There are many inventions described and illustrated herein. The inventions relate to encapsulation electromechanical structures, for example, microelectromechanical and/or nanoelectromechanical structure (collectively hereinafter “microelectromechanical structures”) and devices/systems including same; and more particularly, in one aspect, for fabricating or manufacturing microelectromechanical systems having mechanical structures that are encapsulated using wafer level encapsulation techniques, and devices/systems incorporated same.
Microelectromechanical systems, for example, gyroscopes, resonators and accelerometers, utilize micromachining techniques (i.e., lithographic and other precision fabrication techniques) to reduce mechanical components to a scale that is generally comparable to microelectronics. Microelectromechanical systems typically include a mechanical structure fabricated from or on, for example, a silicon substrate using micromachining techniques.
The mechanical structures are typically sealed in a chamber. The delicate mechanical structure may be sealed in, for example, a hermetically sealed metal or ceramic container or bonded to a semiconductor or glass-like substrate having a chamber to house, accommodate or cover the mechanical structure. In the context of the hermetically sealed metal or ceramic container, the substrate on, or in which, the mechanical structure resides may be disposed in and affixed to the metal or ceramic container. The hermetically sealed metal or ceramic container often also serves as a primary package as well.
In the context of the semiconductor or glass-like substrate packaging technique, the substrate of the mechanical structure may be bonded to another substrate (i.e., a “cover” wafer) whereby the bonded substrates form a chamber within which the mechanical structure resides. In this way, the operating environment of the mechanical structure may be controlled and the structure itself protected from, for example, inadvertent contact.
There are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.
In one aspect, the present inventions are directed to a microelectromechanical device comprising a first substrate, a chamber, and a microelectromechanical structure, wherein the microelectromechanical structure is (i) formed from a portion of the first substrate and (ii) at least partially disposed in the chamber. In addition, in this aspect, the microelectromechanical device further includes a second substrate, bonded to the first substrate, wherein a surface of the second substrate forms a wall of the chamber, as well as a contact. The contact includes (1) a first portion of the contact is (i) formed from a portion of the first substrate and (ii) at least a portion thereof is disposed outside the chamber, and (2) a second portion of the contact is formed from a portion of the second substrate.
In one embodiment, the second substrate includes polycrystalline silicon, porous polycrystalline silicon, amorphous silicon, silicon carbide, silicon/germanium, germanium, or gallium arsenide. The first substrate may include polycrystalline silicon, porous polycrystalline silicon, amorphous silicon, silicon carbide, silicon/germanium, germanium, or gallium arsenide.
In addition, in one embodiment, the first portion of the contact is a semiconductor material having a first conductivity, the second substrate is a semiconductor material having a second conductivity, and the second portion of the contact is a semiconductor material having the first conductivity. Notably, the second portion of the contact may be a polycrystalline or monocrystalline silicon that is counterdoped to include the first conductivity.
The microelectromechanical device may further include a trench, disposed in the second substrate and around at least a portion of the second portion of the contact. The trench may include a first material (for example, an insulation material) disposed therein to electrically isolate the second portion of the contact from the second substrate.
Notably, the first substrate is a semiconductor on insulator substrate.
In another principle aspect, the present inventions are directed to a microelectromechanical device comprising a first substrate, a second substrate, wherein the second substrate is bonded to the first substrate, a chamber, and a microelectromechanical structure, wherein the microelectromechanical structure is (i) formed from a portion of the second substrate and (ii) at least partially disposed in the chamber. The microelectromechanical device may further include a third substrate, bonded to the second substrate, wherein a surface of the third substrate forms a wall of the chamber. The microelectromechanical device may also include a contact having (1) a first portion of the contact is (i) formed from a portion of the second substrate and (ii) at least a portion thereof is disposed outside the chamber, and (2) a second portion of the contact is formed from a portion of the third substrate.
The second substrate may include polycrystalline silicon, porous polycrystalline silicon, amorphous silicon, silicon carbide, silicon/germanium, germanium, or gallium arsenide. The third substrate may include polycrystalline silicon, porous polycrystalline silicon, amorphous silicon, silicon carbide, silicon/germanium, germanium, or gallium arsenide.
In one embodiment, the first portion of the contact is a semiconductor material having a first conductivity, the third substrate is a semiconductor material having a second conductivity, and the second portion of the contact is a semiconductor material having the first conductivity. Notably, in one embodiment, the second portion of the contact may be a polycrystalline or monocrystalline silicon that is counterdoped to include the first conductivity.
The microelectromechanical device may further include a trench, disposed in the third substrate and around at least a portion of the second portion of the contact. The trench may include a first material (for example, an insulation material) disposed therein to electrically isolate the second portion of the contact from the third substrate.
The microelectromechanical device may also include an isolation region disposed in the second substrate such that the trench is aligned with and juxtaposed to the isolation region. In this embodiment, the first portion of the contact may be a semiconductor material having a first conductivity, the isolation region may be a semiconductor material having a second conductivity, and the second portion of the contact may be a semiconductor material having the first conductivity. A trench may be included to electrically isolate the second portion of the contact from the second substrate. The trench may include a semiconductor material, disposed therein, having the second conductivity.
In another embodiment, the microelectromechanical device may include an isolation region disposed in the first substrate such that the first portion of the contact is aligned with and juxtaposed to the isolation region.
In yet another embodiment, the microelectromechanical device may include a first isolation region and a second isolation region. The first isolation region may be disposed in the first substrate such that the first portion of the contact is aligned with and juxtaposed to the first isolation region. The second isolation region may be disposed in the second substrate such that the second portion of the contact is aligned with and juxtaposed to the second isolation region. In this embodiment, the first and second portions of the contact may be semiconductor materials having a first conductivity, and the first and second isolation regions may be semiconductor materials having the second conductivity.
The microelectromechanical device of this embodiment may also include a trench, disposed in the third substrate and around at least a portion of the second portion of the contact. The trench may include a first material (for example, an insulator material) disposed therein to electrically isolate the second portion of the contact from the third substrate. The trench may be aligned with and juxtaposed to the second isolation region.
Notably, all forms of bonding, whether now known or later developed, are intended to fall within the scope of the present invention. For example, bonding techniques such as fusion bonding, anodic-like bonding, silicon direct bonding, soldering (for example, eutectic soldering), thermo compression, thermo-sonic bonding, laser bonding and/or glass reflow bonding, and/or combinations thereof.
Moreover, any of the embodiments described and illustrated herein may employ a bonding material and/or a bonding facilitator material (disposed between substrates, for example, the second and third substrates) to, for example, enhance the attachment of or the “seal” between the substrates (for example, the first and second, and/or the second and third), address/compensate for planarity considerations between substrates to be bonded (for example, compensate for differences in planarity between bonded substrates), and/or to reduce and/or minimize differences in thermal expansion (that is materials having different coefficients of thermal expansion) of the substrates and materials therebetween (if any). Such materials may be, for example, solder, metals, frit, adhesives, BPSG, PSG, or SOG, or combinations thereof.
Again, there are many inventions, and aspects of the inventions, described and illustrated herein. This Summary of the Inventions is not exhaustive of the scope of the present inventions. Moreover, this Summary of the Inventions is not intended to be limiting of the inventions and should not be interpreted in that manner. While certain embodiments have been described and/or outlined in this Summary of the Inventions, it should be understood that the present inventions are not limited to such embodiments, description and/or outline, nor are the claims limited in such a manner. Indeed, many others embodiments, which may be different from and/or similar to, the embodiments presented in this Summary, will be apparent from the description, illustrations and claims, which follow. In addition, although various features, attributes and advantages have been described in this Summary of the Inventions and/or are apparent in light thereof, it should be understood that such features, attributes and advantages are not required whether in one, some or all of the embodiments of the present inventions and, indeed, need not be present in any of the embodiments of the present inventions.
In the course of the detailed description to follow, reference will be made to the attached drawings. These drawings show different aspects of the present inventions and, where appropriate, reference numerals illustrating like structures, components, materials and/or elements in different figures are labeled similarly. It is understood that various combinations of the structures, components, materials and/or elements, other than those specifically shown, are contemplated and are within the scope of the present inventions.
There are many inventions described and illustrated herein. In one aspect, the present inventions relate to devices, systems and/or methods of encapsulating and fabricating electromechanical structures or elements, for example, accelerometer, gyroscope or other transducer (for example, pressure sensor, strain sensor, tactile sensor, magnetic sensor and/or temperature sensor), filter or resonator The fabricating or manufacturing microelectromechanical systems of the present invention, and the systems manufactured thereby, employ wafer bonding encapsulation techniques.
With reference to
Notably, circuitry 16 may include interface circuitry to provide information (from, for example, micromachined mechanical structure 12) to an external device (not illustrated), for example, a computer, indicator/display and/or sensor.
With continued reference to
As mentioned above, micromachined mechanical structure 12 illustrated in
With continued reference to
In one embodiment, the present inventions employ two or more substrates to form and encapsulate micromachined mechanical structure 12. For example, with reference to
In particular, with reference to
In another embodiment, SOI substrate 14a may be a conventional SOI wafer having a relatively thin semiconductor layer 22c. In this regard, SOI substrate 36 having a relatively thin semiconductor layer 22c may be fabricated using a bulk silicon wafer which is implanted and oxidized by oxygen to thereby form a relatively thin silicon dioxide layer 22b on a monocrystalline wafer surface 22a. Thereafter, another wafer (illustrated as layer 22c) is bonded to layer 22b. In this exemplary embodiment, semiconductor layer 22c (i.e., monocrystalline silicon) is disposed on insulation layer 22b (i.e. silicon dioxide), having a thickness of approximately 350 nm, which is disposed on a first substrate layer 22a (for example, monocrystalline silicon), having a thickness of approximately 190 nm.
Notably, all techniques for providing or fabricating SOI substrate 14a, whether now known or later developed, are intended to be within the scope of the present inventions.
With reference to
With reference to
After moveable electrode 18 is defined via trenches 28b and 28c, moveable electrode 18 may be “released” by etching portions of insulation layer 22b that are disposed under moveable electrode 18. For example, in one embodiment, where insulation layer 22b is comprised of silicon dioxide, selected portions may be removed/etched using well-known wet etching techniques and buffered HF mixtures (i.e., a buffered oxide etch) or well-known vapor etching techniques using vapor HF. The trenches 28b and 28c, in addition to defining the features of moveable electrode 18, may also permit etching and/or removal of at least selected portions of insulation layer 22b thereby providing a void or cavity 30 beneath moveable electrode 18. (See,
With reference to
In conjunction with securing second substrate 14b to the exposed portion(s) of semiconductor layer 22c, the atmosphere (including its characteristics) in which moveable electrode 18 operates may also be defined. In this regard, the chamber in which the moveable electrode 18 reside may be defined when second substrate 14b is secured and/or fixed to the exposed portion(s) of semiconductor layer 22c or after further processing (for example, an annealing step may be employed to adjust the pressure). Notably, all techniques of defining the atmosphere, including the pressure thereof, during the process of securing second substrate 14b to semiconductor layer 22c, whether now known or later developed, are intended to be within the scope of the present inventions.
For example, second substrate 14b may be secured to the exposed portion(s) of semiconductor layer 22c in a nitrogen, oxygen and/or inert gas environment (for example, helium). The pressure of the fluid (gas or vapor) may be selected, defined and/or controlled to provide a suitable and/or predetermined pressure of the fluid in the chamber immediately after fixing substrate 14b to the exposed portion(s) of semiconductor layer 22c (in order to avoid damaging portions of micromachined mechanical structure 12), after one or more subsequent processing steps (for example, an annealing step) and/or after completion of micromachined mechanical structure 12 and/or microelectromechanical system 10.
Notably, the gas(es) employed during these processes may provide predetermined reactions (for example, oxygen molecules may react with silicon to provide a silicon oxide). All such techniques are intended to fall within the scope of the present inventions.
The second substrate 14b may be formed from any material now known or later developed. In a preferred embodiment, second substrate 14b includes or is formed from, for example, materials in column IV of the periodic table, for example silicon, germanium, carbon; also combinations of these, for example silicon germanium, or silicon carbide; also of III-V compounds for example gallium phosphide, aluminum gallium phosphide, or other III-V combinations; also combinations of III, IV, V, or VI materials, for example silicon nitride, silicon oxide, aluminum carbide, or aluminum oxide; also metallic silicides, germanides, and carbides, for example nickel silicide, cobalt silicide, tungsten carbide, or platinum germanium silicide; also doped variations including phosphorus, arsenic, antimony, boron, or aluminum doped silicon or germanium, carbon, or combinations like silicon germanium; also these materials with various crystal structures, including single crystalline, polycrystalline, nanocrystalline, or amorphous; also with combinations of crystal structures, for instance with regions of single crystalline and polycrystalline structure (whether doped or undoped).
Before or after second substrate 14b is secured to the exposed portion(s) of semiconductor layer 22c, contact area 26b may be formed in a portion of second substrate 14b to be aligned with, connect to or overlie contact area 26a in order to provide suitable, desired and/or predetermined electrical conductivity (for example, N-type or P-type) with contact area 26a when second substrate 14b is secured to first substrate 14a. (See,
Notably, contact area 26b may be a counter-doped region or heavily counter-doped region of second substrate 14b which includes a conductivity that is different from the conductivity of the other portions of second substrate 14b. In this way, contact areas 26a and 26b are electrically isolated from the other portions of second substrate 14b. Thus, in this embodiment, semiconductor layer 22c may be a first conductivity type (for example, an N-type conductivity which may be provided, for example, via introduction of phosphorous and/or arsenic dopant(s), among others) and second substrate 14b may be a second conductivity type (for example, a P-type conductivity which may be provided, for example, via introduction of boron dopant(s), among others). As such, contact area 26b may be a counter-doped region or heavily counter-doped N-type region which provides suitable, desired and/or predetermined electrical conductivity characteristics when second substrate 14b is secured to first substrate 14a and contact areas 26a and 26b are in physical and electrical contact.
With reference to
Notably, insulation layer 32 and/or conductive layer 34 may be formed, grown and/or deposited before or after second substrate 14b is secured to the exposed portion(s) of semiconductor layer 22c. Under these circumstances, when second substrate 14b is secured to first substrate 14a, the microelectromechanical system 10 may be completed.
The insulating layer 32 may be, for example, silicon dioxide, silicon nitride, BPSG, PSG, or SOG, or combinations thereof. It may be advantageous to employ silicon nitride because silicon nitride may be deposited in a more conformal manner than silicon oxide. Moreover, silicon nitride is compatible with CMOS processing, in the event that microelectromechanical system 10 includes CMOS integrated circuits.
Notably, prior to formation, deposition and/or growth of insulation layer 32 and/or conductive layer 34, additional micromachined mechanical structures 12 and/or transistors of circuitry 16 may be formed and/or provided in second substrate 14b or in other substrates that may be fixed to first substrate 14a and/or second substrate 14b. In this regard, the exposed surface of second substrate 14b may be a suitable base upon which integrated circuits (for example, CMOS transistors) and/or micromachined mechanical structures 12 may be fabricated on or in. Such integrated circuits may be fabricated using well-known techniques and equipment. For example, with reference to
Thereafter, conventional transistor processing (for example, formation of gate and gate insulator 40) may be employed to complete the transistors of circuitry 16. (See,
As noted above, the transistors of transistor region 36 may be formed prior to securing second substrate 14b to first substrate 14a. (See, for example,
With reference to
With reference to
Notably, the embodiments of
The present inventions may also employ more than two substrates to form and encapsulate micromachined mechanical structure 12. For example, with reference to
With reference to
With reference to
Before or after securing second substrate 14b to first substrate 14a, second cavity 30 may be formed in second substrate 14b— again using well-known lithographic and etching techniques. In one exemplary embodiment, second cavity 30 also includes a depth of about 1 μm. Thereafter, the thickness of second substrate 14b may be adjusted to accommodate further processing. For example, second substrate 14b may be grinded and polished (using, for example, well known chemical mechanical polishing (“CMP”) techniques) to a thickness of between 10 μm-30 μm. Notably, cavities 24 and 30 form the chamber in which the mechanical structure, for example, moveable electrode 18, resides.
The second substrate 14b may be formed from any material now known or later developed. In a preferred embodiment, second substrate 14b includes or is formed from, for example, materials in column IV of the periodic table, for example silicon, germanium, carbon; also combinations of these, for example silicon germanium, or silicon carbide; also of III-V compounds for example gallium phosphide, aluminum gallium phosphide, or other III-V combinations; also combinations of III, IV, V, or VI materials, for example silicon nitride, silicon oxide, aluminum carbide, or aluminum oxide; also metallic silicides, germanides, and carbides, for example nickel silicide, cobalt silicide, tungsten carbide, or platinum germanium silicide; also doped variations including phosphorus, arsenic, antimony, boron, or aluminum doped silicon or germanium, carbon, or combinations like silicon germanium; also these materials with various crystal structures, including single crystalline, polycrystalline, nanocrystalline, or amorphous; also with combinations of crystal structures, for instance with regions of single crystalline and polycrystalline structure (whether doped or undoped).
With reference to
Thereafter, third substrate 14c may be fixed to the exposed portion(s) of second substrate 14b. (See,
The third substrate 14c may be formed from any material discussed above relative to second substrate 14b. For the sake of brevity, such discussions will not be repeated.
Before or after third substrate 14c is secured to second substrate 14b, contact area 26b may be formed in a portion of third substrate 14c to be aligned with, connect to or overlie contact area 26a. The contact area 26b may be a semiconductor region that includes a doping that provides the same conductivity as contact area 26a. In this way, a suitable, desired and/or predetermined electrical conductivity is provided with contact area 26a when third substrate 14c is secured to second substrate 14b. (See,
Notably, contact area 26b may be a counter-doped region or heavily counter-doped region of third substrate 14c which includes a conductivity that is different from the conductivity of the other portions of third substrate 14c. In this way, contact areas 26a and 26b are electrically isolated from the other portions of third substrate 14c. Thus, in this embodiment, second substrate 14b may be a first conductivity type (for example, an N-type conductivity) and third substrate 14c may be a second conductivity type (for example, a P-type conductivity). As such, contact area 26b may be a counter-doped region or heavily counter-doped N-type region which provides suitable, desired and/or predetermined electrical conductivity characteristics when third substrate 14c is secured to second substrate 14b and contact areas 26a and 26b are in physical contact.
With reference to
Notably, insulation layer 32 and/or conductive layer 34 may be formed, grown and/or deposited before or after third substrate 14c is secured to second substrate 14b. Under these circumstances, when third substrate 14c is secured to second substrate 14b, the microelectromechanical system 10 may be completed.
The insulating layer 32 may be, for example, silicon dioxide, silicon nitride, BPSG, PSG, or SOG, or combinations thereof. It may be advantageous to employ silicon nitride because silicon nitride may be deposited in a more conformal manner than silicon oxide. Moreover, silicon nitride is compatible with CMOS processing, in the event that microelectromechanical system 10 includes CMOS integrated circuits.
As mentioned above with respect to other embodiments of the present inventions, prior to formation, deposition and/or growth of insulation layer 32 and/or conductive layer 34, additional micromachined mechanical structures 12 and/or transistors of circuitry 16 may be formed and/or provided in third substrate 14c or in other substrates that may be fixed to first substrate 14a and/or second substrate 14b. (See, for example,
For example, with reference to
Notably, although second cavity 30 is described and illustrated in the previous embodiment as being formed in second substrate 14b, second cavity 30 may be formed in third substrate 14c, as illustrated in
Similarly, first cavity 24 may be formed in second substrate 14b, as illustrated in
With reference to
The isolation trenches 42a and 42b may include a material that insulates contact 20 (and contact areas 26a and 26b) from portions of third substrate 14c. In the exemplary embodiment of
As mentioned above, isolation regions 44a and 44b which are disposed in or on second substrate 14b. The isolation regions 44a and 44b may be any material or structure that insulates contact 20, for example, an insulator material and/or an oppositely doped semiconductor region. In the exemplary embodiment of
With reference to
In another exemplary embodiment, first, second and third substrates 14a, 14b and 14c include semiconductor regions having the same conductivity. With reference to
The isolation trenches 42a and 42b may include any material that insulates contact 20 (and contact areas 26a and 26b) from portions of third substrate 14c. In the exemplary embodiment of
The isolation regions 44a, 44b and 44c may be disposed in or on first substrate 14a and/or second substrate 14b. In the exemplary embodiment of
As mentioned above, isolation trenches 42a and 42b may include any material or structure that insulates contact 20, for example, an insulator material and/or an oppositely doped semiconductor region. With reference to
Although not previously illustrated, the present inventions may employ grinding and polishing (using, for example, well known chemical mechanical polishing (“CMP”) techniques at various stages in order to, for example, provide a desired surface and/or thickness. For example, with reference to
Notably, it may be advantageous to employ isolation trenches 42 and isolation regions 44 in the embodiments where substrates 14a and 14c include a conductivity that is different from the conductivity of substrate 14b. (See, for example,
The embodiments of
In another aspect, the present inventions may employ an insulative layer between the substrate in which the micromachined mechanical structures 12 resides and one or more opposing or juxtaposed substrates. Such a configuration may provide certain processing advantages as well as enhance the electrical isolation of the micromachined mechanical structures 12 from one or more opposing or juxtaposed substrates. For example, with reference to
The insulative layers 48a and 48b may include, for example, an insulation material (for example, a silicon dioxide, nitride, BPSG, PSG, or SOG, or combinations thereof). It may be advantageous to employ silicon nitride because silicon nitride may be deposited, formed and/or grown in a more conformal manner than silicon oxide. Moreover, silicon nitride is compatible with CMOS processing, in the event that microelectromechanical system 10 includes CMOS integrated circuits in one or more of substrates 14 thereof.
With reference to
With reference to
In addition to forming second cavity 24 in insulative layer 48b, contact trench window 50 is also formed therein. (See,
Notably, the first and second substrates 14b may be formed from any material now known or later developed. In a preferred embodiment, second substrate 14b includes or is formed from, for example, materials in column IV of the periodic table, for example silicon, germanium, carbon; also combinations of these, for example silicon germanium, or silicon carbide; also of III-V compounds for example gallium phosphide, aluminum gallium phosphide, or other III-V combinations; also combinations of III, IV, V, or VI materials, for example silicon nitride, silicon oxide, aluminum carbide, or aluminum oxide; also metallic silicides, germanides, and carbides, for example nickel silicide, cobalt silicide, tungsten carbide, or platinum germanium silicide; also doped variations including phosphorus, arsenic, antimony, boron, or aluminum doped silicon or germanium, carbon, or combinations like silicon germanium; also these materials with various crystal structures, including single crystalline, polycrystalline, nanocrystalline, or amorphous; also with combinations of crystal structures, for instance with regions of single crystalline and polycrystalline structure (whether doped or undoped).
Thereafter, third substrate 14c may be secured to the exposed portion(s) of insulative layer 48b. (See,
The third substrate 14c may be formed from any material discussed above relative to first substrate 14a and/or second substrate 14b. For the sake of brevity, such discussions will not be repeated.
With reference to
The contact area 26b may be deposited, formed and/or grown in contact area window 52. The contact area 26b may be an epitaxially deposited semiconductor that includes a doping that provides the same conductivity as contact area 26a. In this way, a suitable, desired and/or predetermined electrical conductivity is provided with contact area 26a when third substrate 14c is secured to second substrate 14b. (See,
As mentioned above, although not illustrated, the present inventions may employ grinding and polishing (using, for example, well known chemical mechanical polishing (“CMP”) techniques at various stages in order to, for example, provide a desired surface and/or thickness. (See, for example,
With reference to
Notably, insulation layer 32 and/or conductive layer 34 may be formed, grown and/or deposited before or after third substrate 14c is secured to second substrate 14b. Under these circumstances, when third substrate 14c is secured to second substrate 14b, the microelectromechanical system 10 may be completed.
The insulating layer 32 may be, for example, silicon dioxide, silicon nitride, BPSG, PSG, or SOG, or combinations thereof. It may be advantageous to employ silicon nitride because silicon nitride may be deposited in a more conformal manner than silicon oxide. Moreover, silicon nitride is compatible with CMOS processing, in the event that microelectromechanical system 10 includes CMOS integrated circuits.
As mentioned above with respect to other embodiments of the present inventions, prior to formation, deposition and/or growth of insulation layer 32 and/or conductive layer 34, additional micromachined mechanical structures 12 and/or transistors of circuitry 16 may be formed and/or provided in third substrate 14c or in other substrates that may be fixed to first substrate 14a and/or second substrate 14b. In this regard, the exposed surface of third substrate 14c or another substrate disposed thereon may be a suitable base upon which integrated circuits (for example, CMOS transistors) and/or micromachined mechanical structures 12. Such integrated circuits and micromachined mechanical structures 12 may be fabricated using the inventive techniques described herein and/or well-known fabrication techniques and equipment. For the sake of brevity, those discussions, in connection with the embodiments of
With reference to
Briefly, with reference to
Thereafter, first cavity 24 is formed in insulative layer 48a using well-known lithographic and etching techniques. (See,
With reference to
With reference to
The first and second substrates 14a and 14b may be formed from any material discussed above relative to first substrate 14a and/or second substrate 14b of other embodiments. For the sake of brevity, such discussions will not be repeated.
Thereafter, third substrate 14c may be secured to the exposed portion(s) of second substrate 14b. (See,
Like first and second substrates 14a and 14b, third substrate 14c may be formed from any material discussed above relative to first, second and/or third substrates of other embodiments. For the sake of brevity, such discussions will not be repeated.
Before or after third substrate 14c is secured to second substrate 14b, contact area 26b may be formed in a portion of third substrate 14c to be aligned with, connect to or overlie contact area 26a. The contact area 26b may be a semiconductor region that includes a doping that provides the same conductivity as contact area 26a. In this way, a suitable, desired and/or predetermined electrical conductivity is provided with contact area 26a when third substrate 14c is secured to second substrate 14b. (See,
Notably, contact area 26b may be a heavily counter-doped region of third substrate 14c which includes a conductivity that is different from the conductivity of the other portions of third substrate 14c. In this way, contact areas 26a and 26b are electrically isolated from the other portions of third substrate 14c. Thus, in this embodiment, second substrate 14b may be a first conductivity type (for example, an N-type conductivity) and third substrate 14c may be a second conductivity type (for example, a P-type conductivity). As such, contact area 26b may be a heavily counter-doped N-type region which provides suitable, desired and/or predetermined electrical conductivity characteristics when third substrate 14c is secured to second substrate 14b and contact areas 26a and 26b are in physical contact.
With reference to
Notably, insulation layer 32 and/or conductive layer 34 may be formed, grown and/or deposited before or after third substrate 14c is secured to second substrate 14b. Under these circumstances, when third substrate 14c is secured to second substrate 14b, the microelectromechanical system 10 may be completed.
The insulating layer 32 may be, for example, silicon dioxide, silicon nitride, BPSG, PSG, or SOG, or combinations thereof. It may be advantageous to employ silicon nitride because silicon nitride may be deposited in a more conformal manner than silicon oxide. Moreover, silicon nitride is compatible with CMOS processing, in the event that microelectromechanical system 10 includes CMOS integrated circuits.
As mentioned above with respect to other embodiments of the present inventions, prior to formation, deposition and/or growth of insulation layer 32 and/or conductive layer 34, additional micromachined mechanical structures 12 and/or transistors of circuitry 16 may be formed and/or provided in third substrate 14c or in other substrates that may be fixed to first substrate 14a and/or second substrate 14b. In this regard, the exposed surface of third substrate 14c or another substrate disposed thereon may be a suitable base upon which integrated circuits (for example, CMOS transistors) and/or micromachined mechanical structures 12. Such integrated circuits and micromachined mechanical structures 12 may be fabricated using the inventive techniques described herein and/or well-known fabrication techniques and equipment. For the sake of brevity, those discussions, in connection with the embodiments of
In this embodiment, the portion of substrate 14b in which micromachined mechanical structure 12 is formed includes a conductivity that is the same as the conductivity of the semiconductor of third substrate 14c. In this embodiment, micromachined mechanical structure 12 includes an isolation trenches 42a and 42b as well as isolation regions 44a and 44b. The isolation trenches 42a and 42b, and isolation regions 44a and 44b, in combination, electrically isolate contact 20 (and, in particular, contact areas 26a and 26b) from contiguous portions of third substrate 14c. In this exemplary embodiment, isolation region 44a is aligned with cavity 24 and trench 28a, and isolation trenches 42a and 42b are aligned with isolation regions 44b and 44c. In this way, contact 20 includes suitable contact isolation.
Briefly, with reference to
With reference to
With reference to
Thereafter, third substrate 14c may be secured to the exposed portion(s) of second substrate 14b. (See,
Thereafter, isolation trenches 42a and 42b are formed in portions of third substrate 14c. (See,
With reference to
With reference to
Moreover, as mentioned above with respect to other embodiments of the present inventions, prior to formation, deposition and/or growth of insulation layer 32 and/or conductive layer 34, additional micromachined mechanical structures 12 and/or transistors of circuitry 16 may be formed and/or provided in third substrate 14c or in other substrates that may be fixed to first substrate 14a and/or second substrate 14b. In this regard, the exposed surface of third substrate 14c or another substrate disposed thereon may be a suitable base upon which integrated circuits (for example, CMOS transistors) and/or micromachined mechanical structures 12. Such integrated circuits and micromachined mechanical structures 12 may be fabricated using the inventive techniques described herein and/or well-known fabrication techniques and equipment. For the sake of brevity, those discussions, in connection with the embodiments of
In another embodiment, with reference to
The embodiment including intermediate layer 54 may be employed in conjunction with any of the embodiments described herein. (See, for example,
There are many inventions described and illustrated herein. While certain embodiments, features, materials, configurations, attributes and advantages of the inventions have been described and illustrated, it should be understood that many other, as well as different and/or similar embodiments, features, materials, configurations, attributes, structures and advantages of the present inventions that are apparent from the description, illustration and claims (are possible by one skilled in the art after consideration and/or review of this disclosure). As such, the embodiments, features, materials, configurations, attributes, structures and advantages of the inventions described and illustrated herein are not exhaustive and it should be understood that such other, similar, as well as different, embodiments, features, materials, configurations, attributes, structures and advantages of the present inventions are within the scope of the present inventions.
Each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of such aspects and/or embodiments. (See, for example,
Notably, it may be advantageous to adjust the alignment and etch processes to enhance electrical isolation of portions of micromachined mechanical structure 12, for example, contact 20 (including contact areas 26a and 26b). For example, with reference to
Further, the processing flows described and illustrated herein are exemplary. These flows, and the order thereof, may be modified. All process flows, and orders thereof, to provide microelectromechanical system 10 and/or micromachined mechanical structure 12, whether now known or later developed, are intended to fall within the scope of the present inventions. For example, there are many techniques to form moveable electrode 18 and contact 20 (and in particular contact area 26a). With reference to
Alternatively, with reference to
Further, substrates 14 may be processed to a predetermined and/or suitable thickness before and/or after other processing during the fabrication of microelectromechanical system 10 and/or micromachined mechanical structure 12. For example, with reference to
The processing flows described and illustrated with respect to substrate 14c may also be modified. For example, with reference to
Indeed, substrate 14a and 14c may be processed (for example, grinded and polished) after other processing. (See, for example,
Further, as mentioned above, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of such aspects and/or embodiments. For example, with reference to
Notably, implant regions 58a and 58b may be employed in any of the embodiments described and illustrated herein. For example, the implant regions 58a and 58b may be employed in conjunction with or in lieu of isolation trenches 42a and 42b.
In addition, as mentioned above, isolation regions 44a and 44b may be deposited and/or implanted into portions of substrate 14b in order to facilitate electrical isolation of contact 20 after third substrate 14c (or second substrate 14b where an SOI substrate 14a is employed (see,
Further, as an alternative to counter-doping a region in substrate 14c to form contact area 26b, with reference to
As mentioned above, all forms of bonding, whether now known or later developed, are intended to fall within the scope of the present invention. For example, bonding techniques such as fusion bonding, anodic-like bonding, silicon direct bonding, soldering (for example, eutectic soldering), thermo compression, thermo-sonic bonding, laser bonding and/or glass reflow bonding, and/or combinations thereof.
Notably, any of the embodiments described and illustrated herein may employ a bonding material and/or a bonding facilitator material (disposed between substrates, for example, the second and third substrates) to, for example, enhance the attachment of or the “seal” between the substrates (for example, between the first and second substrates 14a and 14b, and/or the second and third substrates 14b and 14c), address/compensate for planarity considerations between substrates to be bonded (for example, compensate for differences in planarity between bonded substrates), and/or to reduce and/or minimize differences in thermal expansion (that is materials having different coefficients of thermal expansion) of the substrates and materials therebetween (if any). Such materials may be, for example, solder, metals, frit, adhesives, BPSG, PSG, or SOG, or combinations thereof.
With reference to
As mentioned above, bonding material or bonding facilitator material 60 may include, for example, solder, metals, frit, adhesives, BPSG, PSG, or SOG, or combinations thereof. It may be advantageous to employ BPSG, PSG, or SOG in order to electrically isolate contact 20 from portions of substrates 14b and/or 14c. Moreover, BPSG, PSG, or SOG is compatible with CMOS processing, in the event that microelectromechanical system 10 includes CMOS integrated circuits in one or more of substrates 14 thereof.
Notably,
An alternative embodiment employing bonding material or bonding facilitator material 60, and technique for fabricating such embodiment, is illustrated in
The embodiments employing bonding material or bonding facilitator material 60 may be implemented in any of the embodiments described herein. For example, transistors of a transistor region may be formed prior to securing third substrate 14c to second substrate 14b. (See, for example,
Moreover, any of the bonding material or bonding facilitator materials 60 (may include, for example, solder, metals, frit, adhesives, BPSG, PSG, or SOG, or combinations thereof) may be implemented between the first and second substrates 14a and 14b, and/or the second and third substrates 14b and 14c, and/or any other substrates that are bonded. All such permutations are intended to fall within the scope of the present inventions.
Further, with respect to any of the embodiments described herein, circuitry 16 may be integrated in or on substrate 14, disposed in a separate substrate, and/or in one or more substrates that are connected to substrate 14 (for example, in one or more of the encapsulation wafer(s)). (See, for example,
The micromachined mechanical structure 12 and/or circuitry 16 may also reside on separate, discrete substrates. (See, for example,
For example, as mentioned above, the electronics or electrical circuitry may be clock alignment circuitry, for example, one or more phase locked loops (PLLs), delay locked loops (DLLs), digital/frequency synthesizer (for example, a direct digital synthesizer (“DDS”), frequency synthesizer, fractional synthesizer and/or numerically controlled oscillator) and/or frequency locked loops (FLLs). In this regard, the output of mechanical structure 12 (for example, an microelectromechanical oscillator or microelectromechanical resonator) is employed as a reference input signal (i.e., the reference clock). The PLL, DLL, digital/frequency synthesizer and/or FLL may provide frequency multiplication (i.e., increase the frequency of the output signal of the microelectromechanical oscillator). The PLL, DLL, digital/frequency synthesizer and/or FLL may also provide frequency division (i.e., decrease the frequency of the output signal of the microelectromechanical oscillator). Moreover, the PLL, DLL, digital/frequency synthesizer and/or FLL may also compensate using multiplication and/or division to adjust, correct, compensate and/or control the characteristics (for example, the frequency, phase and/or jitter) of the output signal of the microelectromechanical resonator.
The multiplication or division (and/or phase adjustments) by compensation circuitry 17 may be in fine or coarse increments. For example, compensation circuitry 17 may include an integer PLL, a fractional PLL and/or a fine-fractional-N PLL to precisely select, control and/or set the output signal of compensated microelectromechanical oscillator. In this regard, the output of microelectromechanical resonator may be provided to the input of the fractional-N PLL and/or the fine-fractional-N PLL (hereinafter collectively “fractional-N PLL”), which may be pre-set, pre-programmed and/or programmable to provide an output signal having a desired, selected and/or predetermined frequency and/or phase.
Notably, in one embodiment, the parameters, references (for example, frequency and/or phase), values and/or coefficients employed by the compensation circuitry in order to generate and/or provide an adjusted, corrected and/or controlled output having, for example, a desired, selected and/or predetermined frequency and/or phase (i.e., the function of the compensation circuitry), may be externally provided to the compensation circuitry either before or during operation of compensated microelectromechanical oscillator. In this regard, a user or external circuitry/devices/systems may provide information representative of the parameters, references, values and/or coefficients to set, change, enhance and/or optimize the performance of the compensation circuitry and/or compensated microelectromechanical oscillator.
Finally, it should be further noted that while the present inventions will be described in the context of microelectromechanical systems including micromechanical structures or elements, the present inventions are not limited in this regard. Rather, the inventions described herein are applicable to other electromechanical systems including, for example, nanoelectromechanical systems. Thus, the present inventions are pertinent, as mentioned above, to electromechanical systems, for example, gyroscopes, resonators, temperatures sensors, accelerometers and/or other transducers.
The term “depositing” and other forms (i.e., deposit, deposition and deposited) in the claims, means, among other things, depositing, creating, forming and/or growing a layer of material using, for example, a reactor (for example, an epitaxial, a sputtering or a CVD-based reactor (for example, APCVD, LPCVD, or PECVD)).
Further, in the claims, the term “contact” means a conductive region, partially or wholly disposed outside the chamber, for example, the contact area and/or contact via.
It should be further noted that the term “circuit” may mean, among other things, a single component or a multiplicity of components (whether in integrated circuit form or otherwise), which are active and/or passive, and which are coupled together to provide or perform a desired function. The term “circuitry” may mean, among other things, a circuit (whether integrated or otherwise), a group of such circuits, one or more processors, one or more state machines, one or more processors implementing software, or a combination of one or more circuits (whether integrated or otherwise), one or more state machines, one or more processors, and/or one or more processors implementing software. The term “data” may mean, among other things, a current or voltage signal(s) whether in an analog or a digital form.
The embodiments of the inventions described herein may include one or more of the following advantages, among others:
The above embodiments of the present inventions are merely exemplary embodiments. They are not intended to be exhaustive or to limit the inventions to the precise forms, techniques, materials and/or configurations disclosed. Many modifications and variations are possible in light of the above teaching. It is to be understood that other embodiments may be utilized and operational changes may be made without departing from the scope of the present inventions. As such, the foregoing description of the exemplary embodiments of the inventions has been presented for the purposes of illustration and description. It is intended that the scope of the inventions not be limited to the description above.
This application is a divisional of U.S. patent application Ser. No. 16/565,876, filed Sep. 10, 2019, which is a divisional of U.S. patent application Ser. No. 16/106,649, filed Aug. 21, 2018 (now U.S. Pat. No. 10,450,190), which is a divisional of U.S. patent application Ser. No. 15/686,480, filed Aug. 25, 2017 (now U.S. Pat. No. 10,099,917), which is a divisional of U.S. patent application Ser. No. 15/242,437, filed Aug. 19, 2016 (now U.S. Pat. No. 9,758,371), which is a divisional of U.S. patent application Ser. No. 14/961,760, filed Dec. 7, 2015 (now U.S. Pat. No. 9,440,845), which is a divisional of U.S. patent application Ser. No. 14/524,986, filed Oct. 27, 2014 (now U.S. Pat. No. 9,434,608). U.S. patent application Ser. No. 15/242,437 is also a divisional of U.S. patent application Ser. No. 14/524,986, filed Oct. 27, 2014 (now U.S. Pat. No. 9,434,608), which is a divisional of U.S. patent application Ser. No. 11/593,404, filed Nov. 6, 2006 (now U.S. Pat. No. 8,871,551), which is a divisional of U.S. application Ser. No. 11/336,521, filed Jan. 20, 2006. Each of the foregoing applications is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4665610 | Barth | May 1987 | A |
4674319 | Muller et al. | Jun 1987 | A |
4766666 | Sugiyama et al. | Aug 1988 | A |
4849071 | Evans et al. | Jul 1989 | A |
4945769 | Sidner et al. | Aug 1990 | A |
4990462 | Sliwa, Jr. | Feb 1991 | A |
5075253 | Sliwa, Jr. | Dec 1991 | A |
5139624 | Searson et al. | Aug 1992 | A |
5156903 | Okumura et al. | Oct 1992 | A |
5338416 | Mlcak et al. | Aug 1994 | A |
5445991 | Lee | Aug 1995 | A |
5455547 | Lin et al. | Oct 1995 | A |
5461916 | Fujii et al. | Oct 1995 | A |
5470797 | Mastrangelo | Nov 1995 | A |
5491604 | Nguyen et al. | Feb 1996 | A |
5504026 | Kung | Apr 1996 | A |
5510156 | Zhao | Apr 1996 | A |
5511428 | Goldberg et al. | Apr 1996 | A |
5517123 | Zhao et al. | May 1996 | A |
5537083 | Lin et al. | Jul 1996 | A |
5540095 | Sherman et al. | Jul 1996 | A |
5583290 | Lewis | Dec 1996 | A |
5589082 | Lin et al. | Dec 1996 | A |
5604312 | Lutz | Feb 1997 | A |
5613611 | Johnson et al. | Mar 1997 | A |
5616514 | Muchow et al. | Apr 1997 | A |
5620931 | Tsang et al. | Apr 1997 | A |
5627317 | Offenberg et al. | May 1997 | A |
5627318 | Fujii et al. | May 1997 | A |
5631422 | Sulzberger et al. | May 1997 | A |
5640039 | Chau et al. | Jun 1997 | A |
5668033 | Ohara et al. | Sep 1997 | A |
5679436 | Zhao | Oct 1997 | A |
5683591 | Offenberg | Nov 1997 | A |
5703293 | Zabler et al. | Dec 1997 | A |
5721377 | Kurle et al. | Feb 1998 | A |
5723353 | Muenzel et al. | Mar 1998 | A |
5728936 | Lutz | Mar 1998 | A |
5751041 | Suzuki et al. | May 1998 | A |
5760455 | Hierold et al. | Jun 1998 | A |
5761957 | Oba et al. | Jun 1998 | A |
5798557 | Salatino et al. | Aug 1998 | A |
5804083 | Ishii et al. | Sep 1998 | A |
5818227 | Payne et al. | Oct 1998 | A |
5839062 | Nguyen et al. | Nov 1998 | A |
5847280 | Sherman et al. | Dec 1998 | A |
5858809 | Chau et al. | Jan 1999 | A |
5872024 | Fujii et al. | Feb 1999 | A |
5880369 | Samuels et al. | Mar 1999 | A |
5889207 | Lutz | Mar 1999 | A |
5898218 | Hirose et al. | Apr 1999 | A |
5919364 | Lebouitz et al. | Jul 1999 | A |
5922212 | Kano et al. | Jul 1999 | A |
5937275 | Munzel et al. | Aug 1999 | A |
5948991 | Nomura et al. | Sep 1999 | A |
5955932 | Nguyen et al. | Sep 1999 | A |
5959208 | Muenzel et al. | Sep 1999 | A |
5969249 | Roessig et al. | Oct 1999 | A |
5985688 | Bruel | Nov 1999 | A |
5986316 | Toyoda et al. | Nov 1999 | A |
5987989 | Yamamoto et al. | Nov 1999 | A |
5992233 | Clark | Nov 1999 | A |
6009753 | Tsang et al. | Jan 2000 | A |
6010461 | Haniff et al. | Jan 2000 | A |
6012336 | Eaton et al. | Jan 2000 | A |
6028332 | Kano et al. | Feb 2000 | A |
6035714 | Yazdi et al. | Mar 2000 | A |
6048774 | Yamamoto et al. | Apr 2000 | A |
6055858 | Muenzel et al. | May 2000 | A |
6065341 | Ishio et al. | May 2000 | A |
6067858 | Clark et al. | May 2000 | A |
6090718 | Soga et al. | Jul 2000 | A |
6100108 | Mizuno et al. | Aug 2000 | A |
6106735 | Kurle et al. | Aug 2000 | A |
6117701 | Buchan et al. | Sep 2000 | A |
6119518 | Itou et al. | Sep 2000 | A |
6122964 | Mohaupt et al. | Sep 2000 | A |
6125700 | Tsugai et al. | Oct 2000 | A |
6140709 | Muenzel et al. | Oct 2000 | A |
6142358 | Cohn et al. | Nov 2000 | A |
6146917 | Zhang et al. | Nov 2000 | A |
6147756 | Zavracky et al. | Nov 2000 | A |
6149190 | Galvin et al. | Nov 2000 | A |
6151966 | Sakai et al. | Nov 2000 | A |
6153839 | Zavracky et al. | Nov 2000 | A |
6156652 | Michalicek | Dec 2000 | A |
6163643 | Bergmann et al. | Dec 2000 | A |
6170332 | MacDonald et al. | Jan 2001 | B1 |
6171881 | Fujii | Jan 2001 | B1 |
6187210 | Lebouitz et al. | Feb 2001 | B1 |
6187607 | Offenberg et al. | Feb 2001 | B1 |
6191007 | Matsui et al. | Feb 2001 | B1 |
6192757 | Tsang et al. | Feb 2001 | B1 |
6199430 | Kano et al. | Mar 2001 | B1 |
6199874 | Galvin et al. | Mar 2001 | B1 |
6204085 | Strumpell et al. | Mar 2001 | B1 |
6210988 | Howe et al. | Apr 2001 | B1 |
6214243 | Muenzel et al. | Apr 2001 | B1 |
6218717 | Toyoda et al. | Apr 2001 | B1 |
6227049 | Fujii | May 2001 | B1 |
6227050 | Fujii et al. | May 2001 | B1 |
6230567 | Greiff | May 2001 | B1 |
6233811 | Payne et al. | May 2001 | B1 |
6236281 | Nguyen et al. | May 2001 | B1 |
6239473 | Adams et al. | May 2001 | B1 |
6240782 | Kato et al. | Jun 2001 | B1 |
6244112 | Fujii | Jun 2001 | B1 |
6245593 | Yoshihara et al. | Jun 2001 | B1 |
6249073 | Nguyen et al. | Jun 2001 | B1 |
6250156 | Seshia et al. | Jun 2001 | B1 |
6250165 | Sakai et al. | Jun 2001 | B1 |
6251754 | Ohshima et al. | Jun 2001 | B1 |
6255741 | Yoshihara et al. | Jul 2001 | B1 |
6264363 | Takahashi et al. | Jul 2001 | B1 |
6274452 | Miura et al. | Aug 2001 | B1 |
6275034 | Tran et al. | Aug 2001 | B1 |
6276207 | Sakai et al. | Aug 2001 | B1 |
6279585 | Shiraki et al. | Aug 2001 | B1 |
6282960 | Samuels et al. | Sep 2001 | B1 |
6284670 | Abe et al. | Sep 2001 | B1 |
6287885 | Muto et al. | Sep 2001 | B1 |
6291315 | Nakayama et al. | Sep 2001 | B1 |
6291875 | Clark et al. | Sep 2001 | B1 |
6296779 | Clark et al. | Oct 2001 | B1 |
6297072 | Tilmans et al. | Oct 2001 | B1 |
6300294 | Robbins et al. | Oct 2001 | B1 |
6307815 | Polosky et al. | Oct 2001 | B1 |
6308567 | Higuchi et al. | Oct 2001 | B1 |
6311555 | McCall et al. | Nov 2001 | B1 |
6315062 | Alft et al. | Nov 2001 | B1 |
6316840 | Otani | Nov 2001 | B1 |
6318175 | Muchow et al. | Nov 2001 | B1 |
6323550 | Martin et al. | Nov 2001 | B1 |
6325886 | Harris et al. | Dec 2001 | B1 |
6352935 | Collins et al. | Mar 2002 | B1 |
6373007 | Calcatera et al. | Apr 2002 | B1 |
6378989 | Silverbrook | Apr 2002 | B1 |
6386032 | Lemkin et al. | May 2002 | B1 |
6388279 | Sakai et al. | May 2002 | B1 |
6389899 | Partridge et al. | May 2002 | B1 |
6389903 | Oba et al. | May 2002 | B1 |
6392144 | Filter et al. | May 2002 | B1 |
6396711 | Degani et al. | May 2002 | B1 |
6402968 | Yazdi et al. | Jun 2002 | B1 |
6416831 | Hara et al. | Jul 2002 | B1 |
6422078 | Imai | Jul 2002 | B2 |
6423563 | Fukada et al. | Jul 2002 | B2 |
6424074 | Nguyen | Jul 2002 | B2 |
6429506 | Fujii et al. | Aug 2002 | B1 |
6429755 | Speidell et al. | Aug 2002 | B2 |
6433401 | Clark et al. | Aug 2002 | B1 |
6433411 | Degani et al. | Aug 2002 | B1 |
6437551 | Krulevitch et al. | Aug 2002 | B1 |
6440766 | Clark | Aug 2002 | B1 |
6441481 | Karpman | Aug 2002 | B1 |
6443008 | Funk et al. | Sep 2002 | B1 |
6444543 | Sakai et al. | Sep 2002 | B2 |
6448109 | Karpman | Sep 2002 | B1 |
6448604 | Funk et al. | Sep 2002 | B1 |
6448622 | Franke et al. | Sep 2002 | B1 |
6449406 | Fan et al. | Sep 2002 | B1 |
6460234 | Gianchandani | Oct 2002 | B1 |
6462566 | Schoefthaler et al. | Oct 2002 | B1 |
6463803 | Fujii et al. | Oct 2002 | B2 |
6465281 | Xu et al. | Oct 2002 | B1 |
6472290 | Cho et al. | Oct 2002 | B2 |
6477901 | Tadigadapa et al. | Nov 2002 | B1 |
6478974 | Lebouitz et al. | Nov 2002 | B1 |
6483957 | Hamerly et al. | Nov 2002 | B1 |
6492309 | Behr et al. | Dec 2002 | B1 |
6495389 | Ishio et al. | Dec 2002 | B2 |
6500348 | Chase et al. | Dec 2002 | B2 |
6507044 | Santana, Jr. et al. | Jan 2003 | B1 |
6507082 | Thomas | Jan 2003 | B2 |
6508124 | Zerbini et al. | Jan 2003 | B1 |
6508126 | Sakai et al. | Jan 2003 | B2 |
6508561 | Alie et al. | Jan 2003 | B1 |
6512255 | Aoki et al. | Jan 2003 | B2 |
6516671 | Romo et al. | Feb 2003 | B2 |
6521508 | Cheong et al. | Feb 2003 | B1 |
6521965 | Lutz | Feb 2003 | B1 |
6522052 | Kihara et al. | Feb 2003 | B2 |
6524890 | Ueda et al. | Feb 2003 | B2 |
6531767 | Shrauger | Mar 2003 | B2 |
6534340 | Karpman et al. | Mar 2003 | B1 |
6550331 | Fujii et al. | Apr 2003 | B2 |
6550339 | Toyoda et al. | Apr 2003 | B1 |
6551853 | Toyoda | Apr 2003 | B2 |
6552404 | Hynes et al. | Apr 2003 | B1 |
6555417 | Spooner et al. | Apr 2003 | B2 |
6555901 | Yoshihara et al. | Apr 2003 | B1 |
6555904 | Karpman | Apr 2003 | B1 |
6558976 | Shrauger | May 2003 | B2 |
6590267 | Goodwin-Johansson et al. | Jul 2003 | B1 |
6602351 | DeYoung et al. | Aug 2003 | B2 |
6621134 | Zurn | Sep 2003 | B1 |
6621392 | Volant et al. | Sep 2003 | B1 |
6624726 | Niu et al. | Sep 2003 | B2 |
6625047 | Coleman, Jr. | Sep 2003 | B2 |
6625342 | Staple et al. | Sep 2003 | B2 |
6635509 | Ouellet | Oct 2003 | B1 |
6635519 | Barber et al. | Oct 2003 | B2 |
6716275 | Reed et al. | Apr 2004 | B1 |
6739497 | Fortin et al. | May 2004 | B2 |
6764875 | Shook | Jul 2004 | B2 |
6768628 | Harris et al. | Jul 2004 | B2 |
6808954 | Ma et al. | Oct 2004 | B2 |
6815361 | Bae et al. | Nov 2004 | B1 |
6818464 | Heschel | Nov 2004 | B2 |
6822326 | Enquist et al. | Nov 2004 | B2 |
6835657 | Ong | Dec 2004 | B2 |
6847124 | Semi | Jan 2005 | B2 |
6858910 | Coyle et al. | Feb 2005 | B2 |
6882264 | Cunningham | Apr 2005 | B2 |
6888233 | Horning et al. | May 2005 | B2 |
6929974 | Ding et al. | Aug 2005 | B2 |
6930367 | Lutz et al. | Aug 2005 | B2 |
6936491 | Partridge et al. | Aug 2005 | B2 |
6951824 | Fischer et al. | Oct 2005 | B2 |
7098117 | Najafi et al. | Aug 2006 | B2 |
7122395 | Gogoi | Oct 2006 | B2 |
7204737 | Ding et al. | Apr 2007 | B2 |
7221033 | Lutz et al. | May 2007 | B2 |
7393758 | Sridhar et al. | Jul 2008 | B2 |
7553695 | Shiv et al. | Jun 2009 | B2 |
8871551 | Partridge et al. | Oct 2014 | B2 |
20010001931 | Fujii et al. | May 2001 | A1 |
20010006248 | Allen et al. | Jul 2001 | A1 |
20010009110 | Tmai | Jul 2001 | A1 |
20010034076 | Martin | Oct 2001 | A1 |
20020016058 | Zhao | Feb 2002 | A1 |
20020043706 | Jerominek et al. | Apr 2002 | A1 |
20020117728 | Brosnihhan et al. | Aug 2002 | A1 |
20020132062 | Jacobs | Sep 2002 | A1 |
20020135047 | Funk et al. | Sep 2002 | A1 |
20020179126 | DeYoung et al. | Dec 2002 | A1 |
20020197002 | Lin | Dec 2002 | A1 |
20030002019 | Miller | Jan 2003 | A1 |
20030016337 | Duncan et al. | Jan 2003 | A1 |
20030038327 | Smith | Feb 2003 | A1 |
20030054588 | Patel et al. | Mar 2003 | A1 |
20030141561 | Fischer et al. | Jul 2003 | A1 |
20030146464 | Prophet | Aug 2003 | A1 |
20030151479 | Stafford et al. | Aug 2003 | A1 |
20030155643 | Freidhoff | Aug 2003 | A1 |
20030161949 | Ashurst et al. | Aug 2003 | A1 |
20030178635 | Volant et al. | Sep 2003 | A1 |
20030183009 | An et al. | Oct 2003 | A1 |
20030183916 | Heck et al. | Oct 2003 | A1 |
20030215974 | Kawasaki et al. | Nov 2003 | A1 |
20040016989 | Ma et al. | Jan 2004 | A1 |
20040065932 | Reichenbach et al. | Apr 2004 | A1 |
20040106294 | Lee et al. | Jun 2004 | A1 |
20040183214 | Partridge et al. | Sep 2004 | A1 |
20040245586 | Partridge | Dec 2004 | A1 |
20040248344 | Partridge et al. | Dec 2004 | A1 |
20050101059 | Yang | May 2005 | A1 |
20050156260 | Partridge et al. | Jul 2005 | A1 |
20050170656 | Nasiri et al. | Aug 2005 | A1 |
20050195050 | Lutz et al. | Sep 2005 | A1 |
20050253206 | Bureau et al. | Nov 2005 | A1 |
20050260828 | Yuasa | Nov 2005 | A1 |
20050262929 | Felton et al. | Dec 2005 | A1 |
20050269688 | Shiv | Dec 2005 | A1 |
20050285172 | Freeman et al. | Dec 2005 | A1 |
20060166480 | Yun et al. | Jul 2006 | A1 |
20060208326 | Nasiri et al. | Sep 2006 | A1 |
20060246631 | Lutz et al. | Nov 2006 | A1 |
20070099395 | Sridhar et al. | May 2007 | A1 |
20070195439 | DeNatale | Aug 2007 | A1 |
20080283990 | Nasiri et al. | Nov 2008 | A1 |
20100072562 | Sato et al. | Mar 2010 | A1 |
20100155865 | Sugiura | Jun 2010 | A1 |
20100218977 | Inoue et al. | Sep 2010 | A1 |
20100290199 | Schmid | Nov 2010 | A1 |
20110012248 | Reichenbach et al. | Jan 2011 | A1 |
20110013063 | Yamamoto | Jan 2011 | A1 |
20120119311 | Akhlaghi et al. | May 2012 | A1 |
20140008740 | Wang | Jan 2014 | A1 |
20140264909 | Liu | Sep 2014 | A1 |
20150137285 | Shim | May 2015 | A1 |
20150175406 | Lin et al. | Jun 2015 | A1 |
20150175407 | Cheng et al. | Jun 2015 | A1 |
20150191344 | Sadaka et al. | Jul 2015 | A1 |
20180185655 | Balczewski | Jul 2018 | A1 |
20180275485 | Hurwitz | Sep 2018 | A1 |
20180278231 | Hurwitz | Sep 2018 | A1 |
20180312395 | Yamazaki | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
0451992 | Jul 1995 | EP |
1217735 | Nov 2007 | EP |
2198611 | Jun 1988 | GB |
9749475 | Dec 1997 | WO |
0146066 | Jun 2001 | WO |
0158803 | Aug 2001 | WO |
0158804 | Aug 2001 | WO |
0177008 | Oct 2001 | WO |
0177009 | Oct 2001 | WO |
2004018349 | Mar 2004 | WO |
Entry |
---|
“A Hermetic Glass-Silicon Package Formed Using Localized Aluminum/Silicon-Glass Bonding”, Cheng et al., Journal of Microelectromechanical Systems, vol. 10, No. 3, Sep. 2001, pp. 392-399. |
“A Low Temperature Bi-CMOS Compatible Process for MEMS RF Resonators and Filters”, Lund et el., Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, Jun. 2-6, 2002, pp. 38-41. |
“An Integrated Wafer-Scale Packaging Process for MEMS”, Kenny et al., Proceedings of IMECE2002, ASME International Mechanical Engineering Congress & Exposition, Nov. 17-22, 2002, New Orleans, Louisiana, pp. 51-54. |
“Chemical Vapor Deposition of Fluoroalkylsilane Monolayer Films for Adhesion Control in Microelectromechanical Systems”, Mayer et al., J. Vac. Sci. Technol. B. 18(5), Sep./Oct. 2000, pp. 2433-2440. |
“Electrical and optical characteristics of vacuum-sealed polysilicon microlamps”, Mastrangelo et al., IEEE Transactions on Electron Devices, v.39. No. 6, Jun. 1992, pp. 1363-1375. |
“Laterally Grown Porous Polycrystalline Silicon: A New Material for Transducer Applications”, Anderson et al., 1991 IEEE, pp. 747-750. |
“Localized Bonding with PSG or Indium Solder as Intermediate Layer”, Cheng at al., MEMS 1999, 12.sup.th IEEE International Conference, pp. 285-289. |
“Localized Silicon Fusion and Eutectic Bonding for MEMS Fabrication and Packaging”, Cheng et al., Journal of Microelectromechanical Systems, vol. 9, No. 1, Mar. 2000, pp. 3-8. |
“MEMS Post-Packaging by Localized Heating and Bonding”, Lin, IEEE Transactions on Advanced Packaging, vol. 23, No. 4, Nov. 2000, pp. 608-616. |
“New Thin Film Epitaxial Polysilicon Encapsulation for Piezoresistive Accelerometers”, Partridge et al., IEEE, 2001. pp. 54-59. |
“Novel Process for a Monolithic Integrated Accelerometer”. Offenberg et al., The 8.sup.th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, Jun. 25-29, 1995, pp. 589-592. |
“Permeable Polysilicon Etch-Access Windows for Microshell Fabrication”, Lebovitz K S et al., International Conference on Solid-State Sensors and Actuators and Eurosensors, Jun. 25, 1995, pp. 224-227. |
“Polysilicon Vibrating Gyroscope Vacuum-Encapsulated in an on-chip Micro Chamber”, Tsuchiya et al., Sensors and Actuators A 90 (2001), pp. 49-55. |
“Porous Polycrystaline Silicon: A New Material for MEMS”, Anderson R C et al., Journal of Microelectromechanical Systems, Mar. 1984, USA, vol. 3, No. 1, pp. 10-18. |
“Sealed Vacuum Electronic Devices by Surface Micromachining”, Zurn et al., IEEE IEDM 91, Sep. 1991, pp. 205-208. |
“Sealing of Micromachined Cavities Using Chemical Vapor Deposition Methods: Characterization and Optimization”, Liu and Tai, IEEE Journal of Microelectromechanical Systems, vol. 8, No. 2, Jun. 1999. pp. 135-145. |
“Vacuum encapsulation of resonant device; using permeable polysilicon”, Lebouitz et al., Micro Electro Mechanical Systems, IEEE International Conference, Jan. 1999, pp. 470-475. |
“Vacuum Packaging Technology Using Localized Aluminum/Silicon-to-Glass Bonding”, Cheng et al., IEEE Journal of Microelectromechanical Systems, vol. 11, No. 5, Oct. 2002, pp. 556-565. |
“Vacuum Packaging Technology Using Localized Aluminum/Silicon-to-Glass Bonding”, Cheng et al., MEMS 2001, 14.sup.th IEEE International Conference, pp. 18-21. |
“Vacuum Sealing of Microcavities Using Metal Evaporation”, Bartek et al., Sensors and Actuators A 61, 1997, pp. 364-368. |
“Vacuum-sealed silicon micromachined incandescent light source”, Mastrengelo et al., IEDM, 1989, pp. 503-506. |
“Wafer Scale Encapsulation of a High-Q Micromechanical Resonator”, Candler et al., Hilton Head, Open Poster, 2002. |
Applicant Response to Jan. 18, 2008 Office Action in U.S. Appl. No. 11/336,521, dated Mar. 28, 2008, 16 pages. |
Applicant Response to Dec. 5, 2008 Office Action in U.S. Appl. No. 11/336,521, dated Mar. 4, 2009, 14 pages. |
Applicant Response to Aug. 4, 2008 Office Action in U.S. Appl. No. 11/336,521, dated Sep. 4, 2008, 10 pages. |
United States Patent and Trademark Office, Office Action issued in U.S. Appl. No. 11/336,521, dated Aug. 4, 2008, 7 pages. |
United States Patent and Trademark Office, Office Action issued in U.S. Appl. No. 11/336,521, dated Dec. 5, 2008, 19 pages. |
United States Patent and Trademark Office, Office Action issued in U.S. Appl. No. 11/336,521, dated Jan. 18, 2008, 35 pages. |
United States Patent and Trademark Office, Office Action issued in U.S. Appl. No. 11/336,521, dated Jun. 4, 2009, 8 pages. |
World Intellectual Property Organization, International Preliminary Report on Patentability regarding International Publication No. WO 2007/087021 (International Application No. PCT/US2006/047049), dated Jul. 22, 2008, 6 pages. |
World Intellectual Property Organization, International Search Report regarding International Publication No. WO 2007/087021 (International Application No. PCT/US2006/047049), dated Nov. 29, 2007, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20210221678 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16565876 | Sep 2019 | US |
Child | 16983141 | US | |
Parent | 16106649 | Aug 2018 | US |
Child | 16565876 | US | |
Parent | 15686480 | Aug 2017 | US |
Child | 16106649 | US | |
Parent | 15242437 | Aug 2016 | US |
Child | 15686480 | US | |
Parent | 14961760 | Dec 2015 | US |
Child | 15242437 | US | |
Parent | 14524986 | Oct 2014 | US |
Child | 14961760 | US | |
Parent | 11593404 | Nov 2006 | US |
Child | 15242437 | Aug 2016 | US |
Parent | 11336521 | Jan 2006 | US |
Child | 11593404 | US |