The present invention relates to packaging microfeature devices and, in particular, methods for packaging such devices at the wafer level and microfeature devices formed by such methods.
Microelectronic device assemblies, such as memory chips and microprocessor chips, typically include one or more microelectronic components attached to a substrate and encased in a protecting covering. The microelectronic components commonly include at least one microelectronic die having functional features such as memory cells, processor circuits, and interconnecting circuitry. The dies also typically include bond-pads electrically coupled to the functional features. The bond-pads can be used to operatively connect the dies to external devices such as buses, circuits, and/or other microelectronic assemblies.
A plurality of microelectronic dies are generally formed simultaneously in a single microfeature workpiece or wafer. The dies typically have an active side with bond-pads that initially face upward. One step in the manufacturing process is the formation of conductive couplers (e.g., solder balls or pads of solder paste) on the bond-pads. For example, after forming the dies on the wafer, a highly accurate stenciling machine can deposit masses of solder paste onto the individual pads on the dies to form solder balls.
The stenciling machine generally includes a stencil and a wiper mechanism. In applications where the bond-pads on the dies have a very fine pitch, however, patterned layers of photoresists are typically used rather than stencils. In fine pitch applications, a resist is applied to the wafer and patterned to form a plurality of holes arranged in a pattern corresponding to the bond-pads on the dies. A wiper mechanism is then moved across the resist to drive the solder paste through the holes and into contact with the bond-pads on the wafer. The resist is then stripped away and the wafer is ready for further processing. One drawback associated with this method is that it includes a number of relatively expensive steps. For example, manufacturers must strip the resist and dispose of the chemical waste generated during removal of the resist. This can be quite expensive because there are many regulations for disposing of such chemical wastes. Another drawback with this method is that removing the resist may require chemical solvents that can attack (e.g., contaminate and/or damage) the various components of the dies and/or the wafer.
Another step in the packaging process is dicing or singulating the dies from the wafer and attaching the singulated dies to external devices. One type of microelectronic component, for example, is a “flip-chip” device. These components are referred to as “flip-chips” because after forming the solder balls on the bond-pads and singulating the dies, the individual dies are inverted or “flipped” such that the bond-pads face downward for attachment to terminals of a lead frame or interposer substrate. In applications using solder bumps, the solder bumps are reflowed to form a solder joint between the flip-chip component and the substrate. This leaves a small gap between the flip-chip and the substrate. To enhance the integrity of the joint between the microelectronic component and the substrate, an underfill material is introduced into the gap.
There are several drawbacks associated with this method of applying the underfill material. For example, the underfill material is typically dispensed into the gap by depositing a bead of the underfill material along one or two sides of the flip-chip when the underfill material is in a fluidic state (i.e., flowable) and allowing the underfill material to wick into the gap. After the underfill material fills the gap, it is cured to a hardened state. Although such a process yields good results, the processing time necessary to permit the underfill material to flow across the entire width of the die can reduce the throughput of the manufacturing process. Moreover, depositing and curing the underfill material necessitates further steps in the packaging process that can decrease throughput. Yet another drawback with this above process for depositing the underfill material is that one side of the flip-chip often has a greater concentration of underfill material. The nonuniform distribution of underfill material creates differences in the rigidity and the coefficient of thermal expansion across the die. Accordingly, new methods are needed for both forming stencils in fine pitch applications as well as applying underfill materials in flip-chip devices.
A. Overview
The following disclosure describes several embodiments of methods for packaging microfeature devices on and/or in microfeature workpieces at the wafer level and microfeature devices that are formed using such methods. The term “microfeature device” is used throughout to include microelectronic devices, micromechanical devices, data storage elements, read/write components, and other articles of manufacture. For example, microfeature devices include imagers, SIMM, DRAM, flash-memory,-ASICs, processors, flip chips, ball-grid array chips, and other types of electronic devices or components. The term “microfeature workpiece” is used throughout to include substrates in and/or on which microelectronic devices, micromechanical devices, data storage elements, and other features are fabricated. For example, microfeature workpieces can be semiconductor wafers, glass substrates, insulated substrates, or many other types of substrates. Several embodiments of the invention are shown in
One aspect of the invention is directed toward methods for fabricating microfeature devices. An embodiment of one such method comprises providing a workpiece including a substrate having a plurality of microelectronic dies on and/or in the substrate. The individual dies include integrated circuitry and pads electrically coupled to the integrated circuitry. The method then includes depositing an underfill layer onto a front side of the substrate. The method also includes selectively forming apertures in the underfill layer to expose the pads at the front side of the substrate. The method further includes depositing a conductive material into the apertures and in electrical contact with the corresponding pads. In one aspect of this embodiment, the underfill layer is a photoimageable material.
Another aspect of the invention is directed toward a microfeature device assembly. One embodiment of such a microfeature device assembly comprises a substrate having a front side and a backside and a plurality of microelectronic dies on and/or in the substrate. The individual dies include integrated circuitry and pads at the front side of the substrate electrically coupled to the integrated circuitry. The workpiece includes an underfill layer covering the pads at the front side of the substrate. The workpiece also includes a plurality of selectively formed apertures extending through the underfill layer to corresponding pads at the front side of the substrate. The workpiece further includes a conductive material deposited into the apertures and in electrical contact with the corresponding pads.
B. Methods of Packaging of Microfeature Devices
The assembly 100 further includes an underfill layer 130 deposited onto the front side 112 of the substrate 110. The underfill layer 130 can be deposited onto the substrate 110 using spin-on techniques, spraying techniques, molding, vapor deposition processes (e.g., chemical vapor deposition or physical vapor deposition), and/or other processes known to those of skill in the art. In the illustrated embodiment, the underfill layer 130 is composed of a photoimageable material. More specifically, the underfill layer 130 can be composed of a photoimageable silicone. Photoimageable silicones have some properties of photoimageable polyimides, and some properties of underfills. An example of a photoimageable silicone material is WL-5350, commercially available from Dow Corning.
A plurality of apertures or openings are then formed in the underfill layer 130. Referring to
Referring to
The method continues by filling the individual apertures 132 with a conductive material 150. Referring to
Referring next to
Several embodiments of the methods illustrated above in
Referring to
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application is divisional of U.S. patent application Ser. No. 10/932,842, filed Sep. 1, 2004, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5218234 | Thompson et al. | Jun 1993 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5677566 | King et al. | Oct 1997 | A |
5696033 | Kinsman | Dec 1997 | A |
5739585 | Akram et al. | Apr 1998 | A |
D394844 | Farnworth et al. | Jun 1998 | S |
D402638 | Farnworth et al. | Dec 1998 | S |
5851845 | Wood et al. | Dec 1998 | A |
5866953 | Akram et al. | Feb 1999 | A |
5891753 | Akram | Apr 1999 | A |
5893726 | Farnworth et al. | Apr 1999 | A |
5898224 | Akram | Apr 1999 | A |
5933713 | Farnworth | Aug 1999 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5958100 | Farnworth et al. | Sep 1999 | A |
5986209 | Tandy | Nov 1999 | A |
5989941 | Wensel | Nov 1999 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
5994784 | Ahmad | Nov 1999 | A |
RE36469 | Wood et al. | Dec 1999 | E |
6008070 | Farnworth | Dec 1999 | A |
6008074 | Brand | Dec 1999 | A |
6020629 | Farnworth et al. | Feb 2000 | A |
6025728 | Hembree et al. | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6046496 | Corisis et al. | Apr 2000 | A |
6048744 | Corisis et al. | Apr 2000 | A |
6048755 | Jiang et al. | Apr 2000 | A |
6049125 | Brooks et al. | Apr 2000 | A |
6072236 | Akram et al. | Jun 2000 | A |
6075288 | Akram | Jun 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6103547 | Corisis et al. | Aug 2000 | A |
6107122 | Wood et al. | Aug 2000 | A |
6107680 | Hodges | Aug 2000 | A |
6117382 | Thummel | Sep 2000 | A |
6124634 | Akram et al. | Sep 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6159764 | Kinsman et al. | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6190940 | DeFelice et al. | Feb 2001 | B1 |
6198172 | King et al. | Mar 2001 | B1 |
6208519 | Jiang et al. | Mar 2001 | B1 |
6210992 | Tandy et al. | Apr 2001 | B1 |
6215175 | Kinsman | Apr 2001 | B1 |
6228548 | King et al. | May 2001 | B1 |
6228678 | Gilleo et al. | May 2001 | B1 |
6229202 | Corisis | May 2001 | B1 |
6246108 | Corisis et al. | Jun 2001 | B1 |
6252308 | Akram et al. | Jun 2001 | B1 |
6258624 | Corisis | Jul 2001 | B1 |
6259153 | Corisis | Jul 2001 | B1 |
6277671 | Tripard | Aug 2001 | B1 |
6284571 | Corisis et al. | Sep 2001 | B1 |
6291894 | Farnworth et al. | Sep 2001 | B1 |
6294839 | Mess et al. | Sep 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6303985 | Larson et al. | Oct 2001 | B1 |
6310288 | Moden | Oct 2001 | B1 |
6310390 | Moden | Oct 2001 | B1 |
6314639 | Corisis | Nov 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6326242 | Brooks et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326687 | Corisis | Dec 2001 | B1 |
6326697 | Farnworth | Dec 2001 | B1 |
6326698 | Akram | Dec 2001 | B1 |
6329220 | Bolken et al. | Dec 2001 | B1 |
6331221 | Cobbley | Dec 2001 | B1 |
6331453 | Bolken et al. | Dec 2001 | B1 |
6332766 | Thummel | Dec 2001 | B1 |
6365434 | Rumsey et al. | Apr 2002 | B1 |
6376354 | Yih | Apr 2002 | B1 |
6387795 | Shao | May 2002 | B1 |
6451709 | Hembree | Sep 2002 | B1 |
6518089 | Coyle | Feb 2003 | B2 |
6548757 | Russell et al. | Apr 2003 | B1 |
6558600 | Williams et al. | May 2003 | B1 |
6561479 | Eldridge | May 2003 | B1 |
6564979 | Savaria | May 2003 | B2 |
6576494 | Farnworth | Jun 2003 | B1 |
6576495 | Jiang et al. | Jun 2003 | B1 |
6589820 | Bolken | Jul 2003 | B1 |
6614092 | Eldridge et al. | Sep 2003 | B2 |
6622380 | Grigg | Sep 2003 | B1 |
6638595 | Rumsey et al. | Oct 2003 | B2 |
6644949 | Rumsey et al. | Nov 2003 | B2 |
6653173 | Bolken | Nov 2003 | B2 |
6661104 | Jiang et al. | Dec 2003 | B2 |
6670719 | Eldridge et al. | Dec 2003 | B2 |
6672325 | Eldridge | Jan 2004 | B2 |
6673649 | Hiatt et al. | Jan 2004 | B1 |
6924171 | Buchwalter et al. | Aug 2005 | B2 |
20060046346 | Benson et al. | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060205116 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10932842 | Sep 2004 | US |
Child | 11430483 | US |