The present invention is related to methods for wafer-level packaging of microfeature devices and microfeature devices formed using such methods.
Conventional packaged microelectronic devices can include a singulated microelectronic die, an interposer substrate or lead frame attached to the die, and a molded casing around the die. The die generally includes an integrated circuit and a plurality of bond-pads coupled to the integrated circuit. The bond-pads are typically coupled to terminals on the interposer substrate or lead frame, and supply voltage, signals, etc., are transmitted to and from the integrated circuit via the bond-pads. In addition to the terminals, the interposer substrate can also include ball-pads coupled to the terminals by conductive traces supported in a dielectric material. Solder balls can be attached to the ball-pads in one-to-one correspondence to define a “ball-grid array.” Packaged microelectronic devices with ball-grid arrays are generally higher grade packages having lower profiles and higher pin counts than conventional packages using lead frames.
Packaged microelectronic devices such as those described above are used in cellular phones, pagers, personal digital assistants, computers, and many other electronic products. To meet the demand for smaller electronic products, there is a continuing drive to increase the performance of packaged microelectronic devices, while at the same time reducing the height and the surface area or “footprint” of such devices on printed circuit boards. Reducing the size of high performance devices, however, is difficult because the sophisticated integrated circuitry requires more bond-pads, which results in larger ball-grid arrays and thus larger footprints. One technique for increasing the component density of microelectronic devices within a given footprint is to stack one device on top of another.
One conventional stacking process includes placing a plurality of singulated first dies in a fixture and stacking a plurality of singulated second dies onto corresponding first dies. The stacked first and second dies can then be heated to reflow solder bumps on the second dies and securely attach the second dies to corresponding first dies. The stacked assemblies of first and second dies are then taken out of the fixture and mounted on an interposer substrate (e.g., in a “flip-chip” arrangement). Another reflow process can be used to securely attach the individual stacked die assemblies to the interposer substrate. The stacked die assemblies on the interposer substrate can then be encapsulated and singulated.
The conventional stacking process described above, however, has several drawbacks. For example, the process includes a large number of steps and accordingly can be relatively expensive. The large number of steps can also reduce the throughput of finished devices. Another drawback of the conventional process described above is that the stacked die assemblies can have a relatively large footprint and occupy a significant amount of vertical space (i.e., high profile) because the dies are stacked on an interposer substrate.
Another conventional stacking process includes forming a plurality of first dies on a first support member (e.g., a film frame) and a plurality of second dies on a second support member (e.g., a film frame). The individual first and second dies can be tested while on the support members with a probe device. After testing, the first and second dies are singulated and mounted directly onto an interposer substrate in a stacked configuration. This stacking process, however, also includes several drawbacks. For example, although the dies are tested before singulation to ensure that they function properly, the dies must still undergo a variety of fabrication and packaging processes (e.g., singulation, bumping, mounting) after testing. If the dies become inoperable and/or damaged after these rigorous packaging processes, the entire packaged device (rather than just the bad die) is generally discarded. Accordingly, there is a need to improve the processes for packaging microfeature devices.
A. Overview/Summary
The following disclosure describes methods for wafer-level packaging of microfeature devices and microfeature devices formed using such methods. One aspect of the invention is directed toward a method for packaging microfeature devices. The method can include releasably attaching a plurality of first known good microelectronic dies to a carrier substrate in a desired arrangement. In several embodiments, for example, the first dies can be releasably attached to an attachment feature on the carrier substrate. The method can also include attaching one or more second known good microelectronic dies to the individual first dies in a stacked configuration to form a plurality of stacked devices. The method further includes at least partially encapsulating the stacked devices and separating the stacked devices from each other. In several embodiments, the method can further include (a) removing the carrier substrate after encapsulation and before separating the stacked devices from each other, and (b) attaching a plurality of electrical couplers to external contacts on the first dies after removing the carrier substrate and before separating the stacked devices.
The first and second dies can include a variety of configurations and orientations with respect to each other and/or the carrier substrate. For example, the first dies can include memory devices, processors, or other types of devices that include integrated circuitry. The second dies can include devices generally similar to the first dies, as well as devices including image sensors and optical elements formed on the dies over the image sensors. The first dies can be releasably attached to the carrier substrate with an active side or a back side of the first dies adjacent the carrier substrate, and the second dies can have several different orientations relative to corresponding second dies. In several embodiments, the first dies and/or second dies may also include a redistribution layer.
Another embodiment of a method for packaging microfeature devices includes releasably attaching a plurality of first known good microelectronic dies to a carrier substrate in a desired arrangement such that the carrier substrate is substantially populated with the first dies. The method also includes attaching and electrically coupling second known good microelectronic dies to the individual first dies. The second dies are attached to the first dies in a stacked configuration to form a plurality of stacked units. The method also includes disposing an encapsulant between the stacked units. The carrier substrate is removed from the stacked units after disposing the encapsulant between the stacked units. The method then includes cutting the encapsulant to separate the stacked units from each other.
Still another embodiment of the invention is directed to a method for manufacturing microfeature devices including first known good microelectronic dies and second known good microelectronic dies. The first dies and second dies include integrated circuitry and terminals electrically coupled to the integrated circuitry. The method includes populating a support member with a plurality of first dies such that the support member is substantially populated with the first dies. The method also includes coupling second dies to the individual first dies in a stacked configuration. The method continues by depositing an encapsulant onto the support member to at least partially encapsulate the first dies and the second dies. The method further includes removing the first dies from the support member after at least partially encapsulating the first dies and the second dies and cutting the encapsulant to separate the first dies.
Additional embodiments of the invention are directed toward a microfeature assembly including a carrier substrate and a plurality of first known good microelectronic dies releasably attached to the carrier substrate in a desired arrangement. The assembly can also include a plurality of second known good microelectronic dies attached to corresponding first dies in a stacked configuration. The assembly also includes an encapsulant at least partially encapsulating the first dies and the second dies.
The terms “microfeature assembly” and “microfeature subassembly” are used throughout to include a variety of articles of manufacture, including, e.g., semiconductor wafers having active components, individual integrated circuit dies, packaged dies, and subassemblies comprising two or more microfeature workpieces or components, e.g., a stacked die package. Many specific details of certain embodiments of the invention are set forth in the following description and in
B. Methods for Wafer-Level Packaging of Microfeature Devices
In several embodiments, the support member 100 can be patterned before being populated with the first dies 120. Patterning, for example, can provide for accurate placement of the first dies 120 on the support member 100 in a predetermined arrangement. The pattern can have generally the same arrangement as a typical wafer array, or in other embodiments the pattern can provide for additional spacing between the first dies 120 attached to the support member 100. In the illustrated embodiment, for example, the first dies 120 are spaced apart from each other by gaps 108 that provide sufficient room for encapsulation of the individual first dies 120 and provide adequate tolerances for further processing (e.g., attaching electrical couplers, forming redistribution layers, constructing optical structures, etc.). These gaps 108 are commonly aligned with one another to facilitate cutting with a wafer saw along lanes similar to streets or scribe lines between the individual first dies 120. In alternative embodiments, the support member 100 may not be patterned before releasably attaching the first dies 120 to the support member 100.
The first dies 120 are releasably attached to the attachment feature 106 on the support member 100 during the repopulation process. The attachment feature 106 can include an adhesive film, epoxy, tape, paste, or other suitable material that releasably secures the first dies 120 in place during processing and has suitable release characteristics for removing the first dies 120 from the support member 100 in subsequent processing steps. Suitable materials for the attachment feature 106 can include REVALPHA thermal release tape, commercially available from Nitto Denko America of Fremont, Calif. In one aspect of this embodiment, the first dies 120 (and the second dies described below with respect to
The individual first dies 120 can include an active side 122, a back side 124, integrated circuitry 125 (shown schematically), a plurality of terminals 126 (e.g., bond-pads) at the active side 122, and a plurality of pads 128 (only one is shown on each die) at the back side 124. In the illustrated embodiment, the individual first dies 120 also include a redistribution layer 130 (shown in broken lines) at the active side 122 and in contact with the attachment feature 106 on the support member 100. In other embodiments, however, the individual first dies 120 may not include a redistribution layer 130. The first dies 120 can include memory devices, processors, or other types of devices that include integrated circuitry. Although the illustrated first dies 120 have the same configuration, in other embodiments the individual first dies 120 may have different features to perform different functions.
In the embodiment shown in
Referring next to
Referring next to
Referring next to
Another feature of the microfeature device 170 is that the first die 120 and the second die 140 are at least partially encapsulated before singulation. An advantage of this feature is that the first and second dies 120 and 140 can be protected from fluids and/or particles while cutting the encapsulant 160 to separate the microfeature devices 170 from each other. The first and second dies 120 and 140 are also protected during subsequent packaging and assembly processes.
One feature of the method described above with respect to
C. Additional Embodiments of Methods for Wafer-Level Packaging of Microfeature Devices
After the support member 100 is populated with the first dies 220, an encapsulant 260 is deposited onto the support member 100 to encapsulate the first dies 220. The encapsulant 260 can be deposited onto the support member 100 using processes generally similar to those described above with respect to
Referring next to
Referring next to
The second dies 340 can also have a different configuration than the second dies 140 described above. The second dies 340, for example, include a first side 342, a second side 344 opposite the first side 342, integrated circuitry 345 (shown schematically), a plurality of terminals 346 at the first side 342, and a plurality of pads 348 (only one is shown) at the second side 344. The pads 348 on the second dies 340 are electrically coupled to corresponding terminals 326 on the first dies 320.
Referring next to
Referring next to
After at least partially encapsulating the first dies 520, a plurality of second known good microelectronic dies 540 can be stacked on corresponding first dies 520 to form a plurality of stacked microfeature subassemblies 550. The individual second dies 540 can include a first side 542, a second side 543 opposite the first side 542, integrated circuitry 544 (shown schematically), an image sensor 545 electrically coupled to the integrated circuitry 544, and external contacts 546 electrically coupled to the integrated circuitry 545. The external contacts 546, for example, can include a plurality of terminals 547 at the first side 542, a plurality of contacts 548 at the second side 543, and interconnects 549 extending through the second dies 540 electrically coupling the terminals 547 to corresponding contacts 548. In the embodiment illustrated in
Referring next to
One feature of this embodiment is that the optical elements are formed over the image sensors 545 before singulation of the imagers 570. An advantage of this feature is that the image sensors 545 are protected before proceeding with singulation and subsequent packaging processes. For example, the color filter arrays 552, microlenses, and oxide coating protect the image sensors 545 from fluids and particles while cutting the encapsulated first and second dies 520 and 540. A single small particle can ruin an image sensor 545 for high-end applications, such as digital cameras and picture cell phones. However, by forming the optical elements at the wafer level before singulating the individual imagers 570, the image sensors 545 on the individual second dies 540 are protected during the singulation process. Further, the image sensors 545 are also protected during subsequent packaging and assembly processes.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the invention. For example, one or more additional layers of dies may be stacked on the first and second known good dies in each of the embodiments described above to form stacked devices having three or more stacked dies. Furthermore, the dies described above may have different arrangements and/or include different features. Aspects of the invention described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, any of the dies described above with reference to one embodiment may be used in any of the other above-described embodiments. Further, while advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application is a divisional of U.S. application Ser. No. 11/215,780 filed Aug. 30, 2005, now U.S. Pat. No. 7,807,505, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5107328 | Kinsman | Apr 1992 | A |
5128831 | Fox, III et al. | Jul 1992 | A |
5138434 | Wood et al. | Aug 1992 | A |
5252857 | Kane et al. | Oct 1993 | A |
5258236 | Arjavalingam et al. | Nov 1993 | A |
5434745 | Shokrgozar et al. | Jul 1995 | A |
5518957 | Kim | May 1996 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5677566 | King et al. | Oct 1997 | A |
5696033 | Kinsman | Dec 1997 | A |
5707881 | Lum | Jan 1998 | A |
5739050 | Farnworth | Apr 1998 | A |
5739585 | Akram et al. | Apr 1998 | A |
D394844 | Farnworth et al. | Jun 1998 | S |
5815000 | Farnworth et al. | Sep 1998 | A |
402638 | Wood et al. | Dec 1998 | A |
5851845 | Wood et al. | Dec 1998 | A |
5883426 | Tokuno et al. | Mar 1999 | A |
5891753 | Akram | Apr 1999 | A |
5893726 | Farnworth et al. | Apr 1999 | A |
5894218 | Farnworth et al. | Apr 1999 | A |
5898224 | Akram | Apr 1999 | A |
5933713 | Farnworth | Aug 1999 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5946553 | Wood et al. | Aug 1999 | A |
5958100 | Farnworth et al. | Sep 1999 | A |
5986209 | Tandy | Nov 1999 | A |
5989941 | Wensel | Nov 1999 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
5994784 | Ahmad | Nov 1999 | A |
6004867 | Kim et al. | Dec 1999 | A |
6008070 | Farnworth | Dec 1999 | A |
6008074 | Brand | Dec 1999 | A |
6018249 | Akram et al. | Jan 2000 | A |
6020624 | Wood et al. | Feb 2000 | A |
6020629 | Farnworth et al. | Feb 2000 | A |
6025728 | Hembree et al. | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6046496 | Corisis et al. | Apr 2000 | A |
6048744 | Corisis et al. | Apr 2000 | A |
6048755 | Jiang et al. | Apr 2000 | A |
6049125 | Brooks et al. | Apr 2000 | A |
6051878 | Akram et al. | Apr 2000 | A |
6064194 | Farnworth et al. | May 2000 | A |
6066514 | King et al. | May 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6072236 | Akram et al. | Jun 2000 | A |
6072323 | Hembree et al. | Jun 2000 | A |
6075288 | Akram | Jun 2000 | A |
6081429 | Barrett | Jun 2000 | A |
6089920 | Farnworth et al. | Jul 2000 | A |
6094058 | Hembree et al. | Jul 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6103547 | Corisis et al. | Aug 2000 | A |
6107122 | Wood et al. | Aug 2000 | A |
6107680 | Hodges | Aug 2000 | A |
6117382 | Thummel | Sep 2000 | A |
6124634 | Akram et al. | Sep 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6153924 | Kinsman | Nov 2000 | A |
6159764 | Kinsman et al. | Dec 2000 | A |
6163956 | Corisis | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6175149 | Akram | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6187615 | Kim et al. | Feb 2001 | B1 |
6188232 | Akram et al. | Feb 2001 | B1 |
6198172 | King et al. | Mar 2001 | B1 |
6208156 | Hembree | Mar 2001 | B1 |
6208519 | Jiang et al. | Mar 2001 | B1 |
6210992 | Tandy et al. | Apr 2001 | B1 |
6212767 | Tandy | Apr 2001 | B1 |
6215175 | Kinsman | Apr 2001 | B1 |
6225689 | Moden et al. | May 2001 | B1 |
6228548 | King et al. | May 2001 | B1 |
6228687 | Akram et al. | May 2001 | B1 |
6229202 | Corisis | May 2001 | B1 |
6235552 | Kwon et al. | May 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6246108 | Corisis et al. | Jun 2001 | B1 |
6247629 | Jacobson et al. | Jun 2001 | B1 |
6252308 | Akram et al. | Jun 2001 | B1 |
6252772 | Allen | Jun 2001 | B1 |
6255833 | Akram et al. | Jul 2001 | B1 |
6258623 | Moden et al. | Jul 2001 | B1 |
6258624 | Corisis | Jul 2001 | B1 |
6259153 | Corisis | Jul 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6277671 | Tripard | Aug 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6284571 | Corisis et al. | Sep 2001 | B1 |
6285204 | Farnworth | Sep 2001 | B1 |
6291894 | Farnworth et al. | Sep 2001 | B1 |
6294839 | Mess et al. | Sep 2001 | B1 |
6297547 | Akram | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6303985 | Larson et al. | Oct 2001 | B1 |
6310390 | Moden | Oct 2001 | B1 |
6314639 | Corisis | Nov 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6326242 | Brooks et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326687 | Corisis | Dec 2001 | B1 |
6326697 | Farnworth | Dec 2001 | B1 |
6326698 | Akram | Dec 2001 | B1 |
6329220 | Bolken et al. | Dec 2001 | B1 |
6331221 | Cobbley | Dec 2001 | B1 |
6331453 | Bolken et al. | Dec 2001 | B1 |
6332766 | Thummel | Dec 2001 | B1 |
6365434 | Rumsey et al. | Apr 2002 | B1 |
6407381 | Glenn et al. | Jun 2002 | B1 |
6429528 | King et al. | Aug 2002 | B1 |
6432796 | Peterson | Aug 2002 | B1 |
6437586 | Robinson | Aug 2002 | B1 |
6451709 | Hembree | Sep 2002 | B1 |
6503780 | Glenn et al. | Jan 2003 | B1 |
6548376 | Jiang | Apr 2003 | B2 |
6548757 | Russell et al. | Apr 2003 | B1 |
6552910 | Moon et al. | Apr 2003 | B1 |
6555400 | Farnworth et al. | Apr 2003 | B2 |
6558600 | Williams et al. | May 2003 | B1 |
6560117 | Moon et al. | May 2003 | B2 |
6561479 | Eldridge | May 2003 | B1 |
6564979 | Savaria | May 2003 | B2 |
6576494 | Farnworth | Jun 2003 | B1 |
6576495 | Jiang et al. | Jun 2003 | B1 |
6576531 | Peng et al. | Jun 2003 | B2 |
6589820 | Bolken | Jul 2003 | B1 |
6607937 | Corisis | Aug 2003 | B1 |
6614092 | Eldridge et al. | Sep 2003 | B2 |
6622380 | Grigg | Sep 2003 | B1 |
6638595 | Rumsey et al. | Oct 2003 | B2 |
6644949 | Rumsey et al. | Nov 2003 | B2 |
6653173 | Bolken | Nov 2003 | B2 |
6670719 | Eldridge et al. | Dec 2003 | B2 |
6672325 | Eldridge | Jan 2004 | B2 |
6673649 | Hiatt et al. | Jan 2004 | B1 |
6888159 | Farnworth et al. | May 2005 | B2 |
6908784 | Farnworth et al. | Jun 2005 | B1 |
7235431 | Wood et al. | Jun 2007 | B2 |
20010015492 | Akram et al. | Aug 2001 | A1 |
20020001670 | Pauw et al. | Jan 2002 | A1 |
20020094602 | Her et al. | Jul 2002 | A1 |
20020100165 | Glenn | Aug 2002 | A1 |
20020130401 | Chee et al. | Sep 2002 | A1 |
20040056344 | Ogawa et al. | Mar 2004 | A1 |
20040214373 | Jiang et al. | Oct 2004 | A1 |
20050104171 | Benson et al. | May 2005 | A1 |
20050255632 | Biar et al. | Nov 2005 | A1 |
20050270055 | Akram et al. | Dec 2005 | A1 |
20050277279 | Luo et al. | Dec 2005 | A1 |
20060043573 | Hedler et al. | Mar 2006 | A1 |
20070045875 | Farnworth et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 03044859 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100327462 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11215780 | Aug 2005 | US |
Child | 12874644 | US |