The present invention relates to a method of manufacturing a GaN-based semiconductor device by which GaN-based semiconductor devices having excellent characteristics can be manufactured at a high yield.
As a common method of manufacturing a GaN-based semiconductor device, Japanese National Patent Publication No. 2001-501778 (PTL1) (corresponding to WO1998/014986) and O. B. Shchekin, et al., “High performance thin-film flip-chip InGaN—GaN light-emitting diodes,” APPLIED PHYSICS LETTERS 89, 071109 (2006), pp. 071109-1 to 071109-3 (NPL 1) disclose a method by which a GaN-based semiconductor layer is epitaxially grown on a sapphire substrate which is a base substrate, the GaN-based semiconductor layer is transferred onto a transfer support substrate or mounted on a mount substrate, and thereafter the sapphire substrate is removed from the GaN-based semiconductor layer by laser lift-off.
Patent Literature
According to the method of manufacturing a GaN-based semiconductor device disclosed in the above-referenced Japanese National Patent Publication No. 2001-501778 (PTL1) and O. B. Shchekin, et al., “High performance thin-film flip-chip InGaN—GaN light-emitting diodes,” APPLIED PHYSICS LETTERS 89, 071109 (2006), pp. 071109-1 to 071109-3 (NPL 1), laser lift-off is used for removing the sapphire substrate which is the base substrate. Therefore, significant damage is caused to the GaN-based semiconductor layer and the surface morphology of the GaN-based semiconductor layer after the sapphire substrate is removed therefrom is deteriorated, resulting in problems that the characteristics of obtained GaN-based semiconductor devices are deteriorated and the yield decreases.
An object of the present invention is to solve the problems above and thereby provide a method of manufacturing a GaN-based semiconductor device by which GaN-based semiconductor devices having excellent characteristics can be manufactured at a high yield.
According to an aspect of the present invention, a method of manufacturing a GaN-based semiconductor device includes the steps of: preparing a composite substrate including: a support substrate having a thermal expansion coefficient at a ratio of not less than 0.8 and not more than 1.2 relative to a thermal expansion coefficient of GaN; and a GaN layer bonded to the support substrate, using an ion implantation separation method; growing at least one GaN-based semiconductor layer on the GaN layer of the composite substrate; and removing the support substrate of the composite substrate by dissolving the support substrate.
The method of manufacturing a GaN-based semiconductor device according to the present invention may further include the steps of: bonding a transfer support substrate to the GaN-based semiconductor layer, after the step of growing the GaN-based semiconductor layer and before the step of removing the support substrate by dissolving the support substrate; and fabricating the transfer support substrate and the GaN-based semiconductor layer into a device and a chip after the step of removing the support substrate by dissolving the support substrate.
The method of manufacturing a GaN-based semiconductor device according to the present invention may further include the steps of: fabricating the GaN-based semiconductor layer grown on the composite substrate into a device and a chip; and mounting the GaN-based semiconductor layer fabricated into a device and a chip on a mount substrate, after the step of growing the GaN-based semiconductor layer and before the step of removing the support substrate by dissolving the support substrate.
Regarding the method of manufacturing a GaN-based semiconductor device according to the present invention, the support substrate may include at least one selected from the group consisting of molybdenum and a composite oxide of aluminum oxide and silicon oxide.
In accordance with the present invention, a method of manufacturing a GaN-based semiconductor device can be provided by which GaN-based semiconductor devices having excellent characteristics can be manufactured at a high yield.
Embodiment 1
Referring to
The method of manufacturing a GaN-based semiconductor device in the present embodiment uses composite substrate 1 which includes: support substrate 10 having a thermal expansion coefficient at a ratio falling in a range of not less than 0.8 and not more than 1.2 relative to a thermal expansion coefficient of GaN and substantially identical or sufficiently close to the thermal expansion coefficient of GaN; and GaN layer 21 bonded to support substrate 10. Therefore, on GaN layer 21 of composite substrate 1, GaN-based semiconductor layer 40 of high quality can be grown without occurrence of warp and cracks. In addition, since support substrate 10 of composite substrate 1 is dissolved to be removed after GaN-based semiconductor layer 40 is grown, less damage is caused to GaN-based semiconductor layer 40, and GaN layer 21 from which support substrate 10 is removed has good surface morphology. Thus, semiconductor devices having excellent characteristics can be obtained at a high yield.
The method of manufacturing a GaN-based semiconductor device in the present embodiment may further include the following steps as described in more detail below.
Embodiment 1A
Referring to
Step of Preparing Composite Substrate
Referring first to
Here, the ion implantation separation method refers to a method by which specific ions are implanted into a semiconductor substrate, the ions are vaporized by heat treatment or the like, and a stress generated at this time is used to separate a thin semiconductor layer from the semiconductor substrate.
Support substrate 10 is not particularly limited as long as support substrate 10 has an expansion coefficient at a ratio of not less than 0.8 and not more than 1.2 relative to the thermal expansion coefficient of GaN. In terms of the fact that reduction of the difference between their respective thermal expansion coefficients will more effectively prevent warp and cracks that may occur when GaN-based semiconductor layer 40 is grown, the ratio of the thermal expansion coefficient of support substrate 10 is preferably not less than 0.9 and not more than 1.05. Moreover, in view of the fact that support substrate 10 is to be dissolved to be removed, support substrate 10 is required to be a material that is dissolved in a specific solvent.
In terms of the above, preferably support substrate 10 includes for example at least one selected from the group consisting of Mo (molybdenum) and Al2O3—SiO2 (aluminum oxide-silicon oxide) composite oxide. This composite oxide also includes mullite in which Al2O3:SiO2 is 0.6:0.4. More preferably, the substrate is selected from an Mo substrate and a composite oxide substrate in which Al2O3:SiO2 is 0.64:0.36. Here, the Mo substrate has a thermal expansion coefficient of 6.0×10−6° C.−1 and the composite oxide substrate in which Al2O3:SiO2 is 0.64:0.36 has a thermal expansion coefficient of 5.5×10−6° C.−1. Their respective thermal expansion coefficients are substantially identical or sufficiently close to the thermal expansion coefficient (6.0×10−6° C.−1) of GaN. It should be noted that the thermal expansion coefficient used herein is a value at room temperature (25° C. and temperatures therearound). The Mo substrate is dissolved in nitric acid and the composite oxide substrate in which Al2O3:SiO2 is 0.64:0.36 is dissolved in hydrofluoric acid.
The step of preparing composite substrate 1 is not particularly limited. In terms of efficient manufacture of composite substrate 1, however, the following sub-step is preferably included as shown in
Referring to FIG. 3(B1), the step of preparing composite substrate 1 includes the sub step of forming a joint layer 32 such as SiO2 layer, SixNy layer or the like on one main surface of a GaN substrate 20, by CVD (Chemical Vapor Deposition) method, sputtering method, vacuum deposition method or the like. Then, referring to FIG. 3(B2), the step of preparing composite substrate 1 includes the sub step of implanting ions I with a low mass number such as hydrogen, helium or the like, from the main surface side where joint layer 32 of GaN substrate 20 is formed, to thereby form an ion implantation region 20i in a region of a predetermined depth from the main surface where joint layer 32 of GaN substrate 20 is formed. Such an ion implantation region 20i is embrittled relative to other regions.
Referring to
Here, as to the order in which the sub steps of forming joint layer 32 on GaN substrate 20 and forming ion implantation region 20i in GaN substrate 20 shown respectively in (B1) and (B2) of
Then, referring to FIG. 3(C1), the step of preparing composite substrate 1 includes the sub step of bonding joint layer 32 formed on GaN substrate 20 and joint layer 31 formed on support substrate 10 to each other. This sub step can be performed to obtain a joined substrate 1P in which support substrate 10 and GaN substrate 20 are bonded to each other between which a joint layer 30 into which joint layers 31, 32 are integrated is interposed.
Then, referring to FIG. 3(C2), the step of preparing composite substrate 1 includes the sub step of separating, along ion implantation region 20i, GaN substrate 20 into GaN layer 21 bonded to support substrate 10 and a remaining GaN substrate 22, by applying heat or stress to joined substrate 1P. This sub step can be performed to obtain composite substrate 1 in which GaN layer 21 is bonded onto support substrate 10 with joint layer 30 interposed therebetween.
While the description of the step of preparing a composite substrate has been given regarding the case where joint layers 31, 32 are formed on both support substrate 10 and GaN substrate 20, the joint layer may be formed and bonded to only one of support substrate 10 and GaN substrate 20, or support substrate 10 and GaN substrate 20 on which no joint layer is formed can also be bonded to each other.
Step of Growing GaN-Based Semiconductor Layer
Referring next to
Regarding the step of growing GaN-based semiconductor layer 40, the method for growing GaN-based semiconductor layer 40 is not particularly limited. In terms of growth of GaN-based semiconductor layer 40 of high quality, however, suitable examples of the method may include MOVPE (Metal Organic Vapor Phase Epitaxy) method, MBE (Molecular Beam Epitaxy) method, HVPE (Hydride Vapor Phase Epitaxy) method, and the like.
The makeup of GaN-based semiconductor layer 40 to be grown varies depending on the type of the GaN-based semiconductor device to be fabricated. For example, in the case where the GaN-based semiconductor device is a light emitting device such as LED (Light Emitting Diode) and LD (Laser Diode), GaN-based semiconductor layer 40 includes an n-type semiconductor layer 41, an active layer 43, and a p-type semiconductor layer 45 for example.
Step of Bonding Transfer Support Substrate to GaN-Based Semiconductor Layer
Referring next to
Transfer support substrate 50 used in the step of bonding the transfer support substrate to the GaN-based semiconductor layer is not particularly limited as long as it can support GaN-based semiconductor layer 40. In terms of formation of a vertical device, however, the transfer support substrate is preferably an electrically conductive substrate, and suitable examples may include Ge substrate, Si substrate, polycrystalline AlN substrate, and the like.
How to bond transfer support substrate 50 to GaN-based semiconductor layer 40 is not particularly limited. In terms of good joint and electrical connection between GaN-based semiconductor layer 40 and transfer support substrate 50, preferably a connection layer 60 is interposed therebetween. Specifically, on GaN-based semiconductor layer 40, a p-side ohmic electrode layer 61 and a solder layer 63 are formed as a part of connection layer 60 and, on transfer support substrate 50, an ohmic electrode layer 67 and a metal pad layer 65 are formed as a part of connection layer 60. Solder layer 63 and metal pad layer 65 are bonded to each other to thereby join GaN-based semiconductor layer 40 and transfer support substrate 50 with connection layer 60 interposed therebetween. Here, an Ni/Au electrode layer for example is suitably used as p-side ohmic electrode layer 61, an Au—Sn solder layer for example is suitably used as solder layer 63, an Au pad layer for example is suitably used as metal pad layer 65, and an Ni/Pt/Au electrode layer for example is suitably used as ohmic electrode layer 67.
Instead of p-side ohmic electrode layer 61 and solder layer 63 that are formed as a part of connection layer 60 on GaN-based semiconductor layer 40: a high-reflection p-side ohmic electrode layer (Ni/Au electrode layer for example) and a solder layer (Au-Sn solder layer for example); a transparent p-side ohmic electrode layer (thin Ni/Au electrode layer for example) and a high-reflection metal layer (Al layer for example) and a metal solder layer (Au—Sn solder layer for example); or a transparent p-side ohmic electrode layer (thin Ni/Au electrode layer for example) and a high-reflection metal layer (Al layer for example) and an anti-diffusion metal layer (Pt layer, Mo layer or W layer for example) and a solder layer (Au—Sn solder layer for example), or the like may also be used.
Step of Removing Support Substrate by Dissolving the Same
Referring next to
Namely, the step of bonding transfer support substrate 50 to GaN-based semiconductor layer 40 of semiconductor-layer-attached composite substrate 2 and the step of removing support substrate 10 by dissolving it can be performed as described above to thereby transfer GaN-based semiconductor layer 40 from support substrate 10 to transfer support substrate 50.
Here, the solvent in which support substrate 10 is dissolved varies depending on the type of support substrate 10. For example, in the case where support substrate 10 is an Mo substrate, nitric acid (30 mass % of nitric acid aqueous solution for example) is used as the solvent for the substrate. In the case where support substrate 10 is a composite oxide substrate in which Al2O3:SiO2 is 0.64:0.36, hydrofluoric acid (20 mass % of hydrofluoric acid aqueous solution for example) is used as the solvent for the substrate.
Furthermore, joint layer 30, which is exposed after support substrate 10 of composite substrate 1 in joined substrate body 3 is dissolved to be removed, is removed by being dissolved. The solvent in which joint layer 30 is dissolved varies depending on the type of joint layer 30. In the case where joint layer 30 is an SiO2 layer, hydrofluoric acid (20 mass % of hydrofluoric acid aqueous solution for example) is used as the solvent for the joint layer.
Here, the exposed main surface of GaN layer 21 of semiconductor-layer-attached transfer support substrate 4 that is obtained by dissolving and thereby removing support substrate 10 and joint layer 30 from joined substrate body 3 is extremely flat relative to the main surface which is exposed in the case where the support substrate and the joint layer are removed by laser lift-off.
It should be noted that, when support substrate 10 and joint layer 30 of joined substrate body 3 are to be removed by being dissolved, it is preferable to protect the transfer support substrate 50 side of joined substrate body 3 with wax (not shown) or the like and/or to remove, in advance, a part of support substrate 10 by grinding or polishing before support substrate 10 is dissolved. In particular, in the case where hydrofluoric acid is used as the solvent, it is preferable to protect transfer support substrate 50 as described above and partially remove support substrate 10 such as Al2O3.SiO2 composite oxide substrate by grinding or polishing before dissolution of support substrate 10.
Fabrication of Transfer Support Substrate and GaN-Based Semiconductor Layer into Device and Chip
Referring next to
For example, in the case where transfer support substrate 50 of semiconductor-layer-attached transfer support substrate 4 is an electrically conductive substrate, an n-side electrode 70n is formed on GaN-based semiconductor layer 40 and a p-side electrode 70p is formed on transfer support substrate 50 in semiconductor-layer-attached transfer support substrate 4, and further they are fabricated into chips. Accordingly, semiconductor device 5 in the form of a chip which is a vertical device can be obtained.
It should be noted that, since the main surface of semiconductor-layer-attached transfer support substrate 4 that is exposed by dissolving and thereby removing support substrate 10 and joint layer 30 is extremely flat, the surface can be roughened by dry etching or wet etching for the purpose of increasing the light extraction efficiency to thereby form an extremely uniform rough shape as compared with the case where the support substrate and the joint layer are removed by the laser lift-off method.
Embodiment 1B
Referring to
Step of Preparing Composite Substrate
Referring first to
Step of Growing GaN-Based Semiconductor Layer
Referring next to
Step of Fabricating GaN-Based Semiconductor Layer into Device and Chip
Referring next to
For example, on p-type semiconductor layer 45 of GaN-based semiconductor layer 40 in semiconductor-layer-attached composite substrate 2, p-side electrode 70p is formed. Subsequently, a part of p-side electrode 70p as well as a part of p-type semiconductor layer 45 and active layer 43 of GaN-based semiconductor layer 40 are mesa-etched to expose a part of n-type semiconductor layer 41. On the exposed portion of n-type semiconductor layer 41, n-side electrode 70n is formed. Further, chips are fabricated from them to thereby obtain semiconductor device 5 fabricated in the form of a chip as a lateral device. Here, suitable examples of p-side electrode 70p and n-side electrode 70n are similar to those of Example 1A, and the description thereof will not be repeated here.
It should be noted that p-side electrode 70p and n-side electrode 70n are preferably covered with a protective electrode (not shown) formed of a thick-film pad so that they can endure ultrasonic joining in the step of mounting described later herein. In terms of increase of the light extraction efficiency, it is preferable to form a high-reflection metal electrode (not shown) on p-side electrode 70p.
Step of Mounting GaN-Based Semiconductor Layer 40 Fabricated into Device and Chip
Referring next to
The method for mounting semiconductor device 5 on mount substrate 80 is not particularly limited. For example, semiconductor device 5 is mounted on mount substrate 80 in such a manner that a bump 90 formed of a conductive joining material is formed on each of p-side electrode 70p and n-side electrode 70n of semiconductor device 5, p-side electrode 70p of semiconductor device 5 is electrically connected to p-side conductive portion 87p of mount substrate 80, and n-side electrode 70n of semiconductor device 5 is electrically connected to n-side conductive portion 87n of mount substrate 80. This step can be performed to obtain a mounted semiconductor device 6 which is mounted on mount substrate 80.
Moreover, it is preferable to protect, as required, the electrode joint portions (p-side electrode 70p, n-side electrode 70n, p-side conductive portion 87p, n-side conductive portion 87n, and bumps 90) as well as their vicinity, with an undercoat (not shown) such as silicone resin.
Step of Removing Support Substrate by Dissolving the Same
Referring next to
The solvent and the method for removing support substrate 10 of mounted semiconductor device 6 by dissolving the support substrate are similar to the solvent and the method for dissolving support substrate 10 of joined substrate body 3 in Embodiment 1A, and the description thereof will not be repeated here. Furthermore, in a similar manner to Embodiment 1A, joint layer 30 of mounted semiconductor device 6 is removed by dissolving it.
It should be noted that the exposed main surface of GaN layer 21 of mounted semiconductor device 7 that is obtained by dissolving and thereby removing support substrate 10 and joint layer 30 from mounted semiconductor device 6 is extremely flat, and therefore, when the surface is roughened by dry etching or wet etching for the purpose of increasing the light extraction efficiency, an extremely uniform rough shape, as compared with the case where the support substrate and the joint layer are removed by the laser lift-off method, can be formed.
1. Preparation of Composite Substrate
Referring to
Referring to
Subsequently, on the main surface of the (000-1) plane (N atomic plane) of this GaN substrate 20, an SiO2 layer (joint layer 32) of 300 nm in thickness was formed by the plasma CVD method, the formed SiO2 layer (joint layer 32) was precision-polished by CMP (Chemical Mechanical Polishing), and accordingly the SiO2 layer (joint layer 32) of 150 nm in thickness having a flat main surface with an RMS roughness of 1 nm or less was obtained.
Subsequently, referring to
Referring also to
Subsequently, on the main surface of this Mo substrate (support substrate 10), an SiO2 layer (joint layer 31) having a thickness of 300 nm was formed by the plasma CVD method, the formed SiO2 layer (joint layer 31) was precision-polished by CMP (Chemical Mechanical Polishing), and accordingly the SiO2 layer (joint layer 31) of 150 nm in thickness having a flat main surface with an RMS roughness of 1 nm or less was obtained.
It should be noted that, as to the order in which the SiO2 layer (joint layer 32) and ion implantation region 20i are formed on and in GaN substrate 20 shown in FIG. 3(B1) and FIG. 3(B2), and the SiO2 layer (joint layer 31) is formed on the Mo substrate (support substrate 10) shown in
Then, referring to FIG. 3(C1), the SiO2 layer (joint layer 32) formed on GaN substrate 20 and the SiO2 layer (joint layer 31) formed on the Mo substrate (support substrate 10) were mechanically joined to each other so that they face each other. They were thus joined together to obtain joined substrate 1P in which the Mo substrate (support substrate 10) and GaN substrate 20 were bonded to each other between which the SiO2 layer (joint layer 30) of 300 nm in thickness was interposed, into which the SiO2 layer (joint layer 32) and the SiO2 layer (joint layer 31) were integrated.
Then, referring to FIG. 3(C1) and FIG. 3(C2), joined substrate 1P was heated to separate GaN substrate 20 into GaN layer 21 bonded to the Mo substrate (support substrate 10) and remaining GaN substrate 22 along ion implantation region 20i, to thereby obtain composite substrate 1 in which GaN layer 21 of 300 nm in thickness was bonded onto the Mo substrate (support substrate 10) of 600 μm in thickness between which the SiO2 layer (joint layer 30) of 300 nm in thickness was interposed.
2. Growth of GaN-Based Semiconductor Layer
Referring next to
3. Bonding of Transfer Support Substrate to GaN-Based Semiconductor Layer
Referring next to
A Ge substrate (transfer support substrate 50) having a diameter of 4 inches, a thickness of 600 μm, and an RMS roughness of the main surface of 5 nm or less was also prepared. Here, the Ge substrate had a thermal expansion coefficient of 6.1×10−6° C.−1 which was well close to the thermal expansion coefficient (6.0×10−6° C.−1) of GaN. On the main surface of this Ge substrate (transfer support substrate 50), an Ni/Pt/Au electrode layer (ohmic electrode layer 67) and an Au pad layer (metal pad layer 65) of 1 μm in thickness were formed as a part of connection layer 60 both by the vacuum deposition method.
Subsequently, the Au—Sn solder layer (solder layer 63) formed on the p-type GaN contact layer (p-type semiconductor layer 45) of GaN-based semiconductor layer 40 in semiconductor-layer-attached composite substrate 2, and the Au pad layer (metal pad layer 65) formed on the Ge substrate (transfer support substrate 50) were heat-treated at an ambient temperature of 300° C. and with appropriate pressure application so that they were metal-bonded together, to thereby obtain joined substrate body 3 in which GaN-based semiconductor layer 40 of semiconductor-layer-attached composite substrate 2 and the Ge substrate (transfer support substrate 50) were bonded to each other with connection layer 60 interposed therebetween. Since respective thermal expansion coefficients of the Mo substrate (support substrate 10), GaN layer 21, GaN-based semiconductor layer 40, and the Ge substrate (transfer support substrate 50) were substantially identical to or sufficiently close to each other, no warp and crack occurred to joined substrate body 3.
4. Removal of Support Substrate by Dissolution of the Same
Referring next to
The exposed main surface of GaN layer 21 of semiconductor-layer-attached transfer support substrate 4 had an RMS roughness of 0.36 nm, namely was extremely flat. The results are summarized in Table 1.
5. Fabrication of Semiconductor-Layer-Attached Transfer Support Substrate Into Device and Chip
Referring next to
Then, semiconductor device 5 was divided into 100 chips of 400 μm×400 μm in size by the dicing method. 100 semiconductor devices 5 fabricated in the form of chips were mounted on mount substrates respectively with silver paste and wire.
The ratio of acceptable devices in which the leakage current was 100 μA or less when a voltage of 5 V was applied in the opposite direction, relative to 100 mounted semiconductor devices 5 fabricated in the form of chips, namely the yield ratio, was 99%. The results are summarized in Table 1.
Regarding Example 1, the Mo substrate was used as support substrate 10. An LED was fabricated as semiconductor device 5 in a similar manner to Example 1 except that a composite oxide substrate which had a diameter of 4 inches and a thickness of 600 μm and in which Al2O3:SiO2 was 0.64:0.36 was used as support substrate 10 and that 20 mass % of hydrofluoric acid aqueous solution was used as a solvent for dissolving support substrate 10, and the LED was mounted on a mount substrate. The results obtained were similar to those of Example 1. Here, the composite oxide substrate (support substrate 10) in which Al2O3:SiO2 was 0.64:0.36 had a thermal expansion coefficient of 5.5×10−6° C.−1 which was sufficiently close to the thermal expansion coefficient (6.0×10−6° C.−1) of GaN. Moreover, the composite oxide substrate (support substrate 10) in which Al2O3:SiO2 was 0.64:0.36 had its main surface polished, and had an RMS roughness of its main surface of 5 nm or less, and a packing fraction of 98 vol % or more (porosity of 2 vol % or less).
1. Growth of GaN-Based Semiconductor Layer on Sapphire Substrate
Referring to
Then, referring to
2. Bonding of Transfer Support Substrate to GaN-Based Semiconductor Layer
Then, referring to
A Ge substrate (transfer support substrate 50) similar to that of Example 1 was also prepared. On a main surface of this Ge substrate (transfer support substrate 50), an Ni/Pt/Au electrode layer (ohmic electrode layer 67) and an Au pad layer (metal pad layer 65) having a thickness of 1 μm that were a part of connection layer 60 were formed in a similar manner to Example 1.
Subsequently, the Au—Sn solder layer (solder layer 63) formed on the p-type GaN contact layer (p-type semiconductor layer 145) of GaN-based semiconductor layer 140 of semiconductor-layer-attached base substrate 102, and the Au pad layer (metal pad layer 65) formed on the Ge substrate (transfer support substrate 50) were metal-bonded in a similar manner to Example 1 to thereby obtain a joined substrate body 103 in which GaN-based semiconductor layer 140 of semiconductor-layer-attached base substrate 102 and the Ge substrate (transfer support substrate 50) were bonded to each other with connection layer 60 interposed therebetween.
3. Removal of Base Substrate by Laser Lift-Off
Then, referring to
The exposed main surface of n-type GaN buffer layer 120 of thus obtained semiconductor-layer-attached transfer support substrate 104 was rough with an RMP roughness of 40 nm. The results are summarized in Table 1.
4. Fabrication of Semiconductor-Layer-Attached Transfer Support Substrate Into Device and Chip
Then, referring to
Then, semiconductor device 105 was divided into 100 chips of 400 μm×400 μm in size in a similar manner to Example 1. 100 semiconductor devices 105 fabricated in the form of chips were mounted on mount substrates respectively with silver paste and wire.
The ratio of acceptable devices in which the leakage current was 100 μA or less measured in a similar manner to Example 1, relative to 100 mounted semiconductor devices 105 fabricated in the form of chips, namely the yield ratio, was 75%. The results are summarized in Table 1.
It should be noted that the Ge substrate was used as transfer support substrate 50 in Example 1 and Comparative Example 1. If an Si substrate is used instead of the Ge substrate as transfer support substrate 50, warp occurs to joined substrate body 3, 103. This is considered as being caused for the following reason. The Ge substrate has a thermal expansion coefficient of 6.1×10−6° C.−1, which is sufficiently close to the thermal expansion coefficient (6.0×10−6° C.) of GaN. In contrast, the Si substrate has a thermal expansion coefficient of 4.2×10−6° C.−1, which is not sufficiently close to the thermal expansion coefficient of GaN. Therefore, while it is difficult to use the laser lift-off to remove base substrate 100 of joined substrate body 103, it is possible to remove support substrate 10 by dissolving it.
1. Preparation of Composite Substrate
Referring to
2. Growth of GaN-Based Semiconductor Layer
Referring next to
3. Fabrication of Semiconductor-Layer-Attached Composite Substrate into Device and Chip
Referring next to
Then, semiconductor device 5 was divided into 100 chips of 400 μm×400 μm in size by the scribe-and-break method. The Ni/Au electrode (p-side electrode 70p) and the Ti/Al electrode (n-side electrode 70n) were each covered with a protective electrode formed of an Au pad.
4. Mounting of Semiconductor Device
Referring next to
Then, the ultrasonic joining method was used to electrically connect the Ni/Au electrode (p-side electrode 70p) of semiconductor device 5 and a p-side conductive portion 87p of a mount substrate 80, and electrically connect the Ti/Al electrode (n-side electrode 70n) of semiconductor device 5 and an n-side conductive portion 87n of mount substrate 80, with above-described bumps 90 interposed therebetween, to thereby obtain a mounted semiconductor device 6 mounted on mount substrate 80.
5. Removal of Support Substrate by Dissolving the Same
Referring next to
The exposed main surface of GaN layer 21 of mounted semiconductor device 7 obtained by removing the composite oxide substrate (support substrate 10) in which Al2O3:SiO2 was 0.64:0.36 and the SiO2 layer (joint layer 30) from mounted semiconductor device 6 was extremely flat with an RMS roughness of 0.40 nm. The results are summarized in Table 1.
The ratio of acceptable devices in which the leakage current was 100 μA or less measured in a similar manner to Example 1, relative to 100 mounted semiconductor devices 7 mounted on mount substrates 80 respectively, namely the yield ratio, was 97%. The results are summarized in Table 1.
Example 2 used, as support substrate 10, the composite oxide substrate in which Al2O3:SiO2 was 0.64:0.36. A mounted semiconductor device 7 in which an LED which was semiconductor device 5 was mounted on mount substrate 80, was fabricated in a similar manner to Example 2, except that an Mo substrate having a diameter of 4 inches and a thickness of 600 μm was used as support substrate 10, and that 30 mass % of nitric acid aqueous solution was used as a solvent for dissolving support substrate 10. In this case, similar results to Example 2 were obtained. The Mo substrate (support substrate 10) had a thermal expansion coefficient of 6.0×10−6° C.−1 which was substantially equal to the thermal expansion coefficient (6.0×10−6° C.−1) of GaN. This Mo substrate (support substrate 10) has its polished main surface, this main surface had an RMS roughness of 5 nm or less, and the packing fraction of support substrate 10 was 99 vol % or more (porosity thereof was 1 vol % or less).
1. Growth of GaN-Based Semiconductor Layer on Sapphire Substrate
Referring to
Then, referring to
2. Fabrication of Semiconductor-Layer-Attached Base Substrate into Device and Chip
Then, referring to
Then, semiconductor device 105 was divided into 100 chips of 400 μm×400 μm in size in a similar manner to Example 2. In a similar manner to Example 2, the Ni/Au electrode (p-side electrode 70p) and the Ti/Al electrode (n-side electrode 70n) were each covered with a protective electrode formed of an Au pad.
3. Mounting of Semiconductor Device
Then, referring to
Subsequently, in a similar manner to Example 2, the Ni/Au electrode (p-side electrode 70p) of semiconductor device 105 and a p-side conductive portion 87p of a mount substrate 80 were electrically connected to each other and the Ti/Al electrode (n-side electrode 70n) of semiconductor device 105 and an n-side conductive portion 87n of mount substrate 80 were electrically connected to each other, with above-described bumps 90 interposed therebetween, to thereby obtain a mounted semiconductor device 106 mounted on mount substrate 80.
4. Removal of Base Substrate by Laser Lift-Off
Then, referring to
The exposed main surface of n-type GaN buffer layer 120 of mounted semiconductor device 107 obtained by removal of the sapphire substrate (base substrate 100) of mounted semiconductor device 106 was rough with an RMP roughness of 40 nm. The results are summarized in Table 1.
The ratio of acceptable devices in which the leakage current was 100 μA or less measured in a similar manner to Example 1, relative to 100 mounted semiconductor devices 107 fabricated in the form of chips, namely the yield ratio, was 60%. The results are summarized in Table 1.
Referring to Table 1, the semiconductor device (Examples 1 and 2) fabricated by dissolving and thereby removing the substrate joined to the GaN-based semiconductor layer has the extremely flat main surface of the GaN-based semiconductor layer that is exposed by removal of the substrate and has less damage to the exposed GaN-based semiconductor layer that is caused when the substrate is removed, as compared with the semiconductor device (Comparative Examples 1 and 2) fabricated using the laser lift-off for removing the substrate joined to the GaN-based semiconductor layer. Thus, semiconductor devices having excellent characteristics can be obtained at a high yield.
The embodiments and examples herein disclosed should be construed as being given by way of illustration in all respects, not by way of limitation. It is intended that the scope of the present invention is defined by claims, not by the description above, and encompasses all modifications and variations equivalent in meaning and scope to the claims.
1 composite substrate; 1P joined substrate; 2 semiconductor-layer-attached composite substrate; 3, 103 joined substrate body; 4, 104 semiconductor-layer-attached transfer support substrate; 5, 105 semiconductor device; 6, 7, 106, 107 mounted semiconductor device; 10 support substrate; 20 GaN substrate; 21 GaN layer; 22 remaining GaN substrate; 30, 31, 32 joint layer; 40, 140 GaN-based semiconductor layer; 41, 141 n-type semiconductor layer; 43, 143 active layer; 45, 145 p-type semiconductor layer; 50 transfer support substrate; 60 connection layer; 61 p-side ohmic electrode layer; 63 solder layer; 65 metal pad layer; 67 ohmic electrode layer; 70n n-side electrode; 70p p-side electrode; 80 mount substrate; 81 foundation substrate; 87n n-side conductive portion; 87p p-side conductive portion; 90 bump; 100 base substrate; 102 semiconductor-layer-attached base substrate; 120 n-type GaN buffer layer
Number | Date | Country | Kind |
---|---|---|---|
2011-097208 | Apr 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/057760 | 3/26/2012 | WO | 00 | 2/4/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/147436 | 11/1/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6559075 | Kelly et al. | May 2003 | B1 |
20040029359 | Letertre et al. | Feb 2004 | A1 |
20040241975 | Faure et al. | Dec 2004 | A1 |
20060172506 | Bruderl et al. | Aug 2006 | A1 |
20120122301 | Fujiwara et al. | May 2012 | A1 |
20130149847 | Satoh et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
2001-501778 | Feb 2001 | JP |
2002-175985 | Jun 2002 | JP |
2004-517472 | Jun 2004 | JP |
2005-47792 | Feb 2005 | JP |
2006-179922 | Jul 2006 | JP |
2008-277409 | Nov 2008 | JP |
2009-111101 | May 2009 | JP |
2010-56457 | Mar 2010 | JP |
2010-232263 | Oct 2010 | JP |
2010150659 | Dec 2010 | WO |
Entry |
---|
O.B. Shchekin et al., “High performance thin-film flip-chip InGaN—GaN light-emitting diodes”, Applied Physics Letters, 2006, pp. 071109-1-071109-3, vol. 89, issue 7. |
Number | Date | Country | |
---|---|---|---|
20130137220 A1 | May 2013 | US |