a position nearer the N+ type semiconductor substrate 1 than the bottom of the trench 6.
A contact trench 3c is formed on the surface of the P type channel layer 3a at a position corresponding to a center position of the P type deep layer 3b. the contact trench 3c according to the present embodiment is formed to be a shape having multiple surfaces including a bottom and a sidewall. The bottom of the trench 3c is a plane in parallel to the surface of the N+ type semiconductor substrate 1. The sidewall of the trench 3c is a plane perpendicular to the bottom. In the present embodiment, the contact trench 3c has a structure shallower than the trench 6, and further, shallower than the P type channel layer 3a.
A N+ type source region 4, in which the N type impurity is doped with high concentration, is formed in a surface portion of the P type channel layer 3a other than the contact trench 3c. A P+ type contact region 5, in which the P type impurity is doped with high concentration, is formed on the bottom of the contact trench 3c.
Further, the trench 6 is formed at a center position of the P type deep layer 3b, which is arranged adjacent to each other in a cross section in
Here, not shown in
Further, the source electrode 9 is formed on the surface of the N+ type source region 4 and the surface of the P+ type contact region 5. The source electrode 9 is made of multiple metals (for example, nickel and aluminum). Specifically, a part of the electrode 9 contacting the N+ type source region 4 is made of metal, which is capable of contacting N type SiC in an Ohmic contact manner. Another part of the electrode 9 connecting to the P type channel layer 3a through the P+ type contact region 5 is made of metal, which is capable of contacting P type SiC in an Ohmic contact manner. Here, the source electrode 9 is electrically isolated from a gate wiring, which is not shown in the drawing and electrically connected to the gate electrode 8 on the interlayer insulation film 10. Further, the source electrode 9 electrically contacts the N+ type source region 4 and the P+ type contact region 5 through the contact hole, which is formed in the interlayer insulation film 10.
Further, the drain electrode 11 is formed on the back side of the N+ type semiconductor substrate 1 to electrically connect to the n+ type semiconductor substrate 1. Thus, the above structure provides the inversion type vertical n channel type MOSFET having the trench gate structure.
The vertical MOSFET having the above structure flows current between the source electrode 9 and the drain electrode 11 when the gate voltage is applied to the gate electrode 8 so that a portion of the P type channel layer 3a contacting the sidewall of the trench 6 becomes an inversion channel.
On the other hand, when the gate voltage is not applied, a high voltage (for example, 1200 volts) is applied as a drain voltage. The SiC has an electric field breakdown strength near ten times higher than a silicon device. The electric field near ten times higher than the silicon device is applied to the gate insulation film 7 because of the influence of the above voltage. Thus, the electric field concentration may occur at the gate insulation film 7 (specifically, at a part of the gate insulation film 7 on the bottom of the trench 6). However, in the present embodiment, the structure has the P type deep layer 3b deeper than the trench 6. Accordingly, the depletion layer at the PN junction between the P type deep layer 3b and the N type drift layer 2 largely extends to the N type drift layer 2 side. Thus, the high voltage caused by the influence of the drain voltage is less likely to invade into the gate insulation film 7.
Accordingly, it is possible to reduce the electric field concentration in the gate insulation film 7, specifically, at the part of the gate insulation film 7 on the bottom of the trench 6. Thus, it is possible to restrict the breakdown of the gate insulation film 7.
The contact trench 3c is formed at the contact portion of the source electrode 9. The P+ type contact region 5 is formed on the bottom of the contact trench 3c. Thus, the source electrode 9 is electrically connected to the N+ type source region 4 and the P+ type contact region 5. Thus, the contact area between the source electrode 9 and the N+ type source region 4 or the P+ type contact region 5 is increased, compared with a case where the contact trench 3c is not formed. Thus, it is possible to narrow the pitch of the cells. Specifically, since the structure has the contact trench 3c with multiple surfaces, the contact area between the source electrode 9 and the N+ type source region 4 or the P+ type contact region 5 becomes wider, and therefore, it is possible to provide a low contact resistance.
When the vertical MOSFET functions in a diode operation or in an avalanche operation, the current flows in a wide area on the bottom having a planar shape. Accordingly, the current concentration is reduced, and it is possible to provide the vertical MOSFET with high breakdown tolerance.
Next, the method for manufacturing the trench gate type vertical MOSFET shown in
At a step shown in
At a step shown in
At a step shown in
For example, the growth rate of the P type impurity layer 3 depends on a plane orientation. The dependency on the plane orientation is changed with growth parameters such as a growth temperature, a gas flow amount, and an atmosphere pressure in the epitaxial growth process. Accordingly, the plane orientation dependency, i.e., a ratio between a vertical direction growth rate of the P type impurity layer 3 formed on the surface of the N type drift layer 2 other than the concavity 2a and the bottom of the concavity 2a and a horizontal direction growth rate of the P type impurity layer 3 formed on the sidewall of the concavity 2a, is controlled based on the growth parameters. Thus, the depth and the width of the concavity 2a and the growth parameters are adjusted, so that the vertical direction growth rate of the P type impurity layer 3 becomes larger than the horizontal direction growth rate of the P type impurity layer 3. Thus, the contact trench 3c is formed on the surface of the P type impurity layer 3.
Further, at this time, the width of the contact trench 3c in an alignment direction of multiple P type deep layers 3b, i.e., the distance between both sidewalls, is smaller than the width of the P type deep layer 3b in the same direction. Specifically, in the vertical MOSFET according to the present embodiment, the length of the P type channel layer 3a between the trench 6 and the P type deep layer 3b is shortened, so that the electric field relaxation effect is effectively obtained. Thus, when designing the device, it is preferable to design the device with focusing on the length of the P type channel layer 3a. However, when the width of the contact trench 3c is larger than the width of the P type deep layer 3b in the same direction, the distance between the trench 6 and the contact trench 3c is shorter than the length of the P type channel layer 3a between the trench 6 and the P type deep layer 3b. In this case, the manufacturing process is limited by the distance between the trench 6 and the contact trench 3c. Thus, it is difficult to design the device with focusing on the length of the P type channel layer 3a.
Accordingly, in the present embodiment, the width of the contact trench 3c is set to be smaller than the width of the P type deep layer 3b in the same direction, so that the manufacturing process is not limited by the distance between the trench 6 and the contact trench 3c. Accordingly, it is possible to design the device with focusing on the length of the P type channel layer 3a.
Further, in the present embodiment, the contact trench 3c is shallower than the trench 6, and further, the contact trench 3c is shallower than the P type channel layer 3a. When the contact trench 3c is deep, the contact trench 3c is formed by the etching method. In this case, in order to deepen the contact trench 3c stably, it is necessary to restrict the aspect ratio to be a certain ratio. Accordingly, it is necessary to have a certain trench width, and therefore, the micro-fabrication is limited. Accordingly, in the present embodiment, the contact trench 3c is shallow, so that the micro-fabrication is achieved.
At a step shown in
Next, after the etching mask 21 is removed, the gate oxidation process is performed, so that the gate insulation film 7 is formed. After the poly crystal silicon layer, in which the impurity is doped, is deposited on the surface of the gate insulation film 7, the poly crystal silicon layer is patterned, so that the gate electrode 8 is formed. Thus, the trench gate structure is formed.
At a step shown in
At a step shown in
At a step shown in
As described above, in the present embodiment, when the P type impurity layer 3 is formed, the recess remains at the center of the part of the P type impurity layer 3 formed in the concavity 2a. Further, the contact trench 3c is provided by the recess. Accordingly, it is not necessary to perform the etching process for forming the contact trench 3c, so that the number of steps for the manufacturing process is not increased. In addition, the contact trench 3c is formed by a self-alignment of the P type deep layer 3b.
A second embodiment of the present disclosure will be explained. In the present embodiment, the formation step of the P type impurity layer 3 is changed from the first embodiment. Other steps are similar to the first embodiment. A different part from the first embodiment will be explained.
In the above first embodiment, the P type channel layer 3a and the P type deep layer 3b are formed simultaneously. In the present embodiment, as shown in
First, steps shown in
Then, at step shown in
After that, at step shown in
As described above, the P type channel layer 3a and the P type deep layer 3b are formed by different steps. In this case, the impurity concentration of the P type channel layer 3a and the impurity concentration of the P type deep layer 3b are independently designed. Thus, the impurity concentration of the P type channel layer 3a is designed to be in a range between 1×1016 cm−3 and 1×1017 cm−3, which corresponds to a required threshold. The impurity concentration of the P type deep layer 3b is designed to be in a range between 1×1017 cm−3 and 1×1018 cm−3, which corresponds to a required breakdown.
A third embodiment of the present disclosure will be explained. In the present embodiment, the formation step of the alignment mark is added to the first embodiment. Other steps are similar to the first embodiment. A different part from the first embodiment will be explained.
First, steps shown in
In the above case, the alignment mark for aligning the mask is arranged in a scribe area, which is dicing-cut when the wafer is divided into each chip, or an unnecessary area, which is an outer periphery of a chip formation region. A concavity and a convexity in the alignment mark are used as a key for aligning the mask.
Specifically, at step shown in
A fourth embodiment of the present disclosure will be explained. In the present embodiment, a shape of the contact trench 3c for providing the P+ type contact region 5 is changed from the first embodiment. Other steps are similar to the first embodiment. A different part from the first embodiment will be explained.
As shown in
Thus, even when the sidewall of the contact trench 3c is the slant surface having the tapered shape, the effects similar to the above described embodiments are obtained. Further, when the vertical MOSFET functions in a diode operation or in an avalanche operation, the current flows in a wide area on the bottom having a planar shape. Accordingly, the current concentration is reduced, and it is possible to provide the vertical MOSFET with high breakdown tolerance.
Here, when the mixture ratio of the silane gas and the propane gas, which are used for forming the P type channel layer 3a, i.e., a C/Si ratio is adjusted, the sidewall of the contact trench 3c becomes the slant surface.
A fifth embodiment of the present disclosure will be explained. In the present embodiment, a shape of the contact trench 3c for providing the P+ type contact region 5 is changed from the first embodiment. Other steps are similar to the first embodiment. A different part from the first embodiment will be explained.
As shown in
Thus, even when the bottom of the contact trench 3c has the curved shape with a rounded bottom, the effects similar to the above described embodiments are obtained. Further, when the bottom is rounded, a boundary between the bottom and the sidewall is also rounded. Thus, when the vertical MOSFET functions in a diode operation or in an avalanche operation, the current concentration at the boundary between the bottom and the sidewall is reduced. Accordingly, it is possible to provide the vertical MOSFET with high breakdown tolerance.
Here, when the atmospheric temperature of the CVD apparatus is high (for example, 1600° C. or higher) while forming the P type channel layer 3a, the bottom of the contact trench 3c has a rounded shape.
A sixth embodiment of the present disclosure will be explained. In the present embodiment, a shape of the contact trench 3c for providing the P+ type contact region 5 is changed from the first embodiment. Other steps are similar to the first embodiment. A different part from the first embodiment will be explained.
As shown in
Thus, even when the boundary between the bottom and the sidewall of the contact trench 3c has the curved shape with a rounded boundary, the effects similar to the above described embodiments are obtained. Further, when the boundary between the bottom and the sidewall is rounded, and the vertical MOSFET functions in a diode operation or in an avalanche operation, the current concentration at the boundary between the bottom and the sidewall is reduced. Accordingly, it is possible to provide the vertical MOSFET with high breakdown tolerance.
Here, when the atmospheric temperature of the CVD apparatus is high (for example, 1600° C. or higher) while forming the P type channel layer 3a, the boundary between the bottom and the sidewall of the contact trench 3c has a rounded shape.
The present disclosure is not limited to the above described embodiments. The present disclosure is changeable appropriately.
For example, in the above embodiments, SiC is used as the semiconductor material. Alternatively, the present disclosure is applicable to the semiconductor device made of other semiconductor materials such as silicon in addition to SiC. Here, in case of SiC, the drain voltage is ten times higher than the silicon device, and the breakdown electric field strength is large. Thus, it is necessary to form the P type deep layer 3b at a deeper position. Further, in case of SiC, the material is very hard, and therefore, it is difficult to form the P type deep layer 3b by the ion implantation process. Thus, a method for forming the P type deep layer 3b by epitaxially growing in the concavity 2a is effective. Accordingly, in case of SiC where it is required to form the P type deep layer 3b by the epitaxial growth, it is preferable to apply the present disclosure. When silicon is used as the semiconductor material, the thermal diffusion of the impurity is easier than SiC. Thus, at the step for forming the P type impurity layer 3, for example, a poly silicon film is deposited, and then, the P type impurity (e.g., boron) is diffused in a vapor phase, so that the P type impurity layer 3 may be formed.
In each embodiment, the formation step of the trench gate structure is performed before the formation step of the N+ type source region 4 and the P+ type contact region 5. Alternatively, these orders may be reversed.
Further, in the above described embodiments, multiple P type deep layers 3b are arranged to be separated from each other on a cross section in parallel to the surface of the substrate, i.e., cross sectional view of
In each embodiment, the first conductive type is the N type, and the second conductive type is the P type, so that the N channel type vertical MOSFET is explained as an example. The conductive type of each part may be reversed, so that the present disclosure may be applied to the P channel type vertical MOSFET. Alternatively, in addition to the vertical MOSFET, the present disclosure may be applied to the IGBT. In case of IGBT, the conductive type of the SiC substrate is changed from the first conductive type to the second conductive type with respect to the vertical MOSFET. The conductive type of other parts may be the same as the vertical MOSFET.
Number | Date | Country | Kind |
---|---|---|---|
2014-011643 | Jan 2014 | JP | national |
2014-246956 | Dec 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/000123 | 1/14/2015 | WO | 00 |