METHODS AND APPARATUS FOR PROCESSING A SUBSTRATE

Information

  • Patent Application
  • 20220310364
  • Publication Number
    20220310364
  • Date Filed
    June 13, 2022
    2 years ago
  • Date Published
    September 29, 2022
    2 years ago
Abstract
Methods and apparatus for cleaning a process kit configured for processing a substrate are provided. For example, a process chamber for processing a substrate can include a chamber wall; a sputtering target disposed in an upper section of the inner volume; a pedestal including a substrate support having a support surface to support a substrate below the sputtering target; a power source configured to energize sputtering gas for forming a plasma in the inner volume; a process kit surrounding the sputtering target and the substrate support; and an ACT connected to the pedestal and a controller configured to tune the pedestal using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber.
Description
FIELD

Embodiments of the present disclosure generally relate to semiconductor substrate processing equipment, and more particularly, to methods and apparatus that provide in situ chamber cleaning capability.


BACKGROUND

During physical vapor deposition (PVD) processing of a substrate, PVD chambers deposit sputtered material that may form a film on all components surrounding the plasma. Over time unwanted deposited material may form on process kit shields that are typically provided in the PVD chamber. While deposition of sputtered material on process kit shields is an accepted practice, such sputtered material can shed particles that can damage a sputtering target used during PVD and/or can contaminate a substrate being processed.


Maintenance of the process kit shields typically includes removing the process kit shields, which can include multiple components, from the PVD chamber, chemically etching the process kit shields to an original state and reinstalling the process kit shields so that the process kit shields can be reused. However, the inventors have observed that such processes can be time consuming, laborious, and costly, and undesirably increase chamber downtime.


Therefore, the inventors have provided methods and apparatus that provide in situ chamber cleaning capability.


SUMMARY

Methods and apparatus for methods and apparatus that provide in situ chamber cleaning capability are provided herein. In some embodiments, a process chamber for processing a substrate includes a chamber wall at least partially defining an inner volume within the process chamber; a sputtering target disposed in an upper section of the inner volume; a pedestal including a substrate support having a support surface to support a substrate below the sputtering target; a power source configured to energize sputtering gas for forming a plasma in the inner volume; a process kit surrounding the sputtering target and the substrate support; and an active capacitor tuner (ACT) connected to the pedestal and a controller configured to tune the pedestal using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber.


In at least some embodiments, a method for cleaning a process kit configured for processing a substrate incudes energizing a cleaning gas disposed in the inner volume of the process chamber to create a plasma; and tuning an active capacitor tuner (ACT) connected to a pedestal including a substrate support such that a predetermined potential difference between the plasma in the inner volume and a process kit is maintained for removing material deposited on the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber.


In at least some embodiments, a non-transitory computer readable storage medium having stored thereon instructions that when executed by a processor perform a method for cleaning a process kit configured for processing a substrate. The method, for example, incudes energizing a cleaning gas disposed in the inner volume of the process chamber to create a plasma; and tuning an active capacitor tuner (ACT) connected to a pedestal including a substrate support such that a predetermined potential difference between the plasma in the inner volume and a process kit is maintained for removing material deposited on the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber.


Other and further embodiments of the present disclosure are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure, briefly summarized above and discussed in greater detail below, can be understood by reference to the illustrative embodiments of the disclosure depicted in the appended drawings. However, the appended drawings illustrate only typical embodiments of the disclosure and are therefore not to be considered limiting of scope, for the disclosure may admit to other equally effective embodiments.



FIG. 1 depicts a schematic side view of a process chamber in accordance with some embodiments of the present disclosure.



FIG. 2 depicts a schematic cross-sectional view of a process kit in accordance with some embodiments of the present disclosure.



FIG. 3 is a flowchart of a method for cleaning a process kit configured for processing a substrate in accordance with some embodiments of the present disclosure.





To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. The figures are not drawn to scale and may be simplified for clarity. Elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.


DETAILED DESCRIPTION

Embodiments of methods and apparatus that provide in situ chamber cleaning capability are provided herein. More particularly, in at least some embodiments, the methods and apparatus described herein use an active capacitor tuner (ACT) and a top radio frequency (RF) power source that work in conjunction with a heater to selectively remove (e.g., etch) deposited materials on a process kit in a process chamber. The methods and apparatus described herein, can provide increased etch rates (e.g., in certain instances by up to 50%) when compared to conventional methods and apparatus by increasing a plasma potential in an inner process volume (cavity) of the PVD chamber. More particularly, providing a relatively higher plasma potential difference between the plasma in the cavity and the process kit (e.g., a grounded process kit) increases the etch rate which allows in situ chamber cleaning to be completed in a relatively quick and efficient manner. Moreover, the methods and apparatus described herein provide higher mean wafer between clean (MWBC), faster film recovery after performing an in situ cleaning process and/or a shorter cleaning recipe in a process chamber. In addition, using a top RF power source reduces, if not eliminates, target contamination (e.g., from pedestal/shutter) that can occur during the in situ cleaning process, when compared to conventional methods and/or apparatus that use a bottom RF power source for performing an in situ cleaning process.



FIG. 1 depicts a schematic side view of a process chamber 100 (e.g., a PVD chamber) in accordance with some embodiments of the present disclosure. in accordance with some embodiments of the present disclosure. Examples of PVD chambers suitable for use with process kit shields of the present disclosure include the ALPS® Plus, SIP ENCORE®, APPLIED ENDURA IMPULSE®, and Applied Endura AVENIR®, and other PVD processing chambers commercially available from Applied Materials, Inc., of Santa Clara, Calif. Other processing chambers from Applied Materials, Inc. or other manufacturers may also benefit from the inventive apparatus disclosed herein.


The process chamber 100 comprises chamber walls 106 that enclose an inner volume 108 (process volume/cavity). The chamber walls 106 include sidewalls 116, a bottom wall 120, and a bottom wall 124. The process chamber 100 can be a standalone chamber or a part of a multi-chamber platform (not shown) having a cluster of interconnected chambers connected by a substrate transfer mechanism that transfers substrates 104 between the various chambers. The process chamber 100 may be a PVD chamber capable of sputter depositing material onto a substrate 104. Non-limiting examples of suitable materials for sputter deposition include one or more of carbon, carbon nitride, aluminum, copper, tantalum, tantalum nitride, titanium, titanium nitride, tungsten, tungsten nitride, or the like.


The process chamber 100 comprises a substrate support 130 which comprises a pedestal 134 to support the substrate 104. The substrate support surface 138 of the pedestal 134 receives and supports the substrate 104 during processing. The pedestal 134 may include an electrostatic chuck or a heater (such as an electrical resistance heater, heat exchanger, or other suitable heating device). The substrate 104 can be introduced into the process chamber 100 through a substrate loading inlet 143 in the sidewall 116 of the process chamber 100 and placed onto the substrate support 130. The substrate support 130 can be lifted or lowered by a support lift mechanism, and a lift finger assembly can be used to lift and lower the substrate 104 onto the substrate support 130 during placement of the substrate 104 on the substrate support 130 by a robot arm. The pedestal 134 is biasable and can be maintained at an electrically floating potential or grounded during plasma operation. For example, in some embodiments the pedestal 134 may be biased to a given potential such that during a cleaning process of a process kit an RF power source 170 can be used to ignite one or more gases (e.g., a cleaning gas) to create a plasma including ions and radicals that can used to react with one or more materials deposited on the process kit, as will be described in greater detail below.


The pedestal 134 has a substrate support surface 138 having a plane substantially parallel to a sputtering surface 139 of a sputtering target 140. The sputtering target 140 comprises a sputtering plate 141 mounted to a backing plate 142, which can be thermally conductive, using one or more suitable mounting devices, e.g., a solder bond. The sputtering plate 141 comprises a material to be sputtered onto the substrate 104. The backing plate 142 is made from a metal, such as, for example, stainless steel, aluminum, copper-chromium or copper-zinc. The backing plate 142 can be made from a material having a thermal conductivity that is sufficiently high to dissipate the heat generated in the sputtering target 140, which is formed in both the sputtering plate 141 and the backing plate 142. The heat is generated from the eddy currents that arise in the sputtering plate 141 and the backing plate 142 and also from the bombardment of energetic ions from the plasma onto the sputtering surface 139 of the sputtering target 140. The backing plate 142 allows dissipation of the heat generated in the sputtering target 140 to the surrounding structures or to a heat exchanger which may be mounted behind the backing plate 142 or disposed within the backing plate 142. For example, the backing plate 142 can comprise channels (not shown) to circulate a heat transfer fluid therein. A suitably high thermal conductivity of the backing plate 142 is at least about 200 W/mK, for example, from about 220 to about 400 W/mK. Such a thermal conductivity level allows the sputtering target 140 to be operated for longer process time periods by dissipating the heat generated in the sputtering target 140 more efficiently, and also allows for relatively rapid cooling of the sputtering plate 141, e.g., when the area on and around a process kit needs to be cleaned.


Alternatively, or additionally, in combination with a backing plate 142 made of a material having a high thermal conductivity and low resistivity and the channels provided thereon, the backing plate 142 may comprise a backside surface having one or more grooves (not shown). For example, a backing plate 142 could have a groove, such as annular groove, or a ridge, for cooling a backside of the sputtering target 140. The grooves and ridges can also have other patterns, for example, rectangular grid pattern, spiral patterns, chicken feet patterns, or simply straight lines running across the backside surface. The grooves can be used to facilitate dissipating heat from the backing plate.


In some embodiments, the process chamber 100 may include a magnetic field generator 150 to shape a magnetic field about the sputtering target 140 to improve sputtering of the sputtering target 140. The capacitively generated plasma may be enhanced by the magnetic field generator 150 in which, for example, a plurality of magnets 151 (e.g., permanent magnet or electromagnetic coils) may provide a magnetic field in the process chamber 100 that has a rotating magnetic field having a rotational axis that is perpendicular to the plane of the substrate 104. The process chamber 100 may, in addition or alternatively, comprise a magnetic field generator 150 that generates a magnetic field near the sputtering target 140 of the process chamber 100 to increase an ion density in a high-density plasma region adjacent to the sputtering target 140 to improve the sputtering of the target material.


A sputtering gas is introduced into the process chamber 100 through a gas delivery system 160, which provides gas from a gas supply 161 via conduits 163 having gas flow control valves (not shown), such as a mass flow controllers, to pass a set flow rate of the gas therethrough. The process gas may comprise a non-reactive gas, such as argon or xenon, which is capable of energetically impinging upon and sputtering material from the sputtering target 140. The process gas may also comprise a reactive gas, such as one or more of an oxygen-containing gas and a nitrogen-containing gas, that can react with the sputtered material to form a layer on the substrate 104. The gas is then energized by an RF power source 170 to form or create a plasma to sputter the sputtering target 140. For example, the process gases become ionized by high energy electrons and the ionized gases are attracted to the sputtering material, which is biased at a negative voltage (e.g., −300 to −1500 volts). The energy imparted to an ionized gas (e.g., now positively charged gas atoms) by the electric potential of the cathode causes sputtering. In some embodiments, the reactive gases can directly react with the sputtering target 140 to create compounds and then be subsequently sputtered from the sputtering target 140. For example, the cathode can be energized by both the DC power source 190 and the RF power source. In some embodiments, the DC power source 190 can be configured to provide pulsed DC to power the cathode. Spent process gas and byproducts are exhausted from the process chamber 100 through an exhaust 162. The exhaust 162 comprises an exhaust port (not shown) that receives spent process gas and passes the spent gas to an exhaust conduit 164 having a throttle valve to control the pressure of the gas in the process chamber 100. The exhaust conduit 164 is connected to one or more exhaust pumps (not shown).


In addition, the gas delivery system 160 is configured to introduce one or more of the gases (e.g., depending on the material used for the sputtering target 140), which can be energized to create an active cleaning gas (e.g., ionized plasma or radicals), into the inner volume 108 of the process chamber 100 for performing a cleaning process of a shield of a process kit, which will be described in greater detail below. Alternatively or additionally, the gas delivery system 160 can be coupled to a remote plasma source (RPS) 165 that is configured to provide radicals (or plasma depending on the configuration of the RPS) into the inner volume 108 of the process chamber 100. The sputtering target 140 is connected to one or both of a DC power source 190 and/or the RF power source 170. The DC power source 190 can apply a bias voltage to the sputtering target 140 relative to a shield of the process kit, which may be electrically floating during a sputtering process and/or the cleaning process. The DC power source 190, or a different DC power source 190a, can also be used to apply a bias voltage to a cover ring section or a heater of an adapter section of a process kit, e.g., when performing a cleaning process of a shield.


While the DC power source 190 supplies power to the sputtering target 140 and other chamber components connected to the DC power source 190, the RF power source 170 energizes the sputtering gas to form a plasma of the sputtering gas. The plasma formed impinges upon and bombards the sputtering surface 139 of the sputtering target 140 to sputter material off the sputtering surface 139 onto the substrate 104. In some embodiments, RF energy supplied by the RF power source 170 may range in frequency from about 2 MHz to about 60 MHz, or, for example, non-limiting frequencies such as 2 MHz, 13.56 MHz, 27.12 MHz, or 60 MHz can be used. In some embodiments, a plurality of RF power sources may be provided (i.e., two or more) to provide RF energy in a plurality of the above frequencies. An additional RF power source can also be used to supply a bias voltage to the pedestal 134 and/or a cover ring section e.g., when performing a cleaning process of the area on and around a process kit. For example, in some embodiments an additional RF power source 170a can be used to energize a biasable electrode 137 that can be embedded in the pedestal 134 (or the substrate support surface 138 of the substrate support 130). The biasable electrode can be used to supply power to a shield and/or the substrate support 130. Moreover, in some embodiments, the RF power source 170 can be configured to energize the biasable electrode 137. For example, one or more additional components e.g., a switching circuit can be provided to switch the electrical path from the cover or lid 124 to the biasable electrode 137.


An RF filter 191 can be connected between the DC power source 190 (or the DC power source 190a) and the RF power source 170 (or the RF power source 170a). For example, in at least some embodiments, the RF filter can be a component of the circuitry of the DC power source 190 to block RF signals from entering the DC circuitry of the DC power source 190 when the RF power source 170 is running, e.g., when performing a cleaning process.


Various components of the process chamber 100 may be controlled by a controller 180 (processor). The controller 180 comprises program code (e.g., stored in a non-transitory computer readable storage medium (memory)) having instructions to operate the components to process the substrate 104. For example, the controller 180 can comprise program code that includes substrate positioning instruction sets to operate the substrate support 130 and substrate transfer mechanism; temperature control of one or more heating components (e.g., a lamp, radiative heating, and/or embedded resistive heaters) of a heater; cleaning process instruction sets to an area on and around a process kit; power control of a microwave power source 181; gas flow control instruction sets to operate gas flow control valves to set a flow of sputtering gas to the process chamber 100; gas pressure control instruction sets to operate the exhaust throttle valve to maintain a pressure (e.g., about 120 sccm) in the process chamber 100; gas energizer control instruction sets to operate the RF power source 170 to set a gas energizing power level; temperature control instruction sets to control a temperature control system in the substrate support 130 or a heat transfer medium supply to control a flowrate of the heat transfer medium to the annular heat transfer channel; and process monitoring instruction sets to monitor the process in the process chamber 100, e.g., monitoring/adjusting an active capacitor tuner (ACT) 192. For example, in at least some embodiments, the ACT 192 can be used to tune the pedestal 134 during a cleaning process, as described in greater detail below.



FIG. 2 depicts a schematic cross-sectional view of a process kit 200 in accordance with some embodiments of the present disclosure. The process kit 200 comprises various components including an adapter section 226 and a shield 201 which can be easily removed from the process chamber 100, for example, to replace or repair eroded components, or to adapt the process chamber 100 for other processes. Additionally, unlike conventional process kits, which need to be removed to clean sputtering deposits off the component surfaces (e.g., the shield 201), the inventors have designed the process kit 200 for in situ cleaning to remove sputtered deposits of material on the of the shield 201, as will be described in more detail below.


The shield 201 includes a cylindrical body 214 having a diameter sized to encircle the sputtering surface 139 of the sputtering target 140 and the substrate support 130 (e.g., a diameter larger than the sputtering surface 139 and larger than the support surface of the substrate support 130). The cylindrical body 214 has an upper portion 216 configured to surround the outer edge of the sputtering surface 139 of the sputtering target 140 when installed in the chamber. The shield 201 further includes a lower portion 217 configured to surround the substrate support surface 138 of the substrate support 130 when installed in the chamber. The lower portion 217 includes a cover ring section 212 for placement about a peripheral wall 131 of the substrate support 130. The cover ring section 212 encircles and at least partially covers a deposition ring 208 disposed about the substrate support 130 to receive, and thus, shadow the deposition ring 208 from the bulk of the sputtering deposits. As noted above, in some embodiments the cover ring section 212 can be biased using the DC power source 190a and/or the RF power source 170a, for example, when the area on and around the process kit 200 needs to be cleaned. In some embodiments, the RF power source 170 or the DC power source 190 can also be configured to bias the cover ring section 212. For example, a switching circuit, can be used as described above.


The deposition ring 208 is disposed below the cover ring section 212. A bottom surface of the cover ring section 212 interfaces with the deposition ring 208 to form a tortuous path 202 and the cover ring section 212 extends radially inward from the lower portion 217 of the cylindrical body 214, as shown in FIG. 2. In some embodiments, the cover ring section 212 interfaces with but does not contact the deposition ring 208 such that the tortuous path 202 is a gap disposed between the cover ring section 212 and the deposition ring 208. For example, the bottom surface of the cover ring section 212 may include an annular leg 240 that extends into an annular trench 241 formed in the deposition ring 208. The tortuous path 202 advantageously limits or prevents plasma leakage to an area outside of the process kit 200. Moreover, the constricted flow path of the tortuous path 202 restricts the build-up of low-energy sputter deposits on the mating surfaces of the deposition ring 208 and cover ring section 212, which would otherwise cause them to stick to one another or to the overhanging edge 206 of the substrate 104. Additionally, in some embodiments, the gas delivery system 160 is in fluid communication with the tortuous path 202 for providing one or more suitable gases (e.g., process gas and/or cleaning gas) into the inner volume 108 of the process chamber 100 when the area on and around the process kit 200 needs to be cleaned.


The deposition ring 208 is at least partially covered by a radially inwardly extending lip 230 of the cover ring section 212. The lip 230 includes a lower surface 231 and an upper surface 232. The deposition ring 208 and cover ring section 212 cooperate with one another to reduce formation of sputter deposits on the peripheral walls 131 of the substrate support 130 and an overhanging edge of the substrate 104. The lip 230 of the cover ring section 212 is spaced apart from the overhanging edge 206 by a horizontal distance that may be between about 0.5 inches and about 1 inch to reduce a disruptive electrical field near the substrate 104 (i.e., an inner diameter of the lip 230 is greater than a given diameter of a substrate to be processed by about 1 inch to about 2 inches).


The deposition ring 208 comprises an annular band 215 that extends about and surrounds a peripheral wall 131 of the substrate support 130 as shown in FIG. 2. The annular band 215 comprises an inner lip 250 which extends transversely from the annular band 215 and is substantially parallel to the peripheral wall 204 of the substrate support 130. The inner lip 250 terminates immediately below the overhanging edge 206 of the substrate 104. The inner lip 250 defines an inner perimeter of the deposition ring 208 which surrounds the periphery of the substrate 104 and substrate support 130 to protect regions of the substrate support 130 that are not covered by the substrate 104 during processing. For example, the inner lip 250 surrounds and at least partially covers the peripheral wall 204 of the substrate support 130 that would otherwise be exposed to the processing environment, to reduce or even entirely preclude deposition of sputtering deposits on the peripheral wall 204. The deposition ring 208 can serve to protect the exposed side surfaces of the substrate support 130 to reduce their erosion by the energized plasma species.


The shield 201 encircles the sputtering surface 139 of the sputtering target 140 that faces the substrate support 130 and the outer periphery of the substrate support 130. The shield 201 covers and shadows the sidewalls 116 of the process chamber 100 to reduce deposition of sputtering deposits originating from the sputtering surface 139 of the sputtering target 140 onto the components and surfaces behind the shield 201. For example, the shield 201 can protect the surfaces of the substrate support 130, overhanging edge 206 of the substrate 104, sidewalls 116 and bottom wall 120 of the process chamber 100.


Continuing with reference to FIG. 2, the adapter section 226 extends radially outward adjacent from the upper portion 216. The adapter section 226 includes a sealing surface 233 and a resting surface 234 opposite the sealing surface 233. The sealing surface 233 contains an O-ring groove 222 to receive an O-ring 223 to form a vacuum seal, and the resting surface 234 rests upon (or is supported by) the sidewalls 116 of the process chamber 100; an O-ring groove 222 and an O-ring 223 can also be provided in the sidewall 116 opposite the resting surface 234.


The adapter section 226 is configured to be supported on walls of the process chamber 100. More particularly, the adapter section 226 includes an inwardly extending ledge 227 that engages a corresponding outwardly extending ledge 228 adjacent the upper portion 216 for supporting of the shield 201. The adapter section 226 includes a lower portion 235 that extends inwardly toward the pedestal 134 below the cover ring section 212. The lower portion 235 is spaced apart from the cover ring section 212 such that a cavity 229 is formed between the lower portion 235 and the cover ring section 212. The cavity 229 is defined by a top surface 237 of the lower portion 235 and a bottom surface 238 of the cover ring section 212. The distance between the top surface 237 of the lower portion 235 and a bottom surface 238 is such that maximum heat transfer from the heater 203 to the shield 201 can be achieved within a predetermined time during cleaning of the process kit 200. The cavity 229 is in fluid communication with the tortuous path 202 which allows gas, for example, introduced via the gas delivery system 160, to flow into the inner volume 108 of the process chamber 100 when the area on and around the process kit 200 needs to be cleaned.


The lower portion 235 is configured to house the heater 203. More particularly, an annular groove 236 of suitable configuration is defined within the lower portion 235 and is configured to support one or more suitable heating components including, but not limited to, a lamp, radiative heating, or embedded resistive heaters of the heater 203. In the illustrated embodiment, a radiative annular coil 205, which is surrounded by a lamp envelope 207, e.g., glass, quartz or other suitable material, is shown supported in the annular groove 236. The radiative annular coil 205 can be energized or powered using, for example, the DC power source 190 or the DC power source 190a, which can be controlled by the controller 180, to reach temperatures of about 250° C. to about 300° C. when the area on and around the process kit 200 needs to be cleaned.


The adapter section 226 can also serve as a heat exchanger about the sidewall 116 of the process chamber 100. Alternatively or additionally an annular heat transfer channel 225 can be disposed in either or both the adapter section 226 or the shield 201 (e.g., the upper portion 216) to flow a heat transfer medium, such as water or the like. The heat transfer medium can be used to cool the adapter section 226 and/or the shield 201, for example, upon completion of the process kit 200 being cleaned, or upon completion of one or more other processes having been performed in the process chamber 100.



FIG. 3 is a flowchart of a method 300 for cleaning a process kit configured for processing a substrate in accordance with some embodiments of the present disclosure. The sputtering plate 141 can be made from one or more suitable materials to be deposited on a substrate. For example, the sputtering plate 141 can be made of carbon (C), silicon (Si), silicon nitride (SiN), aluminum (Al), tungsten (W), tungsten carbide (WC), copper (Cu), titanium (Ti), titanium nitride (TiN), titanium carbide (TiC), carbon nitride (CN), or the like. The specific material that the sputtering plate 141 can be made from can depend on the material desired to be deposited on a substrate in the process chamber. The specific material that the sputtering plate 141 (or target material) is made from can influence one more factors relating to the chamber configuration and cleaning processes, e.g., the type of activated cleaning gases used for cleaning the process kit, whether a shutter (or shutter assembly) is used to protect the sputtering plate 141 while the process kit is being cleaned, etc.


In some embodiments, one or more activated cleaning gases can be used to clean on and around the process kit 200. The activated cleaning gas, for example, can be a cleaning gas introduced into the process chamber 100 and subsequently energized to form a plasma to create radicals (e.g., the activated cleaning gas) that can be directed toward the process kit 200. Alternatively or in combination, radicals (e.g., the activated cleaning gas) can be introduced into the process chamber from a remote plasma source and then directed toward the process kit 200. The cleaning gases that are activated using the plasma to form radicals of the cleaning gases can be, for example, oxygen (O2), or other oxygen-containing gases e.g., ozone (O3), hydroxide (OH), peroxide (H2O2), or the like, chlorine (Cl2), or other chlorine containing gases, or the like, boron (B), fluorine (F), nitrogen (N), niobium (Nb), sulfur (S), or combinations thereof. The type of cleaning gas used can depend on, for example, the type of target material, the type of chamber (e.g., PVD etc.), a manufacturer's preference, etc. For example, if the target material is Al, the plasma can be created using Cl2 or BCl3, and the shield 201 can be made from a material other than Al, if the target material is Ti, the plasma can be created using SF6 or Cl2, if the target material is W, the plasma can be created using Cl2 or other chlorine or fluorine based gases, if the target material is Cu, the plasma can be created using NbCl3, and if the target material is Si, the plasma can be created using NF3.


In accordance with the present disclosure, cleaning on and around the process kit 200 can be performed in accordance with routine maintenance of the process chamber 100. For example, the method 300 can be performed periodically to reduce deposition buildup on and around the process kit 200. For example, when carbon is used as the sputtering plate 141, the method 300 can be used to remove carbon build-up. The cleaning process can be run periodically whenever sufficient materials have built up on the process kit 200. For example, the cleaning process can be performed after about 5 μm of carbon has been deposited, which can be equal to about 50 or so substrates (or wafers) of a deposition for a 1000 A film deposited on each substrate.


Prior to cleaning on and around the process kit 200, a dummy wafer 122a can be loaded into the inner volume 108 of the process chamber 100 and disposed on the substrate support 130 to protect the components of the substrate support 130, e.g., the pedestal 134, the substrate support surface 138, etc. Alternatively or additionally a shutter disk 122b can placed on or over the substrate support 130 to protect the components of the substrate support 130. Conversely, neither of the dummy wafer 122a nor shutter disk 122b need be used.


Additionally, in some embodiments, the shutter disk 122b can be positioned in front of the sputtering target 140 and used to prevent the reactive gas from reaching the sputtering target 140 while the accumulated deposition on the process kit 200 is removed.


The dummy wafer 122a and/or shutter disk 122b can be stored in, for example, a peripheral holding area 123 and can be moved into the processing chamber 100 prior to cleaning on and around the process kit 200.


The inventors have found that to facilitate removal of accumulated deposited material on the process kit 200, the area on and around the process kit 200 will have to be actively heated (e.g., heated to temperatures above that which are used to process a substrate). For example, when the sputtering target 140 is carbon, to facilitate a carbon and oxygen radical reaction (e.g., to form carbon dioxide), to selectively (e.g., to concentrate cleaning to a specific area within the inner volume 108 of the process chamber 100) clean on and around the process kit 200, and to maximize cleaning on and around the process kit 200, a temperature differential between the sputtering plate 141 and the area on and around the process kit 200 needs to be maintained. Accordingly, to actively achieve such a temperature differential, the sputtering plate 141 can be kept at a relatively low temperature, e.g., a temperature of about 25° C. and to about 100° C. Backside cooling of the sputtering plate 141 using, for example, the heat transfer fluid as described above, can be used to achieve such temperatures. Actively cooling the sputtering plate 141, can be useful when the area on and around the process kit 200 is cleaned shortly after PVD has been performed, e.g., when a temperature of sputtering plate 141 is relatively high. Alternatively or additionally, the sputtering plate 141 can be allowed to passively cool over time without using any cooling devices. Accordingly, in some embodiments, the sputtering plate 141 can be maintained at a temperature of about 25° C. and to about 100° C. during the cleaning process. Alternatively or additionally, during the cleaning process, the sputtering plate 141 can be actively cooled so that no etch reaction happens to the sputtering target 140, thus protecting an integrity of the sputtering target 140 (e.g., sustain the target materials).


Next, to ensure that the above-described temperature differential is achieved/maintained, the area on and around the process kit 200 can be actively heated to a temperature of about 250° C. to about 300° C., e.g., heating the shield. As noted above, the radiative annular coil 205 of the heater 203 can be energized using the DC power source 190 (or the or the DC power source 190a) to achieve such temperatures, and the amount of energy provided from the DC power source 190 to the radiative annular coil 205 can be controlled by the controller 180.


Thereafter, one or more processes can be used to create a plasma to form corresponding ions and radicals, which can used to react with the accumulated deposited material on and around the process kit 200. For example, at 302 a cleaning gas disposed in the inner volume of the process chamber can be energized to create a plasma. For example, in some embodiments, when the accumulated deposited material around the processing kit 200 is carbon, oxygen can be introduced into the inner volume 108 of the process chamber 100 using, for example, the gas delivery system 160. Once introduced, the oxygen plasma including ions and radicals can be created by energizing the oxygen gas using, for example, the RF power source 170 and the pedestal 134 (or the cover ring section 212), each of which as noted above can be biased to a voltage potential using either or both the RF power source 170a or the DC power source 190a.


Next, at 304 an active capacitor tuner (e.g., the ACT 192) connected to a pedestal 134 can be tuned such that a potential difference between the plasma in the inner volume 108 and the process kit 200 is maintained at a predetermined value (e.g., a predetermined potential difference), such as at a maximum to facilitate removing material deposited on and around the process kit 200. For example, the ACT 192, which is connected to the pedestal 134, is used to maintain a voltage potential difference between the plasma in the inner volume 108 and the shield 201 at a maximum. More particularly, after the RF power source 170 ignites the oxygen gas, the RF power source 170 is used to maintain the plasma within the process chamber 100 (e.g., from about 100 W to about 2500 W) and the controller 180 controls the ACT 192 to ensure that the voltage potential of the plasma is greater than the voltage potential of the shield 210, which is typically grounded through the process chamber 100 during the cleaning process.


A process chamber's stray capacitance is dependent on a process chamber's grounding path. Accordingly, the ACT 192 can be configured/set to compensate for the stray capacitance lost through the grounding path of the process chamber 100. For example, a maximum potential difference is based on a percentage of total capacitance of the ACT 192 and a stray capacitance associated with the grounding path 125 of the process chamber. Accordingly, in at least some embodiments, the ACT 192 can be configured/set so that the maximum voltage potential difference between the plasma and the grounded process kit 200 (e.g., 10-200V) is at a highest when the ACT 192 is about 80% of total capacitance, which allows for about a 20% loss of capacitance due to the stray capacitance lost through a grounding path 125 of the process chamber 100. In at least some embodiments, the ACT 192 can be configured so that the maximum voltage potential difference between the plasma and the grounded process kit 200 is at a highest when the ACT 192 is less than or greater than 80% of total capacitance.


Alternatively or additionally, oxygen can be introduced into the inner volume 108 of the process chamber 100 using, for example, the gas delivery system 160, and the microwave power source 181 can be used to create the oxygen plasma to form the oxygen ions and radicals.


Alternatively or additionally, the oxygen plasma can be created remotely using, for example, the RPS 165. For example, the oxygen plasma can be created by the RPS 165, and the oxygen ions and radicals from the oxygen plasma be directed to the process chamber.


Once oxygen gas is energized for forming the oxygen plasma, the oxygen radicals react with the carbon deposited on and around the process kit 200 and convert the deposited carbon to carbon dioxide (e.g., to selectively etch or remove the carbon), which thereafter can then be pumped from the inner volume 108 of the process chamber 100 via, for example, the exhaust 162. Alternatively or additionally, some of the oxygen ions from the oxygen plasma (e.g., in addition to the oxygen radicals) can also be used to react with the carbon deposited on and around the process kit 200 for converting the deposited carbon to carbon dioxide, which can depend on the ratio of oxygen radicals to oxygen ions in the oxygen plasma. For example, a ratio of oxygen ions to oxygen radicals can be controlled so that more (or less) ionized oxygen is created in the plasma and less (or more) oxygen radicals are created.


The controller 180 can control the exhaust 162 to begin exhausting the carbon dioxide at, for example, an endpoint of carbon dioxide production, which can be detected using one or more sensors 193 disposed in the inner volume 108 of the process chamber 100. For example, in some embodiments, the controller 180 can use the one or more sensors 193 to determine an end point of a cleaning time based on a composition of exhaust gas. The controller 180 can also use the one or more sensors 193 to determine a voltage of the pedestal 134 or a plasma within the inner volume 108 of the process chamber 100, e.g., to maintain a maximum potential difference between the plasma in the inner volume and the process kit 200.


Alternatively or additionally, the controller 180 can be configured to control the exhaust 162 to begin exhausting the carbon dioxide at, for example, a predetermined time, which can be calculated via empirical data.


In at least some embodiments, after the cleaning process is completed, the controller 180 can run one or more additional processes, e.g., seasoning is required to remove some of the debris (flake) deposited on the sputtering target 140 during the cleaning process. For example, seasonings/applications of pulsed DC plasma can be run (e.g., 10-20 runs), with the dummy wafer 122a and/or shutter disk disposed on the substrate support 130, until a condition of the sputtering target 140 has been sufficiently recovered.


While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof.

Claims
  • 1. A method for cleaning a process kit disposed in an inner volume of a process chamber, comprising: energizing a cleaning gas disposed in the inner volume of the process chamber to create a plasma that includes oxygen (O) radicals;tuning an active capacitor tuner (ACT) connected to a pedestal including a substrate support such that a predetermined potential difference between the plasma in the inner volume and a process kit is maintained for removing carbon deposited on the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber; andexhausting spent process gas from the process chamber.
  • 2. The method of claim 1, further comprising at least one of: providing, via a gas supply, the cleaning gas into the inner volume and energizing the cleaning gas using a radio frequency (RF) power source coupled to the process chamber to create the plasma;providing, via the gas supply, the cleaning gas into the inner volume and energizing the cleaning gas using a DC power source coupled to the process chamber to create the plasma;providing, via the gas supply, the cleaning gas into the inner volume and energizing the cleaning gas using a microwave power source coupled to the process chamber to create the plasma; orproviding, via a remote plasma source coupled to the process chamber, the plasma into the inner volume.
  • 3. The method of claim 1, further comprising providing, using a direct current (DC) power source coupled to the process chamber, pulsed DC to a sputtering target disposed in the inner volume of the process chamber for physical vapor deposition.
  • 4. The method of claim 3, wherein the process kit comprises: a shield having a cylindrical body having an upper portion and a lower portion;an adapter section configured to be supported on walls of the process chamber and having a resting surface to support the shield; anda heater coupled to the adapter section and configured to be electrically coupled to at least one power source of the process chamber to heat the shield.
  • 5. The method of claim 4, further comprising: maintaining the sputtering target at a first temperature; andheating the shield of the process kit to a second temperature that is greater than the first temperature.
  • 6. The method of claim 5, wherein the first temperature is about 50° C. to about 100° C., and wherein the second temperature is about 250° C. to about 300° C.
  • 7. The method of claim 5, wherein heating the shield of the process kit comprises at least one of heating at least one of a lamp or embedded resistive heaters, or using radiative heating.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional application of U.S. patent application Ser. No. 16/846,502, filed Apr. 13, 2020, the entire contents of which is incorporated herein by reference.

Divisions (1)
Number Date Country
Parent 16846502 Apr 2020 US
Child 17838860 US