1. Field of the Invention
The present disclosure relates to reverse lithography methods that provide a competitive means to fabricate dark-field features.
2. Description of Related Art
As the semiconductor industry continues to advance rapidly, conventional lithography methods to shrink features by means of reducing the size of the mask pattern cannot progress fast enough to keep up with the industry roadmap. Some alternative methods have been developed to push the progress of photolithography. For bright-field lithography, it is straightforward to shrink features such as lines or pillars simply by overexposing. Moreover, features can be trimmed by dry etching to reduce their widths. Those technologies can be effective for features having sizes down to 22 nm and beyond. It is more difficult to shrink dark-field features, such as trenches, vias, or contact holes, and an effective method to fabricate dark-field features is urgently needed to match the progress of bright-field lithography.
In current integrated circuit production, trenches, vias, and contact holes are fabricated using dark-field lithography, which is facing serious technical difficulties in retaining good critical dimension (CD) control when the features are 45 nm or smaller. A cost- and technology-effective alternative for making dark-field features is urgently needed.
The present disclosure is broadly concerned with methods of forming microelectronic structures using a reversal lithography approach in which dark-field features are created on microelectronic substrates using bright-field lithography processes and a novel pattern reversal method. In general, a wafer stack having a patterned imaging layer is provided that has a plurality of features formed thereon. A pattern reversal composition is applied to the patterned imaging layer overcoating the features, followed by wet etch-back to expose the tops of the features. The imaging layer is then removed, resulting in reversal of the pattern into the pattern reversal composition. This reversed pattern is then transferred into subsequent layers.
In one or more embodiments, the methods generally comprise providing a patterned wafer stack, applying a pattern reversal composition to the stack, and contacting the pattern reversal layer with a wet etchant to remove portions of the pattern reversal layer, followed by removing portions of the original pattern to reverse the pattern into the pattern reversal layer. The reversed pattern can then be transferred into underlying layers and ultimately the substrate. The patterned wafer stack comprises a substrate having a surface, one or more intermediate layers optionally formed on the substrate surface, and a pattern comprising a plurality of raised features on the intermediate layers, if present, or on the substrate surface if no intermediate layers are present. The plurality of raised features are formed from a patterned imaging layer, and each feature is defined by respective sidewalls and a top surface. When applied, the pattern reversal composition is deposited between the plurality of features and overcoats the top surfaces of the plurality of features to form a partially conformal pattern reversal layer adjacent the pattern. The pattern reversal composition comprises a compound dispersed or dissolved in a solvent system. The partially conformal pattern reversal layer is contacted with a wet etchant to remove portions of the pattern reversal layer adjacent the top surfaces thereby exposing the top surfaces of the features to yield an etched-back pattern reversal layer. The pattern is reversed by removing the raised features that were exposed during the etch-back process to yield a reversed pattern in the etched-back pattern reversal layer. As noted above, the pattern can then be transferred into underlying portions of the stack.
A microelectronic structure is also described herein. The structure comprises a substrate having a surface, one or more intermediate layers optionally formed on the substrate surface, a pattern comprising a plurality of raised features on the intermediate layers, if present, or on the substrate surface if no intermediate layers are present, and a partially conformal pattern reversal layer adjacent the pattern. In the pattern, the plurality of raised features are formed from a patterned imaging layer, and are each defined by respective sidewalls and a top surface. The pattern reversal layer is formed from a pattern reversal composition deposited between the plurality of features and overcoating the top surfaces of the plurality of features.
Figures (
A preferred embodiment of the present invention is described in detail below with reference to FIGS. 1(A)-(G). While the drawings illustrate, and the specification describes, certain preferred embodiments of the invention, it is to be understood that such disclosure is by way of example only. Embodiments of the present invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments of the present invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. There is no intent to limit the principles of the present invention to the particular disclosed embodiments. For example, in the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. In addition, embodiments of the present invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an etched region illustrated as a rectangle may have rounded or curved features. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the present invention, unless otherwise indicated.
In more detail, referring to
A photosensitive composition can then be applied to the intermediate layer 12, if present, or to the substrate surface 10a, if no intermediate layers 12 are present to form an imaging layer 14 on the stack 16. The resulting stack 16 is depicted in
As depicted in
Upon exposure, the portions of the imaging layer 14 that are exposed to radiation are rendered soluble in aqueous developer. As shown in
Regardless of the embodiment, the average (mean) feature size of the resulting raised features 14′ will preferably be less than about 200 nm, more preferably from about 1 nm to about 100 nm, even more preferably from about 5 nm to about 50 nm, and most preferably from about 10 nm to about 30 nm. The term “feature size,” as used herein, refers to the width “W” of the features as measured on an SEM cross-section of the substrate or layer 14 (thus in the case of pillars, the width is the same as the pillar diameter). It will be appreciated that techniques such as overexposure can be used to fabricate 32-nm or smaller features, which can be used as a template to be reversed into dark-field features (e.g., trenches and contact or via holes) that are 32 nm or smaller in size. Features of the pattern 20 may also be trimmed to further decrease their size, as desired, before proceeding with subsequent processing. The average (mean) height “H” of the features 14′ (which also corresponds to the thickness of the imaging layer 14;
Once the desired pattern is formed, as shown in
As depicted in
In addition to thickness variations, the pattern reversal composition 22 overcoating adjacent the top surfaces 14b of the raised features 14′ remains only partially cured, whereas the bulk of the composition 22 in between the raised features 14′ and adjacent the intermediate layer 12 (or substrate surface 10a, as applicable) is cured and insoluble in solvents or developers. This is due to the interaction and poisoning of the pattern reversal composition 22 by the imaging layer 14, which results in a weaker film formation (and lower crosslinking density) adjacent the top surfaces 14b of the raised features 14′. The term “partially cured,” as used herein means that the degree of reaction is lower than the bulk part of the film (between features 14′) due to an interruption in crosslinking by the underlying features 14′. Thus, the partially cured portions of the reversal composition remain soluble in aqueous, weak basic, or organic solvents.
As depicted in
The raised features 14′ can then be removed, as shown in
Suitable solvents for removing the raised features 14′ are selected from the group consisting of PGMEA, EL, cyclopentanone, cyclohexanone, gamma-butyrolactone, and mixtures thereof. Alternatively, the raised features 14′ can be removed using a dry etching process, such as an O2 etching process. In a further embodiment, the raised features 14′ can be removed using a blanket exposure to radiation at the appropriate wavelength, followed by a PEB and developer wash, as described above for pattern formation. In some embodiments which involve NTD technology for pattern formation (discussed above), the wet etch-back and removal of the raised features 14′ can be combined into a single step using an aqueous base solution to etch back the pattern reversal composition 22 and subsequently remove the raised features 14′ as described above.
Regardless of the embodiment, removal of the raised features 14′ results in the reversal of the bright-field pattern 20 to create a reversed pattern 24 in the etched-back pattern reversal composition 22′, comprising reversed features such as trenches, spaces, and holes, traditionally created using a dark-field process. As shown in
As shown in
In some embodiments, the etched-back pattern reversal composition 22′ is resistant to etching with CF4, and preferably etches at a rate of less than about 10 Å/min., more preferably less than about 5 Å/min., and even more preferably less than about 2 Å/min., when CF4 is used as the etchant. Thus, when the intermediate layer 12 is a hardmask, the etch selectivity of the reversal mask 22 over the intermediate layer 12 will be less than about 0.2, preferably less than about 0.1, and more preferably from about 0.01 to about 0.05, when CF4 is used as the etchant.
It will be appreciated that multiple intermediate layers 12, each with different etch selectivities, can be used to facilitate transfer of the reversed pattern 24 into the underlayers and eventually the substrate. For example, a bottom layer of a thick organic under layer and a top layer of thin spin-on hardmask could be used. A spin-on hardmask typically etches faster in CF4, and a CF4 etch can be used to transfer the reversed pattern 24 in the etched-back pattern reversal composition 22′ to the hardmask layer. The pattern 24 can then be transferred to the thick organic underlayer using an O2 etch. Other suitable pattern transfer techniques can also be used.
The pattern reversal compositions for use in forming the reversal mask of the invention preferably comprise a compound dispersed or dissolved in a solvent system. Suitable compounds include monomers, oligomers, polymers, sol-gel compounds, nanoparticles, and combinations of the foregoing. Typical examples of the reversal compounds include silicon-containing compounds, such as silicates (e.g., tetraethyl orthosilicate (TEOS)), compounds of the formula R—Si(OR)3, where each R is an organic functional group individually selected from the group consisting of alkyls (C1-C20, preferably C1-C10), benzene, substituted derivatives thereof, and combinations thereof. In one or more embodiments, a copolymer of TEOS and compounds of the formula R—Si(OR)3, as defined above, can be used. The compound is present in the composition at a level of from about 0.1% to about 10% by weight, more preferably from about 0.2% to about 7% by weight, and even more preferably from about 0.5% to about 5% by weight, based upon the total weight of the composition taken as 100% by weight.
The solvent system should be selected so that it does not disrupt or dissolve the pattern 20 formed in the imaging layer 14. Suitable solvents for use in the solvent system include water, mesitylene, MIBC, PGMEA, PGME, and mixtures thereof. The solvent system is preferably used in the composition at a level of from about 90% to about 99.9% by weight, more preferably from about 93% to about 99.8% by weight, and even more preferably from about 95% to about 99.5% by weight, based upon the total weight of the composition taken as 100% by weight. The total solids of the composition can range from about 0.1% to about 10% by weight, more preferably from about 0.2% to about 7% by weight, and even more preferably from about 0.5% to about 5% by weight, based upon the total weight of the composition taken as 100% by weight.
The compositions can further comprise a catalyst, such as ammonium salt. When present, the catalyst is preferably used in the composition at a level of from about 0.01% to about 5% by weight, more preferably from about 0.02% to about 3% by weight, and even more preferably from about 0.05% to about 1% by weight, based upon the total weight of the composition taken as 100% by weight. The composition can also include additives such as surfactants, and the like.
The composition is formed by simply mixing the compound and any other ingredients in the solvent system. These materials can be cured at a suitable temperature in the presence of a catalyst, and they can also be wet etched using a basic solution, as described above. In one or more embodiments, the compositions are not photosensitive and do not undergo chemical or physical changes upon exposure to light. For example, in some embodiments, the cured compositions are not developer soluble and cannot be rendered developer-soluble upon exposure to light,
Additional advantages of the various embodiments of the disclosure will be apparent to those skilled in the art upon review of the disclosure herein and the working examples below. It will be appreciated that the various embodiments described herein are not necessarily mutually exclusive unless otherwise indicated herein. For example, a feature described or depicted in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the present invention encompasses a variety of combinations and/or integrations of the specific embodiments described herein.
The present description also uses numerical ranges to quantify certain parameters relating to various embodiments of the invention. It should be understood that when numerical ranges are provided, such ranges are to be construed as providing literal support for claim limitations that only recite the lower value of the range as well as claim limitations that only recite the upper value of the range. For example, a disclosed numerical range of about 10 to about 100 provides literal support for a claim reciting “greater than about 10” (with no upper bounds) and a claim reciting “less than about 100” (with no lower bounds).
The following examples set forth methods in accordance with the invention. It is to be understood, however, that these examples are provided by way of illustration and nothing therein should be taken as a limitation upon the overall scope of the invention.
A pattern reversal composition was preparing by diluting a silicon-containing polymer solution (10% by weight TEOS sol-gel copolymer in PGMEA; OptiStack® HM710; Brewer Science Inc., Rolla, Mo.) to 1.6 wt % with methyl isobutyl carbinol (MIBC; Aldrich, St. Louis, Mo.). The solution was then filtered using a 100-nm polytetrafluoroethylene (PTFE) filter to yield the pattern reversal composition.
A wet-etching solution was prepared by adding 30 grams of an aqueous alkaline photoresist developer (0.26N TMAH in water; PD523AD) into 70 grams of deionized water.
A wafer stack was prepared by forming a bottom layer of a spin-on carbon composition (OptiStack® SOC 110; Brewer Science Inc.) on a silicon wafer. Next, a silicon-containing antireflective hardmask (OptiStack® HM710) was applied on top of the SOC layer. A photoresist layer (Pi-6001; TOK America, Hillsboro, Oreg.) was formed on top of the hardmask layer, followed by bright-field patterning (i.e., exposure and development) of the photoresist to form raised lines with a pitch of 1:3 (
The pattern reversal composition prepared in Example 1 was then coated onto the patterned stack, followed by baking at 100° C. for 60 seconds. The SEM photo in
The stack was then immersed into the wet-etching solution prepared in Example 1 for 60 seconds, followed by rinsing with deionized water, and spin-drying. The SEM photo in
In this Example, dry etching was used to remove the photoresist lines faulted using bright-field lithography in Example 2. The exposed photoresist lines were dry etched with O2 plasma using an Oxford Plasmalab reactive ion etcher (conditions: 100 watts of power, 50-mTorr pressure, 3-mTorr backside helium pressure, 50-sccm gas flow rate) for 30 seconds. The SEM picture in
In this Example, a TMAH-based liquid developer (PD523AD) was used to remove the photoresist lines formed using bright-field lithography in Example 2. After the wet etch-back in Example 2, the stack was exposed under broadband ultraviolet light (18 mJ/cm2) for 5 seconds and baked at 100° C. for 60 seconds. The stack was then immersed into the developer for 60 seconds, rinsed with deionized water, and spin-dried. The SEM picture in
The stack from Example 4 was etched using a reactive ion plasma of CF4 (35 sccm; power—100 W; pressure—100 mTorr) using an Oxford Plasmalab RIE for 30 seconds to transfer the trench pattern into the hardmask layer using the pattern reversal layer as a mask. Next, the etching was continued down into the SOC layer by switching to O2 (50 sccm; power—100 W; pressure—100 mTorr) for 60 seconds using the hardmask layer as a mask. The resulting patterned stack is shown in
A wafer stack was prepared by forming a bottom layer of a spin-on carbon composition (OptiStack® SOC 110; Brewer Science Inc.) on a silicon wafer. Next, a silicon-containing bottom anti-reflective coating/hardmask layer (OptiStack® HM9822; Brewer Science, Inc.) was applied on top of the SOC layer. An NTD photoresist layer (FAIRS9521-V10K, North Kingstown, R.I.) was then formed on top of the hardmask layer. The photoresist was then patterned using exposure followed by negative-tone development of the positive tone photoresist using organic solvents. The NTD technique uses bright-field imaging to produce the line/space patterns. Instead of using a developer to remove the exposed (developer-soluble) portions of the photoresist, an organic solvent (e.g., PGMEA, cyclopentanone) was used to remove the unexposed portions of the photoresist. The resulting pattern as viewed under an optical microscope is shown in
The pattern reversal composition and wet-etch solution from Example 1 were then used to coat the features, followed by baking at 100° C. for 60 seconds, and then wet etch-back to expose the tops of the photoresist pattern. For wet etching, the stack was immersed into the etching solution for 60 seconds, rinsed with deionized water, and then spin-dried. The photoresist pattern was then removed as described above. The resulting reversed pattern formed in the reversal layer, as viewed under an optical microscope, is shown in