Claims
- 1. A method of depositing a low-k dielectric film on a semiconductor or integrated circuit surface comprising reacting a polyhedral oligometric silsesquioxane and a linking agent in a chemical vapor deposition process thereby forming said low-k dielectric material.
- 2. The method as claimed in claim 1 wherein said polyhedral oligometric silsesquioxane compound has the formula SinO1.5n (R1)i(R2)j(R3)k, wherein n=i+j+k and can range from about 6 to about 20 wherein R1, R2, and R3 are organic or silicon functional groups or a combination of both groups.
- 3. The method as claimed in claim 2 wherein n is 8, 10 or 12.
- 4. The method as claimed in claim 2 wherein said R1, R2, and R3 are selected from the group consisting of vinyl, oxymethyl, oxyethyl, pentyl, cyclopentyl, cyclohexyl, isobutyl, norborenal, norborenoethyl, norbornenyl, chlorosilane, silanol, alcohol, methacrylate, esters, hydromethylsiloxyl and epoxide functional groups.
- 5. The method as claimed in claim 2 wherein said linking agent is a straight chain or cyclic siloxane.
- 6. The method as claimed in claim 5 wherein said straight chain siloxane has the formula (—O(X−1)SixH2(CH3)x) wherein x is 1 to 6 and said cyclic siloxane has the formula (—OXSiXHi(CH3)j) where X is 3 to 8 and i−j=2X.
- 7. The method as claimed in claim 1 wherein said linking agent is selected from the group consisting of methylsilane, dimethylsilane, silane, disilane, vinylmethyldimethylcyclotrisiloxane, dimethylsila-oxocyclopentane, cyclohexylsilane, cyclohexyldisilane, silacyclobutane, tetramethyldisiloxane, cyclooctylsilane, vinylmethylsilane, cyclopentylsilane, tert-butylphenylsilane, methyldisilane, tetraethyl-ethylsilicate, tetramethylethylsilicate, dimethyldioxymethylsilane, silylbenzene, disilylbenzene, trisilylbenzene, disilylcyclohexane and disiloxanes having the formula Rn(R′)6−nOSi2 wherein R and R′ are selected from the groups consisting of hydrogen, methyl, ethyl, tert-butyl, vinyl, ethoxy, methoxy, phenyl and halogen and n is 0 to 5.
- 8. The method as claimed in claim 1 wherein said linking agent is an organic peroxides selected from the group consisting of benzoyl peroxide, acetyl-benzoyl peroxide, diacetyl peroxide, ditert-butyl peroxide, dimethyl peroxide and peroxides having C1 to C5.
- 9. The method as claimed in claim 1 wherein said polyhedral oligometric silsesquioxane is dissolved in a solvent prior to addition to said chemical vapor deposition system.
- 10. The method as claimed in claim 9 wherein said solvent is selected from the group consisting of cyclohexane, benzene, normal and cyclo-siloxanes, volatile silicone solvents, straight chain and cylo-siloxanes with methyl and hydro functional groups and tetrahydofuran.
- 11. The method as claimed in claim 1 wherein said polyhedral oligometric silsesquioxane is sublimed in the vacuum chamber by a direct sublimation heater in the chemical vapor deposition system.
- 12. A method of depositing a low-k dielectric film on a semiconductor or integrated circuit surface comprising reacting a polyhedral oligometric silsesquioxane and a linking agent in the presence of a plasma in a chemical vapor deposition process thereby forming said low-k dielectric material.
- 13. The method as claimed in claim 12 wherein said polyhedral oligometric silsesquioxane compound has the formula SinO1.5n (R1)i(R2)j(R3)k, wherein n=i+j+k and can range from about 6 to about 20 wherein R1, R2, and R3 are organic or silicon functional groups or a combination of both groups.
- 14. The method as claimed in claim 13 wherein n is 8, 10 or 12.
- 15. The method as claimed in claim 13 wherein said R1, R2, and R3 are selected from the group consisting of vinyl, oxymethyl, oxyethyl, pentyl, cyclopentyl, cyclohexyl, isobutyl, norborenal, norborenoethyl, norbornenyl, chlorosilane, silanol, alcohol, methacrylate, hydromethylsiloxyl, esters and epoxide functional groups.
- 16. The method as claimed in claim 13 wherein said linking agent is a straight chain or cyclic siloxane.
- 17. The method as claimed in claim 13 wherein said straight chain siloxane has the formula (—O(X−1)SixH2(CH3)x) wherein x is 1 to 6 and said cyclic siloxane has the formula (—OXSiXHi(CH3)j) where X is 3 to 8 and i−j=2X.
- 18. The method as claimed in claim 12 wherein said linking agent is selected from the group consisting of methylsilane, dimethylsilane, silane, disilane, vinylmethyldimethylcyclotrisiloxane, dimethylsila-oxocyclopentane, cyclohexylsilane, cyclohexyldisilane, silacyclobutane, tetramethyldisiloxane, cyclooctylsilane, vinylmethylsilane, cyclopentylsilane, tert-butylphenylsilane, methyldisilane, tetraethyl-ethylsilicate, tetramethylethylsilicate, dimethyldioxymethylsilane, silylbenzene, disilylbenzene, trisilylbenzene, disilylcyclohexane and disiloxanes having the formula Rn(R′)6−nOSi2 wherein R and R′ are selected from the groups consisting of hydrogen, methyl, ethyl, tert-butyl, vinyl, ethoxy, methoxy, phenyl and halogen and n is 0 to 5.
- 19. The method as claimed in claim 12 wherein said linking agent is an organic peroxides selected from the group consisting of benzoyl peroxide, acetyl-benzoyl peroxide, diacetyl peroxide, ditert-butyl peroxide, dimethyl peroxide and peroxides having C1 to C5.
- 20. The method as claimed in claim 12 wherein said polyhedral oligometric silsesquioxane is dissolved in a solvent prior to addition to said chemical vapor deposition system.
- 21. A method of depositing a low-k dielectric film on a semiconductor or integrated circuit surface comprising reacting a polyhedral oligometric silsesquioxane having the formula SinO1.5n (R1)i(R2)j(R3)k, wherein n=i+j+k and can range from about 6 to about 20 wherein R1, R2, and R3 are organic or silicon functional groups or a combination of both groups and a linking agent in a chemical vapor deposition process thereby forming said low-k dielectric material.
- 22. The method as claimed in claim 21 wherein R1 is 8, 10 or 12.
- 23. The method as claimed in claim 22 wherein said R1, R2, and R3 are selected from the group consisting of vinyl, oxymethyl, oxyethyl, pentyl, cyclopentyl, cyclohexyl, isobutyl, norborenal, norborenoethyl, norbornenyl, chlorosilane, silanol, alcohol, methacrylate, hydromethylsiloxyl, esters and epoxide functional groups.
- 24. The method as claimed in claim 22 wherein said linking agent is a straight chain or cyclic siloxane.
- 25. The method as claimed in claim 24 wherein said straight chain siloxane has the formula (—O(X−1)SixH2(CH3)x) wherein x is 1 to 6 and said cyclic siloxane has the formula (−OXSiXHi(CH3)j) where X is 3 to 8 and i−j=2X.
- 26. The method as claimed in claim 21 wherein said linking agent is selected from the group consisting of methylsilane, dimethylsilane, silane, disilane, vinylmethyldimethylcyclotrisiloxane, dimethylsila-oxocyclopentane, cyclohexylsilane, cyclohexyidisilane, silacyclobutane, tetramethyldisiloxane, cyclooctylsilane, vinylmethylsilane, cyclopentylsilane, tert-butylphenylsilane, methyldisilane, tetraethyl-ethylsilicate, tetramethylethylsilicate, dimethyldioxymethylsilane, silylbenzene, disilylbenzene, trisilylbenzene, disilylcyclohexane and disiloxanes having the formula Rn(R′)6−nOSi2 wherein R and R′ are selected from the groups consisting of hydrogen, methyl, ethyl, tert-butyl, vinyl, ethoxy, methoxy, phenyl and halogen and n is 0 to 5.
- 27. The method as claimed in claim 21 wherein said linking agent is an organic peroxides selected from the group consisting of benzoyl peroxide, acetyl-benzoyl peroxide, diacetyl peroxide, ditert-butyl peroxide, dimethyl peroxide and peroxides having C1 to C5.
- 28. The method as claimed in claim 21 wherein said polyhedral oligometric silsesquioxane is dissolved in a solvent prior to addition to said chemical vapor deposition system.
- 29. The method as claimed in claim 28 wherein said solvent is selected from the group consisting of cyclohexane, benzene, normal and cyclo-siloxanes, volatile silicone solvents and tetrahydofuran.
- 30. The method as claimed in claim 1 wherein said polyhedral oligometric silsesquioxane is sublimed in the vacuum chamber by a direct sublimation heater in the chemical vapor deposition system.
Parent Case Info
[0001] This application claims priority from U.S. Provisional Patent Application Serial No. 60/299,409 filed Jun. 19, 2001.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60299409 |
Jun 2001 |
US |