Resistive memories are devices that can store information as different resistive states. For increasing memory density and data capacity, it is highly desirable to have a resistive memory with multiple resistive states. Resistive memories with multiple states may be used in many applications like non-volatile solid state memories, programmable logic, pattern recognition, neuromorphic computing, etc.
Among resistive memories with multiple memory states, those based on phase-change materials (PCM) such as chalcogenides are promising. PCM based resistive memories (also referred to as PCM memristors) may exhibit a reversible structural phase change between an amorphous (highly resistive) state and a crystalline (highly conductive) state. The switching between the two states (the amorphous state and the crystalline state) may be achieved by applying pulses (e.g., current pulses, voltage pulses, etc.) with different characteristics. The conductive state may be obtained by applying a longer but lower amplitude pulse which may locally heat the amorphous region and may lead to crystallization, whereas the insulating state may be obtained by applying a shorter but higher amplitude pulse which may lead to local melting and the formation of an amorphous region by rapid quenching. In applications as a resistive memory, the pronounced difference in electrical resistivity of PCM may be used.
To achieve multiple memory states, multiple intermediary resistive states may be needed. An example solution for achieving multiple intermediary resistive states is described in U.S. Pat. No. 8,116,115B2 and references therein. This solution is based on controlling the duration, amplitude and shapes of the pulses (e.g., voltage or current pulses). Another example solution is described in U.S. Pat. No. 6,087,674. This solution is based on building a memory element such that it contains a heterogeneous mixture of a phase-change material and a dielectric material and providing a way to deliver the electrical pulses only to a portion of the memory material volume. However, the existing solutions for achieving the multiple resistive states are either complicated from a fabrication point of view or are difficult to control.
The present disclosure is directed toward a nonvolatile, resistive memory with multiple resistive states based on PCM and a method of making the same. The resistive memory may include a substrate, a PCM layer and two electrical contacts. In one embodiment, the device may have a planar structure. In another embodiment, the device may have a vertical structure with the two electrical contacts placed below and above the PCM layer. The PCM layer may be deposited by magnetron sputtering in an amorphous, high resistive state and may be subjected to a specific thermal treatment. This thermal treatment may initiate transition of the PCM layer toward the crystalline state. This crystalline state initialization process may enable subsequent obtaining of a large number of intermediate resistive states between the high resistive state and a low resistive state. In one embodiment, the multiple intermediate resistive states may be obtained by applying short pulses (e.g., voltage pulses, current pulses, etc.) with determined amplitude. In another embodiment, the multiple intermediate resistive states may be obtained by applying sweeps (e.g., voltage sweeps) with a certain upper limit. The upper limit of the sweep (e.g., voltage sweep) may be set according to the desired resistance state for the PCM resistor.
As discussed herein, the present disclosure is directed toward a nonvolatile memory with multiple resistive states based on phase-change materials (PCM) such as chalcogenides and a method of making the same.
For the fabrication of the resistive memory structures presented in
The Ge—Te layer may be deposited by magnetron sputtering in an amorphous, high resistive state. The Ge—Te layer may be subjected to a specific thermal treatment which may initiate its transition toward the crystalline state. The degree of the initiated crystallinity depends on the thermal treatment temperature and influence also the electrical resistivity of the Ge—Te layer. This crystalline state initialization process may enable subsequent obtaining of a large number of intermediate resistive states between the initial high resistive state and a final low resistive state. The optimum temperature of the thermal treatment may be between 190-210 C. By employing this treatment, the electrical resistivity of the layer may change from larger than 1*104 Ω*cm, for the as deposited layer, to 6*10−3 Ω*cm.
After performing this crystalline state initialization process by subjecting the Ge—Te layer to a thermal treatment in inert atmosphere (Ar) at the optimum temperature, the subsequent obtaining of a large number of intermediate resistive states between the high resistive state and a low resistive state may be realized by different methods. For example in one embodiment, the obtaining of a large number of intermediate resistive states may be realized by applying pulses (e.g., voltage pulses, current pulses, etc.) with different amplitudes.
As shown in
In an embodiment, the obtaining of a large number of intermediate resistive states between the high resistive state and a low resistive state on a previously thermally treated PCM resistor may be realized by performing sweeps (e.g., voltage sweeps) with different upper limits.
As shown in
In one example, the memory elements described in
This application is a Continuation of U.S. patent application Ser. No. 16/659,608 filed Oct. 22, 2019, which claims the benefit of priority of U.S. Provisional Application No. 62/749,426, filed Oct. 23, 2018. The content of both of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62749426 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16659608 | Oct 2019 | US |
Child | 17811352 | US |