Oxide and metal removal

Information

  • Patent Grant
  • 10465294
  • Patent Number
    10,465,294
  • Date Filed
    Monday, April 11, 2016
    8 years ago
  • Date Issued
    Tuesday, November 5, 2019
    5 years ago
Abstract
Methods are described herein for etching metal films which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal while very slowly removing the other exposed materials. A thin metal oxide layer may be present on the surface of the metal layer, in which case a local plasma from hydrogen may be used to remove the oxygen or amorphize the near surface region, which has been found to increase the overall etch rate.
Description
FIELD

Embodiments of the invention relate to gas-phase etching metal.


BACKGROUND

Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process which etches one material faster than another helping e.g. a pattern transfer process proceed. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits and processes, etch processes have been developed with a selectivity towards a variety of materials.


Dry etch processes are often desirable for selectively removing material from semiconductor substrates. The desirability stems from the ability to gently remove material from miniature structures with minimal physical disturbance. Dry etch processes also allow the etch rate to be abruptly stopped by removing the gas phase reagents. Some dry-etch processes involve the exposure of a substrate to remote plasma by-products formed from one or more precursors. For example, remote plasma excitation of ammonia and nitrogen trifluoride enables silicon oxide to be selectively removed from a patterned substrate when the plasma effluents are flowed into the substrate processing region. Remote plasma etch processes have recently been developed to selectively remove several dielectrics relative to one another. However, dry-etch processes are still needed, which delicately remove metals which have limited or no previously known chemically volatile pathways.


SUMMARY

Methods are described herein for etching metal films which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal while very slowly removing the other exposed materials. A thin metal oxide layer may be present on the surface of the metal layer, in which case a local plasma from hydrogen may be used to remove the oxygen or amorphize the near surface region, which has been found to increase the overall etch rate.


Embodiments of the invention include methods of etching metal from a substrate. The methods include flowing a hydrogen-containing precursor into a first substrate processing region housing the substrate while forming a plasma in the plasma substrate processing region to treat a thin metal oxide layer formed on a metal layer. The methods further include flowing a halogen-containing precursor into a second substrate processing region. The second substrate processing region is plasma-free during the flowing of the halogen-containing precursor. The methods further include flowing a carbon-and-nitrogen-containing precursor into the second substrate processing region. The second substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor. Flowing of the carbon-and-nitrogen-containing precursor occurs after flowing the halogen-containing precursor.


Embodiments of the invention include methods of etching metal from a substrate. The methods include transferring the substrate into the substrate processing region. The methods further include flowing a hydrogen-containing precursor into a substrate processing region while forming a plasma to treat a thin metal oxide layer formed on a metal layer. The methods further include flowing a halogen-containing precursor into the substrate processing region. The substrate processing region is plasma-free during the flowing of the halogen-containing precursor. Flowing the halogen-containing precursor occurs after flowing the hydrogen-containing precursor. The methods further include purging the substrate processing region with a relatively inert gas to remove the halogen-containing precursor from the substrate processing region. The methods further include flowing a carbon-and-nitrogen-containing precursor in to the substrate processing region. The substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor and flowing of the carbon-and-nitrogen-containing precursor occurs after purging the substrate processing region. The methods further include removing the substrate from the substrate processing region.


Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the embodiments. The features and advantages of the embodiments may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.





DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of the embodiments may be realized by reference to the remaining portions of the specification and the drawings.



FIG. 1 is a flow chart of a cobalt etch process according to embodiments.



FIG. 2 is a flow chart of a cobalt etch process according to embodiments.



FIG. 3A shows a schematic cross-sectional view of a substrate processing chamber according to the disclosed technology.



FIG. 3B shows a schematic cross-sectional view of a portion of a substrate processing chamber according to the disclosed technology.



FIG. 3C shows a bottom plan view of a showerhead according to the disclosed technology.



FIG. 4 shows a top plan view of an exemplary substrate processing system according to the disclosed technology.





In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.


DETAILED DESCRIPTION

Methods are described herein for etching metal films which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal from the substrate while very slowly removing the other exposed materials. A thin metal oxide layer may be present on the surface of the metal layer, in which case a local plasma from hydrogen may be used to remove the oxygen or amorphize the near surface region, which has been found to increase the overall etch rate.


In order to better understand and appreciate the invention, reference is now made to FIG. 1 which is a flow chart of a cobalt etch process 100 according to embodiments. The cobalt film of this example has a thin native oxide layer on its surface due to atmospheric exposure. Cobalt may be in the form of a blanket layer on a substrate or cobalt may reside in discrete regions of a patterned substrate surface. In either case, the cobalt forms exposed surfaces of the surface of the substrate once the cobalt oxide layer is modified/removed. The substrate is delivered into a substrate processing region (operation 110).


A flow of hydrogen (H2) is introduced into the substrate processing region (operation 120). Other sources of hydrogen may be used to augment or replace the molecular hydrogen. In general, a hydrogen-containing precursor may be flowed into the substrate processing region and the hydrogen-containing precursor may be oxygen-free and/or carbon-free according to embodiments. A local plasma is formed, in operation 130, from the hydrogen-containing precursor in the substrate processing region to process the cobalt oxide layer. The local plasma treatment results in a faster subsequent cobalt etch rate in cobalt etch process 100, either by removing oxygen and exposing cobalt or otherwise transforming the cobalt oxide layer to promote the cobalt etch rate in operation 140. The substrate is removed, following cobalt etching operation 140, in operation 150 of cobalt etch process 100.


Reference is now made to FIG. 2 which is a flow chart of another cobalt etch process 200 according to embodiments. The cobalt film of this example has a cobalt oxide layer on top of cobalt. The substrate is delivered into a substrate processing region (operation 210). A flow of hydrogen (H2) is introduced into the substrate processing region (operation 220). As before, a hydrogen-containing precursor may generally be flowed into the substrate processing region and the hydrogen-containing precursor may be oxygen-free and/or carbon-free according to embodiments. In operation 225, a local plasma is formed from the hydrogen-containing precursor in the substrate processing region to process the cobalt oxide layer. The local plasma treatment results in a faster subsequent cobalt etch rate, possibly by removing oxygen and exposing cobalt or otherwise transforming/modifying the cobalt oxide layer to promote the cobalt etch rate. Cobalt may be exposed in operation 225 or during subsequent operations depending on the removal mechanism.


A flow of chlorine (Cl2) is introduced into a substrate processing region in operation 230. Other sources of chlorine may be used to augment or replace the chlorine. More generally, a chlorine-containing precursor may be flowed into the substrate processing region, such as chlorine (Cl2), xenon dichloride or boron trichloride. A halogen-containing precursor may also be used instead or to augment the chlorine-containing precursor as described shortly. Exposing the cobalt to chlorine may occur with plasma or without any plasma in the substrate processing region in embodiments. In other words, the substrate processing region may be plasma-free during operation 230 of cobalt etch process 200. The cobalt (or thin modified cobalt oxide layer initially) reacts with the chlorine to presumably form cobalt-chloride adsorbates on or near the surface of the substrate. The cobalt-chloride adsorbates facilitate the subsequent removal of cobalt from the substrate.


A carbon-and-nitrogen-containing precursor is flowed into the substrate processing region in operation 235 of cobalt etch process 200. The carbon-and-nitrogen-containing precursor may possess at least one carbon-nitrogen bond and the bond may be a single bond in embodiments. The carbon-and-nitrogen-containing precursor comprises at least two nitrogen atoms according to embodiments. The carbon-and-nitrogen-containing precursor may consist of carbon, nitrogen and hydrogen in embodiments. The carbon-and-nitrogen-containing precursor comprises at least two, three or four methyl groups according to embodiments. An exemplary carbon-and-nitrogen-containing precursor is tetramethylethylenediamine (aka TMEDA or C6H16N2). The carbon-and-nitrogen-containing precursor is flowed into the plasma region after the operation of flowing the chlorine-containing precursor in embodiments. Chlorine may be removed from the substrate processing region prior to operation 235 and the substrate processing region may be actively purged with a relatively inert gas between operations 230 and 235 to avoid having the carbon-and-nitrogen-containing precursor react with the halogen-containing precursor. The reaction between the carbon-and-nitrogen-containing precursor and the chlorine-containing precursor may produce undesirable deposition and accumulation on the substrate or processing system hardware in embodiments. The substrate is removed in operation 245 of cobalt etch process 200.


In general, a halogen-containing precursor may be used in place of the chlorine-containing precursor (e.g. Cl2) of cobalt etch process 200. The halogen-containing precursor may include at least one of chlorine or bromine in embodiments. The halogen-containing precursor may be a diatomic halogen, a homonuclear diatomic halogen or a heteronuclear diatomic halogen according to embodiments.


A reaction between the carbon-and-nitrogen-containing precursor and the halogen-containing precursor has been found to not only reduce the efficacy of the etch process, but also produces solid residue which can clog chamber features and impede flow rates. To avoid forming solid residue, the substrate processing region may be purged between the operations of flowing the halogen-containing precursor (operation 230) and flowing the carbon-and-nitrogen-containing precursor (operation 235) into the substrate processing region. Flowing the carbon-and-nitrogen-containing precursor 235 occurs after flowing the halogen-containing precursor 230 which occurs after the operation of flowing the hydrogen 220 (and igniting the hydrogen plasma 225) in embodiments. The operations may be repeated (in an “etch cycle” as referred to herein) in several ways to remove additional cobalt when desired. The substrate processing region may be purged with a relatively inert gas following operation 235, at which point operation 230 may be repeated to rechlorinate the cobalt surface. Operation 235 may then be repeated again with another optional purging operation between operations 230 and 235. A relatively inert gas may be, for example, helium and/or argon.


A different etch cycle has been found to be beneficial as well alone or in combination with the etch cycle just described. The substrate processing region may be purged following operation 235 and cobalt etch process 200 may repeat operations 220-235 to remove additional cobalt. Operation 220/225, 230 and 235 occur as an ordered series according to embodiments. Repeating operations 220-235 has been found to produce a more uniform cobalt surface in some cases. Cobalt etch process 100 may use this type of etch cycle by repeating operations 120/130 and operation 140 an integral number of times before removing the substrate from the substrate processing region in operation 150.


The term “pretreatment” will be used to describe operations 220 and 225 in their general form. The term “etch cycle” will be used to describe operation 230 (involving the halogen-containing precursor) followed by operation 235 (involving the carbon-and-nitrogen-containing precursor). The pretreatment has been found to increase the cobalt etch rate. Each etch cycle may remove between about 2 Å and about 8 Å or between about 3 Å and about 6 Å according to embodiments. Performing a pretreatment followed by multiple etch cycles (e.g. 30 or 60) has been found to remove cobalt at these appreciable etch rates. However, an improvement in etch rate smoothness has been found if the pretreatment is periodically repeated. The pretreatment is repeated every 2 to 25 etch cycles or every 5 to 15 etch cycles in embodiments. Periodically repeating the pretreatment appears to clear the surface of any residual reactants and increase the uniformity and activity of reaction sites. The improvement in etch uniformity has been observed for blanket substrate and also for patterned substrates where cobalt has been deposited within gaps in the pattern. In such gapfill applications, cobalt may need to be “recessed” to below the top of the gap. The pretreatment may be repeated 2 to 5 times and each pretreatment may be followed by 2 to 25 or 5 to 15 etch cycles. In this way, cobalt etch process 200 has been found to produce an even recess of gapfill cobalt.


The carbon-and-nitrogen-containing precursor may be TMEDA (C6H16N2) as in the example, but may be other precursors. In general, the carbon-and-hydrogen-containing precursor may include carbon and nitrogen and may consist only of carbon, nitrogen and hydrogen. The carbon-and-nitrogen-containing precursor may possess at least one carbon-nitrogen bond and the bond may be a single bond in embodiments. The carbon-and-nitrogen-containing precursor comprises at least two nitrogen atoms according to embodiments. The carbon-and-nitrogen-containing precursor may include a phenyl group in embodiments. For example, the carbon-and-nitrogen-containing precursor may include o-phenylenediamine, p-phenylenediamine and/or m-phenylenediamine according to embodiments. Chemically linear options are also possible, the carbon-and-nitrogen-containing precursor may be of the form R2—N—[CH2]m—N—R2, where m is 1, 2 or 3 and R is H, CH3, C2H5 or a higher order hydrocarbon.


Creating volatile reaction products from cobalt removes material during cobalt etch process 100 or cobalt etch process 200. The volatile reaction products are thought to include methyl cobalt complexes such as Co(CH3)4. Exposing cobalt first to chlorine (operation 230) and then to the carbon-and-nitrogen-containing precursor (operation 235) has been found to produce the production worthy etch rate of cobalt and presumably makes volatile reaction products which leave the surface by desorption. Cobalt chloride complexes have been found to be nonvolatile with or without plasma treatment. However, the formation of cobalt chloride complexes have been found to be a conducive intermediate state toward volatilization and desorption.


In embodiments, the chlorine-containing precursor (e.g. Cl2) may be flowed into the substrate processing region at a flow rate of between about 3 sccm (standard cubic centimeters per minute) and about 50 sccm or between about 5 sccm and about 20 sccm in embodiments. The carbon-and-nitrogen-containing precursor may be flowed at a flow rate of between about 10 sccm and about 300 sccm or between about 20 sccm and about 200 sccm according to embodiments. The carbon-and-nitrogen-containing precursor may be a liquid prior to entering the substrate processing region, in which case a bubbler and carrier gas may be used to flow the precursor into the substrate processing region. The bubbler may heat the precursor above room temperature, for example to between about 25° C. and about 60° C., to increase the vapor pressure while the carrier gas is flowed through the liquid. The carrier gas may be relatively inert in comparison to the carbon-and-nitrogen-containing precursor. Helium may be used as the carrier gas. The carrier gas may be flowed at between about 1 slm (standard liters per minute) and about 5 slm according to embodiments. One of ordinary skill in the art would recognize that other gases and/or flows may be used depending on a number of factors including processing chamber configuration, substrate size, geometry and layout of features being etched.


The substrate processing region may be devoid of plasma or “plasma-free” during the cobalt etch operation 140, during the flow of the halogen-containing precursor (e.g. operation 230) and/or during the flow of the carbon-and-nitrogen-containing precursor (e.g. operation 235). The substrate processing region may be plasma-free during an etch cycle according to embodiments. In embodiments, a plasma-free substrate processing region means there is essentially no concentration of ionized species and free electrons within the substrate processing region.


In embodiments, the hydrogen-containing precursor (e.g. H2) may be flowed into the substrate processing region at a flow rate of between about 50 sccm and about 2,000 sccm or between about 100 sccm and about 1,000 sccm in embodiments. The method also includes applying energy to the hydrogen-containing precursor in the substrate processing region during operations 130 and 225 to form a hydrogen plasma. The plasma in the substrate processing region may be generated using a variety of techniques (e.g., radio frequency excitations, capacitively-coupled power and/or inductively coupled power). In an embodiment, the energy is applied using a capacitively-coupled plasma unit. The plasma power applied to the hydrogen-containing precursor may be between about 25 watts and about 1500 watts, between about 100 watts and about 1200 watts or between about 150 watts and about 700 watts according to embodiments. A sputtering component of the plasma may be included to help remove cobalt oxide which covers the cobalt to be etched. The plasma in the substrate processing region may be referred to herein as a local plasma.


During the operations of processing the cobalt oxide (e.g. operations 120-130 and 220), the operations of flowing the halogen-containing precursor (e.g. operation 230), and/or the operation of flowing the carbon-and-nitrogen-containing precursor (e.g. operation 235), the substrate may be maintained may be between about −30° C. and about 400° C. in general. In embodiments, the temperature of the substrate during the operations described may be greater than or about −30° C., greater than or about −10° C., greater than or about 10° C., or greater than or about 25° C. The substrate temperatures may be less than or about 400° C., less than or about 350° C., less than or about 250° C. in embodiments. The pressure in the substrate processing region may be about or below 20 Torr during each of the operations (e.g. operations 120-130, 220, 230 and/or 235), and may be about or below 15 Torr, 5 Torr or 3 Torr. For example, the pressure may be between about 10 mTorr and about 10 Torr.


Generally speaking, the cobalt is a “metal” and may be one of cobalt or nickel. Both cobalt and nickel have been found to etch using the methods described herein. The metal layer may consist of or consist essentially of cobalt and may consist of or consist essentially of nickel according to embodiments. The metal layer may consist of or consist essentially of a single element according to embodiments.


Additional process parameters are disclosed in the course of describing an exemplary processing chamber and system.


Exemplary Processing System



FIG. 3A shows a cross-sectional view of an exemplary substrate processing chamber 1001 with partitioned plasma generation regions within the processing chamber. During film etching, a process gas may be flowed into chamber plasma region 1015 through a gas inlet assembly 1105. A remote plasma system (RPS) 1002 may optionally be included in the system, and may process a first gas which then travels through gas inlet assembly 1105. The inlet assembly 1105 may include two or more distinct gas supply channels where the second channel (not shown) may bypass the RPS 1002, if included. Accordingly, in embodiments the precursor gases may be delivered to the processing chamber in an unexcited state. In another example, the first channel provided through the RPS may be used for the process gas and the second channel bypassing the RPS may be used for a treatment gas in embodiments. The process gas may be excited within the RPS 1002 prior to entering the chamber plasma region 1015. Accordingly, the chlorine-containing precursor as discussed above, for example, may pass through RPS 1002 or bypass the RPS unit in embodiments. Various other examples encompassed by this arrangement will be similarly understood.


A cooling plate 1003, faceplate 1017, ion suppressor 1023, showerhead 1025, and a substrate support 1065 (also known as a pedestal), having a substrate 1055 disposed thereon, are shown and may each be included according to embodiments. The pedestal 1065 may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. This configuration may allow the substrate 1055 temperature to be cooled or heated to maintain relatively low temperatures, such as between about −20° C. to about 200° C., or there between. The heat exchange fluid may comprise ethylene glycol and/or water. The wafer support platter of the pedestal 1065, which may comprise aluminum, ceramic, or a combination thereof, may also be resistively heated to achieve relatively high temperatures, such as from up to or about 100° C. to above or about 1100° C., using an embedded resistive heater element. The heating element may be formed within the pedestal as one or more loops, and an outer portion of the heater element may run adjacent to a perimeter of the support platter, while an inner portion runs on the path of a concentric circle having a smaller radius. The wiring to the heater element may pass through the stem of the pedestal 1065, which may be further configured to rotate.


The faceplate 1017 may be pyramidal, conical, or of another similar structure with a narrow top portion expanding to a wide bottom portion. The faceplate 1017 may additionally be flat as shown and include a plurality of through-channels used to distribute process gases. Plasma generating gases and/or plasma excited species, depending on use of the RPS 1002, may pass through a plurality of holes, shown in FIG. 3B, in faceplate 1017 for a more uniform delivery into the chamber plasma region 1015.


Exemplary configurations may include having the gas inlet assembly 1105 open into a gas supply region 1058 partitioned from the chamber plasma region 1015 by faceplate 1017 so that the gases/species flow through the holes in the faceplate 1017 into the chamber plasma region 1015. Structural and operational features may be selected to prevent significant backflow of plasma from the chamber plasma region 1015 back into the supply region 1058, gas inlet assembly 1105, and fluid supply system 1010. The structural features may include the selection of dimensions and cross-sectional geometries of the apertures in faceplate 1017 to deactivate back-streaming plasma. The operational features may include maintaining a pressure difference between the gas supply region 1058 and chamber plasma region 1015 that maintains a unidirectional flow of plasma through the showerhead 1025. The faceplate 1017, or a conductive top portion of the chamber, and showerhead 1025 are shown with an insulating ring 1020 located between the features, which allows an AC potential to be applied to the faceplate 1017 relative to showerhead 1025 and/or ion suppressor 1023. The insulating ring 1020 may be positioned between the faceplate 1017 and the showerhead 1025 and/or ion suppressor 1023 enabling a capacitively coupled plasma (CCP) to be formed in the first plasma region. A baffle (not shown) may additionally be located in the chamber plasma region 1015, or otherwise coupled with gas inlet assembly 1105, to affect the flow of fluid into the region through gas inlet assembly 1105.


The ion suppressor 1023 may comprise a plate or other geometry that defines a plurality of apertures throughout the structure that are configured to suppress the migration of ionically-charged species out of chamber plasma region 1015 while allowing uncharged neutral or radical species to pass through the ion suppressor 1023 into an activated gas delivery region between the suppressor and the showerhead. In embodiments, the ion suppressor 1023 may comprise a perforated plate with a variety of aperture configurations. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the apertures. As noted above, the migration of ionic species through the holes may be reduced, and in some instances completely suppressed.


The plurality of holes in the ion suppressor 1023 may be configured to control the passage of the activated gas, i.e., the ionic, radical, and/or neutral species, through the ion suppressor 1023. For example, the aspect ratio of the holes, or the hole diameter to length, and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through the ion suppressor 1023 is reduced. The holes in the ion suppressor 1023 may include a tapered portion that faces chamber plasma region 1015, and a cylindrical portion that faces the showerhead 1025. The cylindrical portion may be shaped and dimensioned to control the flow of ionic species passing to the showerhead 1025. An adjustable electrical bias may also be applied to the ion suppressor 1023 as an additional means to control the flow of ionic species through the suppressor.


The ion suppression element 1023 may function to reduce or eliminate the amount of ionically charged species traveling from the plasma generation region to the substrate. Showerhead 1025 in combination with ion suppressor 1023 may allow a plasma present in chamber plasma region 1015 to avoid directly exciting gases in substrate processing region 1033, while still allowing excited species to travel from chamber plasma region 1015 into substrate processing region 1033. In this way, the chamber may be configured to prevent the plasma from contacting a substrate 1055 being etched. This may advantageously protect a variety of intricate structures and films patterned on the substrate, which may be damaged, dislocated, or otherwise warped if directly contacted by a generated plasma. Additionally, when plasma is allowed to contact the substrate or approach the substrate level, the rate at which oxide species etch may increase. Accordingly, if the exposed second material is oxide, this material may be further protected by maintaining the plasma remotely from the substrate.


The processing system may further include a power supply 1040 electrically coupled with the processing chamber to provide electric power to the faceplate 1017, ion suppressor 1023, showerhead 1025, and/or pedestal 1065 to generate a plasma in the chamber plasma region 1015 or processing region 1033. The power supply may be configured to deliver an adjustable amount of power to the chamber depending on the process performed. Such a configuration may allow for a tunable plasma to be used in the processes being performed. Unlike a remote plasma unit, which is often presented with on or off functionality, a tunable plasma may be configured to deliver a specific amount of power to chamber plasma region 1015. This in turn may allow development of particular plasma characteristics such that precursors may be dissociated in specific ways to enhance the etching profiles produced by these precursors.


A plasma may be ignited in chamber plasma region 1015 above showerhead 1025 and/or substrate processing region 1033 below showerhead 1025. A plasma may be present in chamber plasma region 1015 to produce plasma-excited hydrogen-containing precursors from an inflow of a hydrogen-containing precursor. A local plasma has also been found to work for the pretreatment and the hydrogen-containing precursor may be flowed into in substrate processing region 1033 and a local plasma may be formed to effect the pretreatment. The etch cycle may be performed in the same substrate processing region and the substrate processing region may be plasma-free during each operation of the etch cycle (for example during flowing of the halogen-containing precursor and the subsequent flowing of the carbon-and-nitrogen-containing precursor). An AC voltage typically in the radio frequency (RF) range may be applied between the conductive top portion of the processing chamber, such as faceplate 1017, and showerhead 1025 and/or ion suppressor 1023 to ignite a plasma in chamber plasma region 1015 during processes. An RF power supply may generate a high RF frequency of 13.56 MHz but may also generate other frequencies alone or in combination with the 13.56 MHz frequency.


Plasma power can be of a variety of frequencies or a combination of multiple frequencies. In the exemplary processing system the plasma may be provided by RF power delivered to faceplate 1017 relative to ion suppressor 1023 and/or showerhead 1025. The RF frequency applied in the exemplary processing system may be low RF frequencies less than about 200 kHz, high RF frequencies between about 10 MHz and about 15 MHz, or microwave frequencies greater than or about 1 GHz in different embodiments. The plasma power may be capacitively-coupled (CCP) or inductively-coupled (ICP) into the remote plasma region.


Plasma power may also be simultaneously applied to both chamber plasma region 1015 and substrate processing region 1033 during etching processes described herein. The frequencies and powers above apply to both regions. Either region may be excited using either a capacitively-coupled plasma (CCP) or an inductively-coupled plasma (ICP).


Chamber plasma region 1015 (top plasma in figure) may be left at low or no power when a bottom plasma in the substrate processing region 1033 is turned on to, for example, cure a film or clean the interior surfaces bordering substrate processing region 1033. A plasma in substrate processing region 1033 may be ignited by applying an AC voltage between showerhead 1055 and the pedestal 1065 or bottom of the chamber. A cleaning gas may be introduced into substrate processing region 1033 while the plasma is present.


A fluid, such as a precursor, for example a chlorine-containing precursor, may be flowed into the processing region 1033 by embodiments of the showerhead described herein. Excited species derived from the process gas in chamber plasma region 1015 may travel through apertures in the ion suppressor 1023, and/or showerhead 1025 and react with an additional precursor flowing into the processing region 1033 from a separate portion of the showerhead. Alternatively, if all precursor species are being excited in chamber plasma region 1015, no additional precursors may be flowed through the separate portion of the showerhead. Little or no plasma may be present in the processing region 1033. Excited derivatives of the precursors may combine in the region above the substrate and, on occasion, on the substrate to etch structures or remove species on the substrate in disclosed applications.


Exciting the fluids in the chamber plasma region 1015 directly, or exciting the fluids in the RPS units 1002, may provide several benefits. The concentration of the excited species derived from the fluids may be increased within the processing region 1033 due to the plasma in the chamber plasma region 1015. This increase may result from the location of the plasma in the chamber plasma region 1015. The processing region 1033 may be located closer to the chamber plasma region 1015 than the remote plasma system (RPS) 1002, leaving less time for the excited species to leave excited states through collisions with other gas molecules, walls of the chamber, and surfaces of the showerhead.


The uniformity of the concentration of the excited species derived from the process gas may also be increased within the processing region 1033. This may result from the shape of the chamber plasma region 1015, which may be more similar to the shape of the processing region 1033. Excited species created in the RPS 1002 may travel greater distances to pass through apertures near the edges of the showerhead 1025 relative to species that pass through apertures near the center of the showerhead 1025. The greater distance may result in a reduced excitation of the excited species and, for example, may result in a slower growth rate near the edge of a substrate. Exciting the fluids in the chamber plasma region 1015 may mitigate this variation for the fluid flowed through RPS 1002, or alternatively bypassed around the RPS unit.


The processing gases may be excited in chamber plasma region 1015 and may be passed through the showerhead 1025 to the processing region 1033 in the excited state. While a plasma may be generated in the processing region 1033, a plasma may alternatively not be generated in the processing region. In one example, the only excitation of the processing gas or precursors may be from exciting the processing gases in chamber plasma region 1015 to react with one another in the processing region 1033. As previously discussed, this may be to protect the structures patterned on the substrate 1055.


In addition to the fluid precursors, there may be other gases introduced at varied times for varied purposes, including carrier gases to aid delivery. A treatment gas may be introduced to remove unwanted species from the chamber walls and/or the substrate. A treatment gas may be excited in a plasma and then used to reduce or remove residual content inside the chamber. In other embodiments the treatment gas may be used without a plasma. When the treatment gas includes water vapor, the delivery may be achieved using a mass flow meter (MFM), an injection valve, or by commercially available water vapor generators. The treatment gas may be introduced to the processing region 1033, either through the RPS unit or bypassing the RPS unit, and may further be excited in the first plasma region.



FIG. 3B shows a detailed view of the features affecting the processing gas distribution through faceplate 1017. As shown in FIG. 3A and FIG. 3B, faceplate 1017, cooling plate 1003, and gas inlet assembly 1105 intersect to define a gas supply region 1058 into which process gases may be delivered from gas inlet 1105. The gases may fill the gas supply region 1058 and flow to chamber plasma region 1015 through apertures 1059 in faceplate 1017. The apertures 1059 may be configured to direct flow in a substantially unidirectional manner such that process gases may flow into processing region 1033, but may be partially or fully prevented from backflow into the gas supply region 1058 after traversing the faceplate 1017.


The gas distribution assemblies such as showerhead 1025 for use in the processing chamber section 1001 may be referred to as dual channel showerheads (DCSH) and are additionally detailed in the embodiments described in FIG. 3A as well as FIG. 3C herein. The dual channel showerhead may provide for etching processes that allow for separation of etchants outside of the processing region 1033 to provide limited interaction with chamber components and each other prior to being delivered into the processing region.


The showerhead 1025 may comprise an upper plate 1014 and a lower plate 1016. The plates may be coupled with one another to define a volume 1018 between the plates. The coupling of the plates may be so as to provide first fluid channels 1019 through the upper and lower plates, and second fluid channels 1021 through the lower plate 1016. The formed channels may be configured to provide fluid access from the volume 1018 through the lower plate 1016 via second fluid channels 1021 alone, and the first fluid channels 1019 may be fluidly isolated from the volume 1018 between the plates and the second fluid channels 1021. The volume 1018 may be fluidly accessible through a side of the gas distribution assembly 1025. Although the exemplary chamber of FIG. 3A includes a dual-channel showerhead, it is understood that alternative distribution assemblies may be utilized that maintain first and second precursors fluidly isolated prior to the processing region 1033. For example, a perforated plate and tubes underneath the plate may be utilized, although other configurations may operate with reduced efficiency or not provide as uniform processing as the dual-channel showerhead as described.


In the embodiment shown, showerhead 1025 may distribute via first fluid channels 1019 process gases which contain plasma effluents upon excitation by a plasma in chamber plasma region 1015. In embodiments, the process gas introduced into the RPS 1002 and/or chamber plasma region 1015 may contain hydrogen. The process gas may also include a carrier gas such as helium, argon, nitrogen (N2), etc. Plasma effluents may include ionized or neutral derivatives of the process gas and may also be referred to herein as a radical-hydrogen precursor referring to the atomic constituent of the process gas introduced.



FIG. 3C is a bottom view of a showerhead 1025 for use with a processing chamber according to embodiments. Showerhead 1025 corresponds with the showerhead shown in FIG. 3A. Through-holes 1031, which show a view of first fluid channels 1019, may have a plurality of shapes and configurations to control and affect the flow of precursors through the showerhead 1025. Small holes 1027, which show a view of second fluid channels 1021, may be distributed substantially evenly over the surface of the showerhead, even amongst the through-holes 1031, which may help to provide more even mixing of the precursors as they exit the showerhead than other configurations.


Substrate processing region 1033 can be maintained at a variety of pressures during the flow of precursors, any carrier gases, and plasma effluents into substrate processing region 1033. The pressure may be maintained between about 0.1 mTorr and about 20 Torr or between about 10 mTorr and about 10 Torr in different embodiments.


Embodiments of the processing chambers may be incorporated into larger fabrication systems for producing integrated circuit chips. FIG. 4 shows one such processing system 1101 of deposition, etching, baking, and curing chambers according to embodiments. In the figure, a pair of front opening unified pods (load lock chambers 1102) supply substrates of a variety of sizes that are received by robotic arms 1104 and placed into a low pressure holding area 1106 before being placed into one of the substrate processing chambers 1108a-f. A second robotic arm 1110 may be used to transport the substrate wafers from the holding area 1106 to the substrate processing chambers 1108a-f and back. Each substrate processing chamber 1108a-f, can be outfitted to perform a number of substrate processing operations including the dry etch processes described herein in addition to cyclical layer deposition (CLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, degas, orientation, and other substrate processes.


The substrate processing chambers 1108a-f may include one or more system components for depositing, annealing, curing and/or etching a dielectric film on the substrate wafer. In one configuration, two pairs of the processing chamber, e.g., 1108c-d and 1108e-f, may be used to deposit dielectric material on the substrate, and the third pair of processing chambers, e.g., 1108a-b, may be used to etch the deposited dielectric. In another configuration, all three pairs of chambers, e.g., 1108a-f, may be configured to etch a dielectric film on the substrate. Any one or more of the processes described may be carried out in chamber(s) separated from the fabrication system shown in different embodiments.


In the preceding description, for the purposes of explanation, numerous details have been set forth to provide an understanding of various embodiments of the present invention. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.


As used herein “substrate” may be a support substrate with or without layers formed thereon. The patterned substrate may be an insulator or a semiconductor of a variety of doping concentrations and profiles and may, for example, be a semiconductor substrate of the type used in the manufacture of integrated circuits. Exposed “silicon” of the patterned substrate is predominantly Si but may include minority concentrations of other elemental constituents such as nitrogen, oxygen, hydrogen or carbon. Exposed “cobalt” of the patterned substrate is predominantly cobalt but may include minority concentrations of other elemental constituents such as oxygen, hydrogen and carbon. Of course, “exposed cobalt” may consist of only cobalt. Exposed “silicon nitride” of the patterned substrate is predominantly Si3N4 but may include minority concentrations of other elemental constituents such as oxygen, hydrogen and carbon. “Exposed silicon nitride” may consist of silicon and nitrogen. Exposed “silicon oxide” of the patterned substrate is predominantly SiO2 but may include minority concentrations of other elemental constituents such as nitrogen, hydrogen and carbon. In some embodiments, silicon oxide films etched using the methods disclosed herein consist of silicon and oxygen. “Cobalt oxide” is predominantly cobalt and oxygen but may include minority concentrations of other elemental constituents such as nitrogen, hydrogen and carbon. Cobalt oxide may consist of cobalt and oxygen.


The term “precursor” is used to refer to any process gas which takes part in a reaction to either remove material from or deposit material onto a surface. “Plasma effluents” describe gas exiting from the chamber plasma region and entering the substrate processing region. Plasma effluents are in an “excited state” wherein at least some of the gas molecules are in vibrationally-excited, dissociated and/or ionized states. A “radical precursor” is used to describe plasma effluents (a gas in an excited state which is exiting a plasma) which participate in a reaction to either remove material from or deposit material on a surface. “Radical-chlorine” are radical precursors which contain chlorine but may contain other elemental constituents. The phrase “inert gas” refers to any gas which does not form chemical bonds when etching or being incorporated into a film. Exemplary inert gases include noble gases but may include other gases so long as no chemical bonds are formed when (typically) trace amounts are trapped in a film.


The terms “gap” and “trench” are used throughout with no implication that the etched geometry has a large horizontal aspect ratio. Viewed from above the surface, trenches may appear circular, oval, polygonal, rectangular, or a variety of other shapes. A trench may be in the shape of a moat around an island of material. The term “via” is used to refer to a low aspect ratio trench (as viewed from above) which may or may not be filled with metal to form a vertical electrical connection. As used herein, a conformal etch process refers to a generally uniform removal of material on a surface in the same shape as the surface, i.e., the surface of the etched layer and the pre-etch surface are generally parallel. A person having ordinary skill in the art will recognize that the etched interface likely cannot be 100% conformal and thus the term “generally” allows for acceptable tolerances.


Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the embodiments. Additionally, a number of well-known processes and elements have not been described to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the dielectric material” includes reference to one or more dielectric materials and equivalents thereof known to those skilled in the art, and so forth.


Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.

Claims
  • 1. A method of etching metal from a substrate, the method comprising: flowing a hydrogen-containing precursor into a substrate processing region housing the substrate while forming a plasma of the hydrogen-containing precursor in the substrate processing region;treating a metal oxide layer exposed on the substrate, wherein the metal oxide layer is overlying a metal layer on the substrate, and wherein the treating comprises removing or reducing the metal oxide layer to expose the metal layer underlying the metal oxide layer;exposing a portion of the metal layer underlying the metal oxide layer;subsequent to treating the metal oxide layer, flowing a halogen-containing precursor into the substrate processing region, wherein the substrate processing region is plasma-free during the flowing of the halogen-containing precursor;subsequent to flowing the halogen-containing precursor, flowing a carbon-and-nitrogen-containing precursor into the substrate processing region, wherein the substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor; andremoving a portion of the exposed portion of the metal layer from the substrate.
  • 2. The method of claim 1 wherein the metal comprises at least one of cobalt and nickel.
  • 3. The method of claim 1 wherein the metal consists of a single element.
  • 4. The method of claim 1 wherein the hydrogen-containing precursor comprises H2.
  • 5. The method of claim 1 wherein the carbon-and-nitrogen-containing precursor comprises tetramethylethylenediamine.
  • 6. The method of claim 1 wherein the carbon-and-nitrogen-containing precursor comprises a carbon-nitrogen single bond.
  • 7. The method of claim 1 wherein the carbon-and-nitrogen-containing precursor comprises at least two methyl groups.
  • 8. The method of claim 1 wherein the halogen-containing precursor comprises at least one of chlorine or bromine.
  • 9. The method of claim 1 wherein the halogen-containing precursor is a homonuclear diatomic halogen.
  • 10. The method of claim 1 wherein the carbon-and-nitrogen-containing precursor consists of carbon, nitrogen and hydrogen.
  • 11. The method of claim 1 wherein a pressure within the substrate processing region is between about 0.01 Torr and about 10 Torr during one or more of flowing the hydrogen-containing precursor, flowing the halogen-containing precursor or flowing the carbon-and-nitrogen-containing precursor.
  • 12. The method of claim 1 wherein forming the plasma to treat the metal oxide layer comprises applying a remote RF power between about 25 watts and about 1500 watts to the substrate processing region.
  • 13. The method of claim 1 wherein forming the plasma to treat the metal oxide layer comprises forming a capacitive local plasma within the substrate processing region.
  • 14. The method of claim 1 wherein a processing temperature of the substrate is greater than or about −30° C. and less than or about 400° C. during the etching operation.
  • 15. The method of claim 1, further comprising purging the substrate processing region with an inert gas prior to flowing the carbon-and-nitrogen-containing precursor into the substrate processing region to remove residual halogen-containing precursor from the substrate processing region.
  • 16. A method of etching metal from a substrate, the method comprising: transferring the substrate into a substrate processing region;forming a plasma of a hydrogen-containing precursor in the substrate processing region to treat a metal oxide layer exposed on the substrate, wherein the metal oxide layer is overlying a metal layer on the substrate, and wherein treating the metal oxide layer comprises removing or reducing the metal oxide layer to expose the metal layer underlying the metal oxide layer;exposing a portion of the metal layer underlying the metal oxide layer;subsequently flowing a halogen-containing precursor into the substrate processing region while maintaining the substrate processing region plasma free;purging the substrate processing region with an inert gas to remove the halogen-containing precursor from the substrate processing region;flowing a carbon-and-nitrogen-containing precursor in to the substrate processing region while maintaining the substrate processing region plasma free; andremoving a portion of the exposed portion of the metal layer from the substrate.
  • 17. The method of claim 16 further comprising purging the substrate processing region with an inert gas to remove the carbon-and-nitrogen-containing precursor from the substrate processing region and then repeating the operations of flowing the hydrogen-containing precursor, flowing the halogen-containing precursor, purging to remove the halogen-containing precursor and flowing the carbon-and-nitrogen-containing precursor.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/288,696 filed May 28, 2014, and titled “OXIDE AND METAL REMOVAL”, the entire contents of which are hereby incorporated by reference for all purposes.

US Referenced Citations (1836)
Number Name Date Kind
2369620 Sullivan et al. Feb 1945 A
3451840 Hough Jun 1969 A
3537474 Rohrer Nov 1970 A
3756511 Shinroku Sep 1973 A
3937857 Brummett et al. Feb 1976 A
3969077 Hill Jul 1976 A
4006047 Brummett et al. Feb 1977 A
4190488 Winters Feb 1980 A
4209357 Gorin et al. Jun 1980 A
4214946 Forget et al. Jul 1980 A
4232060 Mallory, Jr. Nov 1980 A
4234628 DuRose Nov 1980 A
4265943 Goldstein et al. May 1981 A
4340462 Koch Jul 1982 A
4341592 Shortes et al. Jul 1982 A
4361418 Tscheppe Nov 1982 A
4361441 Tylko Nov 1982 A
4364803 Nidola et al. Dec 1982 A
4368223 Kobayashi et al. Jan 1983 A
4374698 Sanders et al. Feb 1983 A
4397812 Mallory, Jr. Aug 1983 A
4468413 Bachmann Aug 1984 A
4565601 Kakehi et al. Jan 1986 A
4579618 Celestino et al. Apr 1986 A
4585920 Hoog et al. Apr 1986 A
4600464 Desliets et al. Jul 1986 A
4610775 Phifer Sep 1986 A
4625678 Shloya et al. Dec 1986 A
4632857 Mallory, Jr. Dec 1986 A
4656052 Satou et al. Apr 1987 A
4656076 Vetanen et al. Apr 1987 A
4668335 Mockler May 1987 A
4690746 McInerney et al. Sep 1987 A
4715937 Moslehi et al. Dec 1987 A
4749440 Blackwood et al. Jun 1988 A
4753898 Parrillo et al. Jun 1988 A
4786360 Cote et al. Nov 1988 A
4792378 Rose et al. Dec 1988 A
4793897 Dunfield et al. Dec 1988 A
4807016 Douglas Feb 1989 A
4810520 Wu Mar 1989 A
4816638 Ukai et al. Mar 1989 A
4820377 Davis et al. Apr 1989 A
4828649 Davis May 1989 A
4857140 Loewenstein Aug 1989 A
4867841 Loewenstein et al. Sep 1989 A
4904621 Lowenstein et al. Feb 1990 A
4913929 Moslehi et al. Apr 1990 A
4919750 Bausmith et al. Apr 1990 A
4946903 Gardella et al. Aug 1990 A
4951601 Maydan et al. Aug 1990 A
4960488 Law et al. Oct 1990 A
4980018 Mu et al. Dec 1990 A
4981551 Palmour Jan 1991 A
4985372 Narita et al. Jan 1991 A
4991542 Kohmura et al. Feb 1991 A
4992136 Tachi et al. Feb 1991 A
4994404 Sheng et al. Feb 1991 A
5000113 Wang et al. Mar 1991 A
5006192 Deguchi Apr 1991 A
5010842 Oda et al. Apr 1991 A
5013691 Lory et al. May 1991 A
5028565 Chang Jul 1991 A
5030319 Nishino et al. Jul 1991 A
5038713 Kawakami et al. Aug 1991 A
5045244 Marlett Sep 1991 A
5061838 Lane et al. Oct 1991 A
5069938 Lorimer et al. Dec 1991 A
5083030 Stavov Jan 1992 A
5089441 Moslehi Feb 1992 A
5089442 Olmer Feb 1992 A
5147692 Bengston Sep 1992 A
5156881 Okano et al. Oct 1992 A
5180435 Markunas et al. Jan 1993 A
5186718 Tepman et al. Feb 1993 A
5188706 Hori et al. Feb 1993 A
5198034 deBoer et al. Mar 1993 A
5200016 Namose Apr 1993 A
5203911 Sricharoenchalkit et al. Apr 1993 A
5215787 Homma Jun 1993 A
5221427 Koinuma et al. Jun 1993 A
5228501 Tepman et al. Jul 1993 A
5231690 Soma et al. Jul 1993 A
5235139 Bengston et al. Aug 1993 A
5238499 van de Ven et al. Aug 1993 A
5240497 Shacham et al. Aug 1993 A
5248371 Maher et al. Sep 1993 A
5248527 Uchida et al. Sep 1993 A
5252178 Moslehi Oct 1993 A
5266157 Kadomura Nov 1993 A
5269881 Sekiya Dec 1993 A
5270125 America et al. Dec 1993 A
5271972 Kwok et al. Dec 1993 A
5275977 Otsubo et al. Jan 1994 A
5277750 Wolgang Jan 1994 A
5279669 Lee Jan 1994 A
5279865 Chebi et al. Jan 1994 A
5288518 Homma Feb 1994 A
5290382 Zarowin et al. Mar 1994 A
5290383 Koshimizu Mar 1994 A
5292370 Tsai et al. Mar 1994 A
5292682 Stevens et al. Mar 1994 A
5300463 Cathey et al. Apr 1994 A
5302233 Kim et al. Apr 1994 A
5304250 Sameshima et al. Apr 1994 A
5306530 Strongin et al. Apr 1994 A
5314724 Tsukune et al. May 1994 A
5319247 Matsuura Jun 1994 A
5326427 Jerbic Jul 1994 A
5328558 Kawamura et al. Jul 1994 A
5328810 Lowrey et al. Jul 1994 A
5330578 Sakama Jul 1994 A
5334552 Homma Aug 1994 A
5345999 Hosokawa Sep 1994 A
5352636 Beinglass Oct 1994 A
5356478 Chen et al. Oct 1994 A
5362526 Wang et al. Nov 1994 A
5366585 Robertson et al. Nov 1994 A
5368897 Kurihara et al. Nov 1994 A
5378316 Franke et al. Jan 1995 A
5380560 Kaja et al. Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5384284 Doan et al. Jan 1995 A
5385763 Okano et al. Jan 1995 A
5399237 Keswick et al. Mar 1995 A
5399529 Homma Mar 1995 A
5403434 Moslehi Apr 1995 A
5413670 Langan et al. May 1995 A
5413967 Matsuda et al. May 1995 A
5415890 Kloiber et al. May 1995 A
5416048 Blalock et al. May 1995 A
5420075 Homma et al. May 1995 A
5429995 Nishiyama et al. Jul 1995 A
5439553 Grant et al. Aug 1995 A
5451259 Krogh Sep 1995 A
5464499 Moslehi Nov 1995 A
5468342 Nulty et al. Nov 1995 A
5474589 Ohga et al. Dec 1995 A
5478403 Shinigawa et al. Dec 1995 A
5478462 Walsh Dec 1995 A
5483920 Pryor Jan 1996 A
5494494 Mizuno et al. Feb 1996 A
5500249 Telford et al. Mar 1996 A
5505816 Barnes et al. Apr 1996 A
5510216 Calabrese et al. Apr 1996 A
5516367 Lei et al. May 1996 A
5518962 Murao May 1996 A
5531835 Fodor et al. Jul 1996 A
5534070 Okamura et al. Jul 1996 A
5536360 Nguyen et al. Jul 1996 A
5549780 Koinuma et al. Aug 1996 A
5558717 Zhao et al. Sep 1996 A
5560779 Knowles et al. Oct 1996 A
5563105 Dobuzinsky et al. Oct 1996 A
5567243 Foster et al. Oct 1996 A
5571576 Qian et al. Nov 1996 A
5575853 Arami et al. Nov 1996 A
5578130 Hayashi et al. Nov 1996 A
5578161 Auda Nov 1996 A
5580421 Hiatt et al. Dec 1996 A
5591269 Arami et al. Jan 1997 A
5592358 Shamouilian Jan 1997 A
5597439 Salzman Jan 1997 A
5599740 Jang et al. Feb 1997 A
5614055 Fairbairn et al. Mar 1997 A
5616518 Foo et al. Apr 1997 A
5624582 Cain Apr 1997 A
5626922 Miyanaga et al. May 1997 A
5628829 Foster et al. May 1997 A
5635086 Warren, Jr. Jun 1997 A
5645645 Zhang et al. Jul 1997 A
5648125 Cane Jul 1997 A
5648175 Russell et al. Jul 1997 A
5656093 Burkhart et al. Aug 1997 A
5660957 Chou et al. Aug 1997 A
5661093 Ravi et al. Aug 1997 A
5670066 Barnes et al. Sep 1997 A
5674787 Zhao et al. Oct 1997 A
5676758 Hasgawa et al. Oct 1997 A
5679606 Wang et al. Oct 1997 A
5685946 Fathauer et al. Nov 1997 A
5688331 Aruga et al. Nov 1997 A
5695810 Dubin et al. Dec 1997 A
5712185 Tsai et al. Jan 1998 A
5716500 Bardos et al. Feb 1998 A
5716506 Maclay et al. Feb 1998 A
5719085 Moon et al. Feb 1998 A
5733816 Iyer et al. Mar 1998 A
5747373 Yu May 1998 A
5753886 Iwamura et al. May 1998 A
5755859 Brusic et al. May 1998 A
5756400 Ye et al. May 1998 A
5756402 Jimbo et al. May 1998 A
5772770 Suda et al. Jun 1998 A
5781693 Ballance et al. Jul 1998 A
5786276 Brooks et al. Jul 1998 A
5788825 Park et al. Aug 1998 A
5789300 Fulford Aug 1998 A
5792376 Kanai et al. Aug 1998 A
5800686 Littau et al. Sep 1998 A
5804259 Robles Sep 1998 A
5812403 Fong et al. Sep 1998 A
5814238 Ashby et al. Sep 1998 A
5814365 Mahawill Sep 1998 A
5820723 Benjamin et al. Oct 1998 A
5824599 Schacham-Diamand et al. Oct 1998 A
5830805 Schacham-Diamand et al. Nov 1998 A
5835334 McMillin et al. Nov 1998 A
5843538 Ehrsam et al. Dec 1998 A
5843847 Pu et al. Dec 1998 A
5844195 Fairbairn et al. Dec 1998 A
5846332 Zhao et al. Dec 1998 A
5846373 Pirkle et al. Dec 1998 A
5846375 Gilchrist et al. Dec 1998 A
5846598 Semkow et al. Dec 1998 A
5849639 Molloy et al. Dec 1998 A
5850105 Dawson et al. Dec 1998 A
5855681 Maydan et al. Jan 1999 A
5855685 Tobe et al. Jan 1999 A
5856240 Sinha et al. Jan 1999 A
5858876 Chew Jan 1999 A
5865896 Nowak Feb 1999 A
5866483 Shiau et al. Feb 1999 A
5868897 Ohkawa Feb 1999 A
5872052 Iyer Feb 1999 A
5872058 Van Cleemput et al. Feb 1999 A
5882424 Taylor et al. Mar 1999 A
5882786 Nassau et al. Mar 1999 A
5883012 Chiou Mar 1999 A
5885404 Kim et al. Mar 1999 A
5885749 Huggins et al. Mar 1999 A
5888906 Sandhu et al. Mar 1999 A
5891349 Tobe et al. Apr 1999 A
5891513 Dubin et al. Apr 1999 A
5897751 Makowiecki Apr 1999 A
5899752 Hey et al. May 1999 A
5900163 Yi et al. May 1999 A
5904827 Reynolds May 1999 A
5907790 Kellam May 1999 A
5910340 Uchida et al. Jun 1999 A
5913147 Dubin et al. Jun 1999 A
5913978 Kato et al. Jun 1999 A
5915190 Pirkle Jun 1999 A
5918116 Chittipeddi Jun 1999 A
5920792 Lin Jul 1999 A
5926737 Ameen et al. Jul 1999 A
5928528 Kubota et al. Jul 1999 A
5932077 Reynolds Aug 1999 A
5933757 Yoshikawa et al. Aug 1999 A
5935334 Fong et al. Aug 1999 A
5935340 Xia et al. Aug 1999 A
5937323 Orczyk et al. Aug 1999 A
5939831 Fong et al. Aug 1999 A
5942075 Nagahata et al. Aug 1999 A
5944049 Beyer et al. Aug 1999 A
5944902 Redeker et al. Aug 1999 A
5948702 Rotondaro Sep 1999 A
5951601 Lesinski et al. Sep 1999 A
5951776 Selyutin et al. Sep 1999 A
5951896 Mahawill Sep 1999 A
5953591 Ishihara et al. Sep 1999 A
5953635 Andideh Sep 1999 A
5963840 Xia et al. Oct 1999 A
5968379 Zhao et al. Oct 1999 A
5968587 Frankel et al. Oct 1999 A
5968610 Liu et al. Oct 1999 A
5969422 Ting et al. Oct 1999 A
5976327 Tanaka Nov 1999 A
5990000 Hong et al. Nov 1999 A
5990013 Berenguer et al. Nov 1999 A
5993916 Zhao et al. Nov 1999 A
5994209 Yieh et al. Nov 1999 A
5997649 Hillman Dec 1999 A
5997962 Ogasawara et al. Dec 1999 A
6004884 Abraham Dec 1999 A
6007635 Mahawill Dec 1999 A
6007785 Liou Dec 1999 A
6010962 Liu et al. Jan 2000 A
6013191 Nasser-Faili et al. Jan 2000 A
6013584 M'Saad Jan 2000 A
6015724 Yamazaki et al. Jan 2000 A
6015747 Lopatin et al. Jan 2000 A
6017414 Koemtzopoulos et al. Jan 2000 A
6019848 Kiyama et al. Feb 2000 A
6020271 Yanagida Feb 2000 A
6030666 Lam et al. Feb 2000 A
6030881 Papasouliotis et al. Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6037018 Jang et al. Mar 2000 A
6037266 Tao et al. Mar 2000 A
6039834 Tanaka et al. Mar 2000 A
6039851 Iyer Mar 2000 A
6053982 Halpin et al. Apr 2000 A
6059643 Hu et al. May 2000 A
6063683 Wu et al. May 2000 A
6063712 Gilton et al. May 2000 A
6065424 Shacham-Diamand et al. May 2000 A
6065425 Takaki et al. May 2000 A
6072147 Koshiishi Jun 2000 A
6072227 Yau et al. Jun 2000 A
6074512 Collins et al. Jun 2000 A
6074514 Bjorkman et al. Jun 2000 A
6077780 Dubin Jun 2000 A
6079356 Umotoy et al. Jun 2000 A
6080529 Ye et al. Jun 2000 A
6081414 Flanigan et al. Jun 2000 A
6083344 Hanawa et al. Jul 2000 A
6083844 Bui-Le et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6087278 Kim et al. Jul 2000 A
6090212 Mahawill Jul 2000 A
6093457 Okumura Jul 2000 A
6093594 Yeap et al. Jul 2000 A
6099697 Hausmann Aug 2000 A
6107199 Allen et al. Aug 2000 A
6110530 Chen et al. Aug 2000 A
6110832 Morgan et al. Aug 2000 A
6110836 Cohen et al. Aug 2000 A
6110838 Loewenstein Aug 2000 A
6113771 Landau et al. Sep 2000 A
6114216 Yieh et al. Sep 2000 A
6117245 Mandrekar et al. Sep 2000 A
6120640 Shih et al. Sep 2000 A
6132512 Horie et al. Oct 2000 A
6136163 Cheung et al. Oct 2000 A
6136685 Narwankar et al. Oct 2000 A
6136693 Chan et al. Oct 2000 A
6140234 Uzoh et al. Oct 2000 A
6144099 Lopatin et al. Nov 2000 A
6147009 Grill et al. Nov 2000 A
6148761 Majewski et al. Nov 2000 A
6149828 Vaartstra Nov 2000 A
6150628 Smith et al. Nov 2000 A
6153935 Edelstein et al. Nov 2000 A
6161500 Kopacz et al. Dec 2000 A
6161576 Maher et al. Dec 2000 A
6162302 Raghavan et al. Dec 2000 A
6162370 Hackett et al. Dec 2000 A
6165912 McConnell et al. Dec 2000 A
6167834 Wang et al. Jan 2001 B1
6169021 Akram et al. Jan 2001 B1
6170428 Redeker et al. Jan 2001 B1
6171661 Zheng et al. Jan 2001 B1
6174450 Patrick et al. Jan 2001 B1
6174810 Patrick et al. Jan 2001 B1
6174812 Hsuing et al. Jan 2001 B1
6176198 Kao et al. Jan 2001 B1
6176667 Fairbairn Jan 2001 B1
6177245 Ward et al. Jan 2001 B1
6179924 Zhao et al. Jan 2001 B1
6180523 Lee et al. Jan 2001 B1
6182602 Redeker et al. Feb 2001 B1
6182603 Shang et al. Feb 2001 B1
6184121 Buchwalter et al. Feb 2001 B1
6184489 Ito et al. Feb 2001 B1
6186091 Chu et al. Feb 2001 B1
6189483 Ishikawa et al. Feb 2001 B1
6190233 Hong et al. Feb 2001 B1
6194038 Rossman Feb 2001 B1
6197181 Chen Mar 2001 B1
6197364 Paunovic et al. Mar 2001 B1
6197680 Lin et al. Mar 2001 B1
6197688 Simpson Mar 2001 B1
6197705 Vassiliev Mar 2001 B1
6203863 Liu et al. Mar 2001 B1
6204200 Shieh et al. Mar 2001 B1
6210486 Mizukami et al. Apr 2001 B1
6217658 Orczyk et al. Apr 2001 B1
6220201 Nowak Apr 2001 B1
6225745 Srivastava May 2001 B1
6228233 Lakshmikanthan et al. May 2001 B1
6228751 Yamazaki et al. May 2001 B1
6228758 Pellerin et al. May 2001 B1
6235643 Mui et al. May 2001 B1
6237527 Kellerman et al. May 2001 B1
6238513 Arnold et al. May 2001 B1
6238582 Williams et al. May 2001 B1
6197151 Kaji et al. Jun 2001 B1
6241845 Gadgil et al. Jun 2001 B1
6242349 Nogami et al. Jun 2001 B1
6242360 Fischer et al. Jun 2001 B1
6244211 Nishikawa et al. Jun 2001 B1
6245396 Nogami Jun 2001 B1
6245670 Cheung et al. Jun 2001 B1
6251236 Stevens Jun 2001 B1
6251802 Moore et al. Jun 2001 B1
6258170 Somekh et al. Jul 2001 B1
6258220 Dordi et al. Jul 2001 B1
6258223 Cheung et al. Jul 2001 B1
6258270 Hilgendorff et al. Jul 2001 B1
6261637 Oberle Jul 2001 B1
6277733 Smith Aug 2001 B1
6277752 Chen Aug 2001 B1
6277763 Kugimiya et al. Aug 2001 B1
6281072 Li et al. Aug 2001 B1
6281135 Han et al. Aug 2001 B1
6284146 Kim et al. Sep 2001 B1
6291282 Wilk et al. Sep 2001 B1
6291348 Lopatin et al. Sep 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6303044 Koemtzopoulos Oct 2001 B1
6303418 Cha et al. Oct 2001 B1
6306772 Lin Oct 2001 B1
6308654 Schneider et al. Oct 2001 B1
6308776 Sloan Oct 2001 B1
6310755 Busato et al. Oct 2001 B1
6312554 Ye Nov 2001 B1
6312995 Yu Nov 2001 B1
6319387 Krishnamoorthy et al. Nov 2001 B1
6321587 Laush Nov 2001 B1
6322716 Qiao et al. Nov 2001 B1
6323128 Sambucetti et al. Nov 2001 B1
6335288 Kwan et al. Jan 2002 B1
6340435 Bjorkman et al. Jan 2002 B1
6342733 Hu et al. Jan 2002 B1
RE37546 Mahawili Feb 2002 E
6344410 Lopatin et al. Feb 2002 B1
6348407 Gupta et al. Feb 2002 B1
6350320 Sherstinsky et al. Feb 2002 B1
6350697 Richardson Feb 2002 B1
6351013 Luning et al. Feb 2002 B1
6352081 Lu et al. Mar 2002 B1
6355573 Okumura Mar 2002 B1
6358827 Chen et al. Mar 2002 B1
6364949 Or et al. Apr 2002 B1
6364954 Umotoy et al. Apr 2002 B2
6364957 Schneider et al. Apr 2002 B1
6375748 Yudovsky et al. Apr 2002 B1
6376386 Oshima Apr 2002 B1
6379575 Yin et al. Apr 2002 B1
6383896 Kirimura et al. May 2002 B1
6383951 Li May 2002 B1
6387207 Janakiraman et al. May 2002 B1
6391753 Yu May 2002 B1
6395150 Van Cleemput et al. May 2002 B1
6403491 Liu et al. Jun 2002 B1
6415736 Hao et al. Jul 2002 B1
6416647 Dordi et al. Jul 2002 B1
6418874 Cox et al. Jul 2002 B1
6423284 Arno Jul 2002 B1
6427623 Ko Aug 2002 B2
6429465 Yagi et al. Aug 2002 B1
6432819 Pavate et al. Aug 2002 B1
6432831 Dhindsa et al. Aug 2002 B2
6436193 Kasai et al. Aug 2002 B1
6436816 Lee et al. Aug 2002 B1
6440863 Tsai et al. Aug 2002 B1
6441492 Cunningham Aug 2002 B1
6446572 Brcka Sep 2002 B1
6448537 Nering Sep 2002 B1
6458718 Todd Oct 2002 B1
6461974 Ni et al. Oct 2002 B1
6462371 Weimer et al. Oct 2002 B1
6462372 Xia et al. Oct 2002 B1
6465051 Sahin et al. Oct 2002 B1
6465350 Taylor et al. Oct 2002 B1
6465366 Nemani et al. Oct 2002 B1
6477980 White et al. Nov 2002 B1
6479373 Dreybrodt et al. Nov 2002 B2
6488984 Wada et al. Dec 2002 B1
6494959 Samoilov et al. Dec 2002 B1
6499425 Sandhu et al. Dec 2002 B1
6500728 Wang Dec 2002 B1
6503843 Xia et al. Jan 2003 B1
6506291 Tsai et al. Jan 2003 B2
6509283 Thomas Jan 2003 B1
6509623 Zhao Jan 2003 B2
6516815 Stevens et al. Feb 2003 B1
6518548 Sugaya et al. Feb 2003 B2
6527968 Wang et al. Mar 2003 B1
6528409 Lopatin et al. Mar 2003 B1
6528751 Hoffman et al. Mar 2003 B1
6537707 Lee Mar 2003 B1
6537733 Campana et al. Mar 2003 B2
6541397 Bencher Apr 2003 B1
6541671 Martinez et al. Apr 2003 B1
6544340 Yudovsky Apr 2003 B2
6547977 Yan et al. Apr 2003 B1
6551924 Dalton et al. Apr 2003 B1
6558564 Loewenhardt May 2003 B1
6565661 Nguyen May 2003 B1
6565729 Chen et al. May 2003 B2
6569773 Gellrich et al. May 2003 B1
6572937 Hakovirta et al. Jun 2003 B2
6573030 Fairbairn et al. Jun 2003 B1
6573606 Sambucetti et al. Jun 2003 B2
6585851 Ohmi et al. Jul 2003 B1
6586163 Okabe et al. Jul 2003 B1
6596599 Guo Jul 2003 B1
6596654 Bayman et al. Jul 2003 B1
6602434 Hung et al. Aug 2003 B1
6602806 Xia et al. Aug 2003 B1
6603269 Vo et al. Aug 2003 B1
6605874 Leu et al. Aug 2003 B2
6616967 Test Sep 2003 B1
6627532 Gaillard et al. Sep 2003 B1
6635575 Xia et al. Oct 2003 B1
6635578 Xu et al. Oct 2003 B1
6638810 Bakli et al. Oct 2003 B2
6645301 Sainty et al. Nov 2003 B2
6645550 Cheung et al. Nov 2003 B1
6656831 Lee et al. Dec 2003 B1
6656837 Xu et al. Dec 2003 B2
6656848 Scanlan et al. Dec 2003 B1
6663715 Yuda et al. Dec 2003 B1
6677242 Liu et al. Jan 2004 B1
6679981 Pan et al. Jan 2004 B1
6688375 Turner Feb 2004 B1
6713356 Skotnicki et al. Mar 2004 B1
6713835 Horak et al. Mar 2004 B1
6717189 Inoue et al. Apr 2004 B2
6720213 Gambino et al. Apr 2004 B1
6736147 Satoh et al. May 2004 B2
6736987 Cho May 2004 B1
6740247 Han et al. May 2004 B1
6740585 Yoon et al. May 2004 B2
6740977 Ahn et al. May 2004 B2
6743473 Parkhe et al. Jun 2004 B1
6743732 Lin et al. Jun 2004 B1
6756235 Liu et al. Jun 2004 B1
6759261 Shimokohbe et al. Jul 2004 B2
6762127 Boiteux et al. Jul 2004 B2
6762435 Towle Jul 2004 B2
6764958 Nemani et al. Jul 2004 B1
6765273 Chau et al. Jul 2004 B1
6767834 Chung et al. Jul 2004 B2
6768079 Kosakai Jul 2004 B2
6770166 Fisher Aug 2004 B1
6772827 Keller et al. Aug 2004 B2
6792889 Nakano et al. Sep 2004 B2
6794290 Papasouliotis et al. Sep 2004 B1
6794311 Huang et al. Sep 2004 B2
6796314 Graff et al. Sep 2004 B1
6797189 Hung et al. Sep 2004 B2
6800336 Fornsel et al. Oct 2004 B1
6800830 Mahawili Oct 2004 B2
6802944 Ahmad et al. Oct 2004 B2
6808564 Dietze Oct 2004 B2
6808748 Kapoor et al. Oct 2004 B2
6815633 Chen et al. Nov 2004 B1
6821571 Huang Nov 2004 B2
6823589 White et al. Nov 2004 B2
6828241 Kholodenko et al. Dec 2004 B2
6830624 Janakiraman et al. Dec 2004 B2
6835995 Li Dec 2004 B2
6846745 Papasouliotis et al. Jan 2005 B1
6849854 Sainty Feb 2005 B2
6852550 Tuttle et al. Feb 2005 B2
6852584 Chen et al. Feb 2005 B1
6853533 Parkhe et al. Feb 2005 B2
6858153 Bjorkman et al. Feb 2005 B2
6861097 Goosey et al. Mar 2005 B1
6861332 Park et al. Mar 2005 B2
6869880 Krishnaraj et al. Mar 2005 B2
6875280 Ikeda et al. Apr 2005 B2
6878206 Tzu et al. Apr 2005 B2
6879981 Rothschild et al. Apr 2005 B2
6886491 Kim et al. May 2005 B2
6892669 Xu et al. May 2005 B2
6893967 Wright et al. May 2005 B1
6897532 Schwarz et al. May 2005 B1
6900596 Yang et al. May 2005 B2
6903511 Chistyakov Jun 2005 B2
6908862 Li et al. Jun 2005 B2
6911112 An Jun 2005 B2
6911401 Khandan et al. Jun 2005 B2
6921556 Shimizu et al. Jul 2005 B2
6924191 Liu et al. Aug 2005 B2
6930047 Yamazaki Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6942753 Choi et al. Sep 2005 B2
6946033 Tsuel et al. Sep 2005 B2
6951821 Hamelin et al. Oct 2005 B2
6958175 Sakamoto et al. Oct 2005 B2
6958286 Chen et al. Oct 2005 B2
6969619 Winniczek Nov 2005 B1
6995073 Liou Feb 2006 B2
7017269 White et al. Mar 2006 B2
7018941 Cui et al. Mar 2006 B2
7030034 Fucsko et al. Apr 2006 B2
7037846 Srivastava et al. May 2006 B2
7049200 Arghavani et al. May 2006 B2
7052553 Shih et al. May 2006 B1
7071532 Geffken et al. Jul 2006 B2
7084070 Lee et al. Aug 2006 B1
7115525 Abatchev et al. Oct 2006 B2
7122949 Strikovski Oct 2006 B2
7145725 Hasel et al. Dec 2006 B2
7148155 Tarafdar et al. Dec 2006 B1
7166233 Johnson et al. Jan 2007 B2
7183214 Nam et al. Feb 2007 B2
7196342 Ershov et al. Mar 2007 B2
7226805 Hallin et al. Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7244474 Hanawa et al. Jul 2007 B2
7252011 Traverso Aug 2007 B2
7252716 Kim et al. Aug 2007 B2
7253123 Arghavani et al. Aug 2007 B2
7256370 Guiver Aug 2007 B2
7274004 Benjamin et al. Sep 2007 B2
7288482 Panda et al. Oct 2007 B2
7291360 Hanawa et al. Nov 2007 B2
7316761 Doan et al. Jan 2008 B2
7329608 Babayan et al. Feb 2008 B2
7341633 Lubomirsky et al. Mar 2008 B2
7344912 Okoroanyanwu Mar 2008 B1
7358192 Merry et al. Apr 2008 B2
7361865 Maki et al. Apr 2008 B2
7364956 Saito Apr 2008 B2
7365016 Ouellet et al. Apr 2008 B2
7396480 Kao et al. Jul 2008 B2
7396773 Blosse et al. Jul 2008 B1
7416989 Liu et al. Aug 2008 B1
7465358 Weidman et al. Dec 2008 B2
7465953 Koh et al. Dec 2008 B1
7468319 Lee Dec 2008 B2
7479303 Byun et al. Jan 2009 B2
7484473 Keller et al. Feb 2009 B2
7488688 Chung et al. Feb 2009 B2
7494545 Lam et al. Feb 2009 B2
7500445 Zhao et al. Mar 2009 B2
7504040 Lijima et al. Mar 2009 B2
7513214 Okumura et al. Apr 2009 B2
7520957 Kao et al. Apr 2009 B2
7553756 Hayashi et al. Jun 2009 B2
7575007 Tang et al. Aug 2009 B2
7581511 Mardian et al. Sep 2009 B2
7604708 Wood et al. Oct 2009 B2
7611980 Wells Nov 2009 B2
7628897 Mungekar et al. Dec 2009 B2
7658799 Ishikawa et al. Feb 2010 B2
7682518 Chandrachood Mar 2010 B2
7695590 Hanawa et al. Apr 2010 B2
7708859 Huang et al. May 2010 B2
7722925 White et al. May 2010 B2
7723221 Hayashi May 2010 B2
7749326 Kim et al. Jul 2010 B2
7780790 Nogami Aug 2010 B2
7785672 Choi et al. Aug 2010 B2
7790634 Munro et al. Sep 2010 B2
7806077 Lee et al. Oct 2010 B2
7806078 Yoshida Oct 2010 B2
7807578 Bencher et al. Oct 2010 B2
7825038 Ingle et al. Nov 2010 B2
7837828 Ikeda et al. Nov 2010 B2
7845309 Condrashoff et al. Dec 2010 B2
7867926 Satoh et al. Jan 2011 B2
7906818 Pekny Mar 2011 B2
7915139 Lang et al. Mar 2011 B1
7932181 Singh et al. Apr 2011 B2
7939422 Ingle et al. May 2011 B2
7968441 Xu Jun 2011 B2
7976631 Burrows Jul 2011 B2
7977249 Liu Jul 2011 B1
7981806 Jung Jul 2011 B2
7989365 Park et al. Aug 2011 B2
8008166 Sanchez et al. Aug 2011 B2
8048811 Feustel et al. Nov 2011 B2
8058179 Draeger et al. Nov 2011 B1
8071482 Kawada Dec 2011 B2
8074599 Choi et al. Dec 2011 B2
8076198 Lee et al. Dec 2011 B2
8083853 Choi et al. Dec 2011 B2
8114245 Ohmi et al. Feb 2012 B2
8119530 Hori et al. Feb 2012 B2
8133349 Panagopoulos Mar 2012 B1
8183134 Wu May 2012 B2
8187486 Liu et al. May 2012 B1
8211808 Sapre et al. Jul 2012 B2
8222128 Sasaki et al. Jul 2012 B2
8252194 Kiehlbauch et al. Aug 2012 B2
8272346 Bettencourt et al. Sep 2012 B2
8295089 Jeong et al. Oct 2012 B2
8298627 Minami et al. Oct 2012 B2
8298959 Cheshire Oct 2012 B2
8309440 Sanchez et al. Nov 2012 B2
8312839 Baek Nov 2012 B2
8313610 Dhindsa Nov 2012 B2
8328939 Choi et al. Dec 2012 B2
8329262 Miller et al. Dec 2012 B2
8336188 Monteen Dec 2012 B2
8343306 Tanaka et al. Jan 2013 B2
8357435 Lubomirsky Jan 2013 B2
8361892 Tam et al. Jan 2013 B2
8368308 Banna et al. Feb 2013 B2
8390980 Sansoni et al. Mar 2013 B2
8427067 Espiau et al. Apr 2013 B2
8435902 Tang et al. May 2013 B2
8440523 Guillorn et al. May 2013 B1
8466073 Wang et al. Jun 2013 B2
8475674 Thadani et al. Jul 2013 B2
8480850 Tyler et al. Jul 2013 B2
8491805 Kushibiki et al. Jul 2013 B2
8501629 Tang et al. Aug 2013 B2
8506713 Takagi Aug 2013 B2
8512509 Bera et al. Aug 2013 B2
8528889 Sansoni et al. Sep 2013 B2
8540844 Hudson et al. Sep 2013 B2
8551891 Liang Oct 2013 B2
8573152 De La Llera Nov 2013 B2
8622021 Taylor et al. Jan 2014 B2
8623471 Tyler et al. Jan 2014 B2
8633423 Lin et al. Jan 2014 B2
8642481 Wang et al. Feb 2014 B2
8652298 Dhindsa et al. Feb 2014 B2
8668836 Mizukami et al. Mar 2014 B2
8679982 Wang et al. Mar 2014 B2
8679983 Wang et al. Mar 2014 B2
8702902 Blom et al. Apr 2014 B2
8741778 Yang et al. Jun 2014 B2
8747680 Deshpande Jun 2014 B1
8748322 Fung et al. Jun 2014 B1
8765574 Zhang et al. Jul 2014 B2
8771536 Zhang et al. Jul 2014 B2
8771539 Zhang et al. Jul 2014 B2
8772888 Jung et al. Jul 2014 B2
8778079 Begarney et al. Jul 2014 B2
8801952 Wang et al. Aug 2014 B1
8802572 Nemani et al. Aug 2014 B2
8808563 Wang et al. Aug 2014 B2
8815720 Godet et al. Aug 2014 B2
8835316 Yin et al. Sep 2014 B2
8846163 Kao et al. Sep 2014 B2
8869742 Dhindsa Oct 2014 B2
8871651 Choi et al. Oct 2014 B1
8888087 Okabe et al. Nov 2014 B2
8894767 Goradia et al. Nov 2014 B2
8895449 Zhu et al. Nov 2014 B1
8900364 Wright Dec 2014 B2
8921234 Liu et al. Dec 2014 B2
8927390 Sapre et al. Jan 2015 B2
8932947 Han et al. Jan 2015 B1
8937017 Cheshire et al. Jan 2015 B2
8945414 Su et al. Feb 2015 B1
8946665 Shim et al. Feb 2015 B2
8946828 Sun et al. Feb 2015 B2
8951429 Liu et al. Feb 2015 B1
8956980 Chen et al. Feb 2015 B1
8969212 Ren et al. Mar 2015 B2
8980005 Carlson et al. Mar 2015 B2
8980758 Ling et al. Mar 2015 B1
8980763 Wang et al. Mar 2015 B2
8992723 Sorensen et al. Mar 2015 B2
8999656 Jirstrom et al. Apr 2015 B2
8999839 Su et al. Apr 2015 B2
8999856 Zhang et al. Apr 2015 B2
9012302 Sapre et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9023732 Wang et al. May 2015 B2
9023734 Chen et al. May 2015 B2
9034770 Park et al. May 2015 B2
9040422 Wang et al. May 2015 B2
9064815 Zhang et al. Jun 2015 B2
9064816 Kim et al. Jun 2015 B2
9072158 Ikeda et al. Jun 2015 B2
9093371 Wang et al. Jul 2015 B2
9093389 Nemani Jul 2015 B2
9093390 Wang et al. Jul 2015 B2
9111877 Chen et al. Aug 2015 B2
9111907 Kamineni Aug 2015 B2
9114438 Hoinkis et al. Aug 2015 B2
9117855 Cho et al. Aug 2015 B2
9132436 Liang et al. Sep 2015 B2
9136273 Purayath et al. Sep 2015 B1
9144147 Yang et al. Sep 2015 B2
9153442 Wang et al. Oct 2015 B2
9159606 Purayath et al. Oct 2015 B1
9165783 Nemani et al. Oct 2015 B2
9165786 Purayath et al. Oct 2015 B1
9184055 Wang et al. Nov 2015 B2
9190290 Xue et al. Nov 2015 B2
9190293 Wang et al. Nov 2015 B2
9190302 Ni Nov 2015 B2
9202708 Chen et al. Dec 2015 B1
9209012 Chen et al. Dec 2015 B2
9236265 Korolik et al. Jan 2016 B2
9236266 Zhang et al. Jan 2016 B2
9240315 Hsieh et al. Jan 2016 B1
9245762 Zhang et al. Jan 2016 B2
9263278 Purayath et al. Feb 2016 B2
9269590 Luere et al. Feb 2016 B2
9275834 Park et al. Mar 2016 B1
9281384 Takeguchi Mar 2016 B2
9287095 Nguyen et al. Mar 2016 B2
9287134 Wang et al. Mar 2016 B2
9293568 Ko Mar 2016 B2
9299537 Kobayashi et al. Mar 2016 B2
9299538 Kobayashi et al. Mar 2016 B2
9299575 Park et al. Mar 2016 B2
9299582 Ingle et al. Mar 2016 B2
9299583 Wang et al. Mar 2016 B1
9309598 Wang Apr 2016 B2
9324576 Zhang et al. Apr 2016 B2
9343272 Pandit et al. May 2016 B1
9343327 Zhang et al. May 2016 B2
9349605 Xu et al. May 2016 B1
9355856 Wang et al. May 2016 B2
9355862 Pandit et al. May 2016 B2
9355863 Chen et al. May 2016 B2
9355922 Park et al. May 2016 B2
9362130 Ingle et al. Jun 2016 B2
9362163 Danek et al. Jun 2016 B2
9368364 Park et al. Jun 2016 B2
9373517 Yang et al. Jun 2016 B2
9373522 Wang et al. Jun 2016 B1
9378969 Hsu et al. Jun 2016 B2
9378978 Purayath et al. Jun 2016 B2
9384997 Ren et al. Jul 2016 B2
9385028 Nemani et al. Jul 2016 B2
9390937 Chen et al. Jul 2016 B2
9396961 Arghavani et al. Jul 2016 B2
9396989 Purayath et al. Jul 2016 B2
9406523 Chen et al. Aug 2016 B2
9412608 Wang et al. Aug 2016 B2
9412752 Yeh et al. Aug 2016 B1
9418858 Wang et al. Aug 2016 B2
9425041 Berry et al. Aug 2016 B2
9425058 Kim et al. Aug 2016 B2
9431414 Jang et al. Aug 2016 B2
9343358 Montgomery Sep 2016 B1
9437451 Chen et al. Sep 2016 B2
9443749 Smith Sep 2016 B2
9449845 Liu et al. Sep 2016 B2
9449846 Liu et al. Sep 2016 B2
9449850 Wang et al. Sep 2016 B2
9460959 Xie et al. Oct 2016 B1
9472412 Zhang et al. Oct 2016 B2
9472417 Ingle et al. Oct 2016 B2
9478432 Chen et al. Oct 2016 B2
9478433 Zhou et al. Oct 2016 B1
9478434 Wang et al. Oct 2016 B2
9493879 Hoinkis et al. Nov 2016 B2
9496167 Purayath et al. Nov 2016 B2
9499898 Nguyen et al. Nov 2016 B2
9502258 Xue et al. Nov 2016 B2
9520303 Wang et al. Dec 2016 B2
9543163 Ling et al. Jan 2017 B2
9564296 Kobayashi et al. Feb 2017 B2
9564338 Zhang et al. Feb 2017 B1
9576788 Liu et al. Feb 2017 B2
9576809 Korolik et al. Feb 2017 B2
9607856 Wang et al. Mar 2017 B2
9613822 Chen et al. Apr 2017 B2
9659753 Cho et al. May 2017 B2
9659791 Wang et al. May 2017 B2
9659792 Wang et al. May 2017 B2
9666449 Koval et al. May 2017 B2
9754800 Zhang et al. Sep 2017 B2
9768034 Xu et al. Sep 2017 B1
9773648 Cho et al. Sep 2017 B2
9773695 Purayath et al. Sep 2017 B2
9779956 Zhang et al. Oct 2017 B1
9812462 Pang et al. Nov 2017 B1
9822009 Kagaya et al. Nov 2017 B2
9831097 Ingle et al. Nov 2017 B2
9837249 Kobayashi et al. Dec 2017 B2
9837284 Chen et al. Dec 2017 B2
9837286 Yang et al. Dec 2017 B2
9842744 Zhang et al. Dec 2017 B2
9865484 Citla et al. Jan 2018 B1
9881805 Li et al. Jan 2018 B2
9885117 Lubomirsky et al. Feb 2018 B2
9887096 Park et al. Feb 2018 B2
9903020 Kim et al. Feb 2018 B2
9934942 Lubomirsky Apr 2018 B1
9947549 Park et al. Apr 2018 B1
9960045 Purayath et al. May 2018 B1
9966240 Park et al. May 2018 B2
9978564 Liang et al. May 2018 B2
9991134 Wang et al. Jun 2018 B2
10026621 Ko et al. Jul 2018 B2
10032606 Yang et al. Jul 2018 B2
10043674 Korolik et al. Aug 2018 B1
10043684 Arnepalli et al. Aug 2018 B1
10049891 Wang et al. Aug 2018 B1
10062578 Zhang et al. Aug 2018 B2
10062579 Chen et al. Aug 2018 B2
10062585 Lubomirsky Aug 2018 B2
10062587 Chen et al. Aug 2018 B2
10147736 Linuma Dec 2018 B2
20010006093 Tabuchi Jul 2001 A1
20010008803 Takamatsu et al. Jul 2001 A1
20010015175 Masuda et al. Aug 2001 A1
20010015261 Kobayashi et al. Aug 2001 A1
20010028093 Yamazaki et al. Oct 2001 A1
20010028922 Sandhu Oct 2001 A1
20010029891 Oh et al. Oct 2001 A1
20010030366 Nakano et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010034121 Fu et al. Oct 2001 A1
20010035124 Okayama et al. Nov 2001 A1
20010036706 Kitamura Nov 2001 A1
20010037856 Park Nov 2001 A1
20010037941 Thompson Nov 2001 A1
20010039921 Rolfson et al. Nov 2001 A1
20010042512 Xu et al. Nov 2001 A1
20010047760 Moslehi Dec 2001 A1
20010053585 Kikuchi et al. Dec 2001 A1
20010053610 Athavale Dec 2001 A1
20010054387 Frankel et al. Dec 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020001778 Latchford et al. Jan 2002 A1
20020009560 Ozono Jan 2002 A1
20020009885 Brankner et al. Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020011214 Kamarehi et al. Jan 2002 A1
20020016080 Khan et al. Feb 2002 A1
20020016085 Huang et al. Feb 2002 A1
20020023899 Khater et al. Feb 2002 A1
20020028582 Nallan et al. Mar 2002 A1
20020028585 Chung et al. Mar 2002 A1
20020029747 Powell et al. Mar 2002 A1
20020033233 Savas Mar 2002 A1
20020036143 Segawa et al. Mar 2002 A1
20020040764 Kwan et al. Apr 2002 A1
20020040766 Takahashi et al. Apr 2002 A1
20020043690 Doyle et al. Apr 2002 A1
20020045966 Lee et al. Apr 2002 A1
20020046991 Smith et al. Apr 2002 A1
20020054962 Huang May 2002 A1
20020062954 Getchel et al. May 2002 A1
20020069820 Yudovsky Jun 2002 A1
20020070414 Drescher et al. Jun 2002 A1
20020073925 Noble et al. Jun 2002 A1
20020074573 Takeuchi et al. Jun 2002 A1
20020090781 Skotnicki et al. Jul 2002 A1
20020090835 Chakravarti et al. Jul 2002 A1
20020094378 O'Donnell Jul 2002 A1
20020094591 Sill et al. Jul 2002 A1
20020096493 Hattori Jul 2002 A1
20020098681 Hu et al. Jul 2002 A1
20020106845 Chao et al. Aug 2002 A1
20020112819 Kamarehi et al. Aug 2002 A1
20020124867 Kim et al. Sep 2002 A1
20020129769 Kim et al. Sep 2002 A1
20020129902 Babayan et al. Sep 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020153808 Skotnicki et al. Oct 2002 A1
20020164885 Lill et al. Nov 2002 A1
20020170678 Hayashi et al. Nov 2002 A1
20020177322 Li et al. Nov 2002 A1
20020179248 Kabansky et al. Dec 2002 A1
20020182878 Hirose et al. Dec 2002 A1
20020187280 Johnson et al. Dec 2002 A1
20020187655 Tan et al. Dec 2002 A1
20020197823 Yoo et al. Dec 2002 A1
20030000647 Yudovsky et al. Jan 2003 A1
20030003757 Nallan et al. Jan 2003 A1
20030007910 Lazarovich et al. Jan 2003 A1
20030010645 Ting et al. Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030026060 Hiramatsu et al. Feb 2003 A1
20030029566 Roth Feb 2003 A1
20030029567 Dhindsa et al. Feb 2003 A1
20030029715 Yu et al. Feb 2003 A1
20030031905 Saito et al. Feb 2003 A1
20030032284 Enomoto et al. Feb 2003 A1
20030038127 Liu et al. Feb 2003 A1
20030038305 Wasshuber Feb 2003 A1
20030054608 Tseng et al. Mar 2003 A1
20030066482 Pokharna et al. Apr 2003 A1
20030071035 Brailove Apr 2003 A1
20030072639 White et al. Apr 2003 A1
20030075808 Inoue et al. Apr 2003 A1
20030077857 Xia et al. Apr 2003 A1
20030077909 Jiwari Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030087531 Kang et al. May 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030094134 Minami et al. May 2003 A1
20030098125 An May 2003 A1
20030109143 Hsieh et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116439 Seo et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030121609 Ohmi et al. Jul 2003 A1
20030124465 Lee et al. Jul 2003 A1
20030124842 Hytros et al. Jul 2003 A1
20030127740 Hsu et al. Jul 2003 A1
20030129106 Sorensen et al. Jul 2003 A1
20030129827 Lee et al. Jul 2003 A1
20030132319 Hytros et al. Jul 2003 A1
20030136520 Yudovsky et al. Jul 2003 A1
20030140844 Maa et al. Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030148035 Lingampalli Aug 2003 A1
20030150530 Lin et al. Aug 2003 A1
20030152691 Baude Aug 2003 A1
20030159307 Sago et al. Aug 2003 A1
20030168439 Kanno et al. Sep 2003 A1
20030170945 Igeta et al. Sep 2003 A1
20030173333 Wang et al. Sep 2003 A1
20030173347 Guiver Sep 2003 A1
20030173675 Watanabe Sep 2003 A1
20030181040 Ivanov et al. Sep 2003 A1
20030183244 Rossman Oct 2003 A1
20030190426 Padhi et al. Oct 2003 A1
20030196760 Tyler et al. Oct 2003 A1
20030199170 Li Oct 2003 A1
20030200929 Otsuki Oct 2003 A1
20030205329 Gujer et al. Nov 2003 A1
20030205479 Lin et al. Nov 2003 A1
20030215570 Seutter et al. Nov 2003 A1
20030215963 AmRhein et al. Nov 2003 A1
20030216044 Lin et al. Nov 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224217 Byun et al. Dec 2003 A1
20030224617 Baek et al. Dec 2003 A1
20030230385 Bach et al. Dec 2003 A1
20040003828 Jackson Jan 2004 A1
20040005726 Huang Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040020801 Solling Feb 2004 A1
20040026371 Nguyen et al. Feb 2004 A1
20040033678 Arghavani et al. Feb 2004 A1
20040033684 Li Feb 2004 A1
20040050328 Kumagai et al. Mar 2004 A1
20040058293 Nguyen et al. Mar 2004 A1
20040060514 Janakiraman et al. Apr 2004 A1
20040061447 Saigusa et al. Apr 2004 A1
20040069225 Fairbairn et al. Apr 2004 A1
20040070346 Choi Apr 2004 A1
20040072446 Liu et al. Apr 2004 A1
20040076529 Gnauck et al. Apr 2004 A1
20040083967 Yuda et al. May 2004 A1
20040087139 Yeh et al. May 2004 A1
20040092063 Okumura et al. May 2004 A1
20040099378 Kim et al. May 2004 A1
20040101667 O'Loughlin et al. May 2004 A1
20040103844 Chou et al. Jun 2004 A1
20040107908 Collins et al. Jun 2004 A1
20040108067 Fischione et al. Jun 2004 A1
20040108068 Senzaki et al. Jun 2004 A1
20040115876 Goundar et al. Jun 2004 A1
20040115947 Fink et al. Jun 2004 A1
20040124280 Shih et al. Jul 2004 A1
20040129671 Ji et al. Jul 2004 A1
20040137161 Segawa et al. Jul 2004 A1
20040144311 Chen et al. Jul 2004 A1
20040144490 Zhao et al. Jul 2004 A1
20040147126 Yamashita et al. Jul 2004 A1
20040149223 Collison et al. Aug 2004 A1
20040149394 Doan et al. Aug 2004 A1
20040152342 Li Aug 2004 A1
20040154535 Chen et al. Aug 2004 A1
20040157444 Chiu Aug 2004 A1
20040161921 Ryu Aug 2004 A1
20040175913 Johnson et al. Sep 2004 A1
20040175929 Schmitt et al. Sep 2004 A1
20040182315 Laflamme et al. Sep 2004 A1
20040192032 Ohmori et al. Sep 2004 A1
20040194799 Kim et al. Oct 2004 A1
20040195208 Pavel et al. Oct 2004 A1
20040195216 Strang Oct 2004 A1
20040200499 Harvey Oct 2004 A1
20040211357 Gadgil et al. Oct 2004 A1
20040219723 Peng et al. Nov 2004 A1
20040219737 Quon Nov 2004 A1
20040219789 Wood et al. Nov 2004 A1
20040221809 Ohmi et al. Nov 2004 A1
20040231706 Bhatnagar et al. Nov 2004 A1
20040237897 Hanawa et al. Dec 2004 A1
20040238123 Becknell et al. Dec 2004 A1
20040259367 Constantine et al. Dec 2004 A1
20040263827 Xu Dec 2004 A1
20050000432 Keller et al. Jan 2005 A1
20050001276 Gao et al. Jan 2005 A1
20050003676 Ho et al. Jan 2005 A1
20050009340 Saijo et al. Jan 2005 A1
20050009358 Choi et al. Jan 2005 A1
20050026430 Kim et al. Feb 2005 A1
20050026431 Kazumi et al. Feb 2005 A1
20050035455 Hu et al. Feb 2005 A1
20050051094 Schaepkens et al. Mar 2005 A1
20050054167 Choi et al. Mar 2005 A1
20050056218 Sun et al. Mar 2005 A1
20050073051 Yamamoto et al. Apr 2005 A1
20050079706 Kumar et al. Apr 2005 A1
20050087517 Ott et al. Apr 2005 A1
20050090078 Ishihara Apr 2005 A1
20050090120 Hasegawa et al. Apr 2005 A1
20050098111 Shimizu et al. May 2005 A1
20050103267 Hur et al. May 2005 A1
20050105991 Hofmeister et al. May 2005 A1
20050109279 Suzuki May 2005 A1
20050112876 Wu May 2005 A1
20050112901 Ji et al. May 2005 A1
20050123690 Derderian et al. Jun 2005 A1
20050133849 Jeon et al. Jun 2005 A1
20050164479 Perng et al. Jul 2005 A1
20050167394 Liu et al. Aug 2005 A1
20050176258 Hirose et al. Aug 2005 A1
20050178746 Gorin Aug 2005 A1
20050181588 Kim Aug 2005 A1
20050183666 Tsuji et al. Aug 2005 A1
20050194094 Yasaka Sep 2005 A1
20050196967 Savas et al. Sep 2005 A1
20050199489 Stevens et al. Sep 2005 A1
20050205110 Kao et al. Sep 2005 A1
20050205862 Koemtzopoulos et al. Sep 2005 A1
20050208215 Eguchi et al. Sep 2005 A1
20050208217 Shinriki et al. Sep 2005 A1
20050214477 Hanawa et al. Sep 2005 A1
20050217582 Kim et al. Oct 2005 A1
20050218507 Kao et al. Oct 2005 A1
20050219786 Brown et al. Oct 2005 A1
20050221552 Kao et al. Oct 2005 A1
20050229848 Shinriki et al. Oct 2005 A1
20050230350 Kao et al. Oct 2005 A1
20050236694 Wu et al. Oct 2005 A1
20050239282 Chen et al. Oct 2005 A1
20050251990 Choi et al. Nov 2005 A1
20050266622 Arghavani et al. Dec 2005 A1
20050266650 Ahn et al. Dec 2005 A1
20050266691 Gu et al. Dec 2005 A1
20050269030 Kent et al. Dec 2005 A1
20050274324 Takahashi et al. Dec 2005 A1
20050279454 Snijders Dec 2005 A1
20050283321 Yue et al. Dec 2005 A1
20050287688 Won et al. Dec 2005 A1
20050287755 Bachmann Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060000802 Kumar et al. Jan 2006 A1
20060000805 Todorow et al. Jan 2006 A1
20060005856 Sun et al. Jan 2006 A1
20060005930 Ikeda et al. Jan 2006 A1
20060006057 Laermer Jan 2006 A1
20060008676 Ebata et al. Jan 2006 A1
20060011298 Lim et al. Jan 2006 A1
20060011299 Condrashoff et al. Jan 2006 A1
20060016783 Wu et al. Jan 2006 A1
20060019456 Bu et al. Jan 2006 A1
20060019486 Yu et al. Jan 2006 A1
20060021574 Armour et al. Feb 2006 A1
20060021701 Tobe et al. Feb 2006 A1
20060024954 Wu et al. Feb 2006 A1
20060024956 Zhijian et al. Feb 2006 A1
20060033678 Lubomirsky et al. Feb 2006 A1
20060040055 Nguyen et al. Feb 2006 A1
20060043066 Kamp Mar 2006 A1
20060046412 Nguyen et al. Mar 2006 A1
20060046419 Sandhu et al. Mar 2006 A1
20060046470 Becknell Mar 2006 A1
20060051966 Or et al. Mar 2006 A1
20060051968 Joshi et al. Mar 2006 A1
20060054184 Mozetic et al. Mar 2006 A1
20060057828 Omura et al. Mar 2006 A1
20060060942 Minixhofer et al. Mar 2006 A1
20060073349 Aihara et al. Apr 2006 A1
20060076108 Holland et al. Apr 2006 A1
20060087644 McMillin et al. Apr 2006 A1
20060090700 Satoh et al. May 2006 A1
20060093756 Rajagopalan et al. May 2006 A1
20060097397 Russell et al. May 2006 A1
20060102076 Smith et al. May 2006 A1
20060102587 Kimura May 2006 A1
20060113038 Gondhalekar et al. Jun 2006 A1
20060118178 Desbiolles et al. Jun 2006 A1
20060118240 Holber et al. Jun 2006 A1
20060121724 Yue et al. Jun 2006 A1
20060124151 Yamasaki et al. Jun 2006 A1
20060124242 Kanarik et al. Jun 2006 A1
20060130971 Chang et al. Jun 2006 A1
20060151115 Kim et al. Jul 2006 A1
20060157449 Takahashi et al. Jul 2006 A1
20060162661 Jung et al. Jul 2006 A1
20060166107 Chen et al. Jul 2006 A1
20060166515 Karim et al. Jul 2006 A1
20060169327 Shajii et al. Aug 2006 A1
20060169410 Maeda et al. Aug 2006 A1
20060178008 Yeh et al. Aug 2006 A1
20060183270 Humpston Aug 2006 A1
20060185592 Matsuura Aug 2006 A1
20060191479 Mizukami et al. Aug 2006 A1
20060191637 Zajac et al. Aug 2006 A1
20060207504 Hasebe et al. Sep 2006 A1
20060207595 Ohmi et al. Sep 2006 A1
20060207971 Moriya et al. Sep 2006 A1
20060210713 Brcka Sep 2006 A1
20060210723 Ishizaka Sep 2006 A1
20060215347 Wakabayashi Sep 2006 A1
20060216878 Lee Sep 2006 A1
20060219360 Iwasaki Oct 2006 A1
20060222481 Foree Oct 2006 A1
20060226121 Aoi Oct 2006 A1
20060228889 Edelberg et al. Oct 2006 A1
20060240661 Annapragada et al. Oct 2006 A1
20060244107 Sugihara Nov 2006 A1
20060245852 Iwabuchi Nov 2006 A1
20060246217 Weidman et al. Nov 2006 A1
20060251800 Weidman et al. Nov 2006 A1
20060251801 Weidman et al. Nov 2006 A1
20060252252 Zhu et al. Nov 2006 A1
20060252265 Jin et al. Nov 2006 A1
20060254716 Mosden et al. Nov 2006 A1
20060260750 Rueger Nov 2006 A1
20060261490 Su et al. Nov 2006 A1
20060264043 Stewart et al. Nov 2006 A1
20060266288 Choi Nov 2006 A1
20060286774 Singh et al. Dec 2006 A1
20060289384 Pavel et al. Dec 2006 A1
20060292846 Pinto et al. Dec 2006 A1
20070025907 Rezeq Feb 2007 A1
20070048977 Lee et al. Mar 2007 A1
20070051471 Kawaguchi et al. Mar 2007 A1
20070056925 Liu et al. Mar 2007 A1
20070062453 Ishikawa Mar 2007 A1
20070066084 Wajda et al. Mar 2007 A1
20070071888 Shanmugasundram et al. Mar 2007 A1
20070072408 Enomoto et al. Mar 2007 A1
20070077737 Kobayashi Apr 2007 A1
20070079758 Holland et al. Apr 2007 A1
20070090325 Hwang et al. Apr 2007 A1
20070099428 Shamiryan et al. May 2007 A1
20070099431 Li May 2007 A1
20070099438 Ye et al. May 2007 A1
20070107750 Sawin et al. May 2007 A1
20070108404 Stewart et al. May 2007 A1
20070111519 Lubomirsky et al. May 2007 A1
20070117396 Wu et al. May 2007 A1
20070119370 Ma et al. May 2007 A1
20070119371 Ma et al. May 2007 A1
20070123051 Arghavani et al. May 2007 A1
20070131274 Stollwerck et al. Jun 2007 A1
20070145023 Holber et al. Jun 2007 A1
20070154838 Lee Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070175861 Hwang et al. Aug 2007 A1
20070181057 Lam et al. Aug 2007 A1
20070193515 Jeon et al. Aug 2007 A1
20070197028 Byun et al. Aug 2007 A1
20070207275 Nowak et al. Sep 2007 A1
20070212288 Holst Sep 2007 A1
20070227554 Satoh et al. Oct 2007 A1
20070231109 Pak et al. Oct 2007 A1
20070232071 Balseanu et al. Oct 2007 A1
20070235134 Iimuro Oct 2007 A1
20070238199 Yamashita Oct 2007 A1
20070238321 Futase et al. Oct 2007 A1
20070243685 Jiang et al. Oct 2007 A1
20070243714 Shin et al. Oct 2007 A1
20070254169 Kamins et al. Nov 2007 A1
20070258186 Matyushkin et al. Nov 2007 A1
20070259467 Tweet et al. Nov 2007 A1
20070264820 Liu Nov 2007 A1
20070266946 Choi Nov 2007 A1
20070277734 Lubomirsky et al. Dec 2007 A1
20070280816 Kurita et al. Dec 2007 A1
20070281106 Lubomirsky et al. Dec 2007 A1
20070287292 Li et al. Dec 2007 A1
20070296967 Gupta et al. Dec 2007 A1
20080003836 Nishimura et al. Jan 2008 A1
20080017104 Matyushkin et al. Jan 2008 A1
20080020570 Naik Jan 2008 A1
20080035608 Thomas et al. Feb 2008 A1
20080044593 Seo et al. Feb 2008 A1
20080044990 Lee Feb 2008 A1
20080050538 Hirata Feb 2008 A1
20080063810 Park et al. Mar 2008 A1
20080075668 Goldstein Mar 2008 A1
20080081483 Wu Apr 2008 A1
20080085604 Hoshino et al. Apr 2008 A1
20080099147 Myo et al. May 2008 A1
20080099431 Kumar et al. May 2008 A1
20080099876 Seto May 2008 A1
20080100222 Lewington et al. May 2008 A1
20080102570 Fischer et al. May 2008 A1
20080102640 Hassan et al. May 2008 A1
20080102646 Kawaguchi et al. May 2008 A1
20080104782 Hughes May 2008 A1
20080115726 Ingle et al. May 2008 A1
20080121970 Aritome May 2008 A1
20080124937 Xu et al. May 2008 A1
20080142831 Su Jun 2008 A1
20080153306 Cho et al. Jun 2008 A1
20080156631 Fair et al. Jul 2008 A1
20080156771 Jeon et al. Jul 2008 A1
20080157225 Datta et al. Jul 2008 A1
20080160210 Yang et al. Jul 2008 A1
20080169588 Shih et al. Jul 2008 A1
20080171407 Nakabayashi et al. Jul 2008 A1
20080173906 Zhu Jul 2008 A1
20080176412 Komeda Jul 2008 A1
20080178797 Fodor et al. Jul 2008 A1
20080178805 Paterson et al. Jul 2008 A1
20080182381 Kiyotoshi Jul 2008 A1
20080182383 Lee et al. Jul 2008 A1
20080196666 Toshima Aug 2008 A1
20080202892 Smith et al. Aug 2008 A1
20080213496 Sun et al. Sep 2008 A1
20080216901 Chamberlain et al. Sep 2008 A1
20080230519 Takahashi Sep 2008 A1
20080233709 Conti et al. Sep 2008 A1
20080236751 Aramaki et al. Oct 2008 A1
20080254635 Benzel et al. Oct 2008 A1
20080261404 Kozuka et al. Oct 2008 A1
20080264337 Sano et al. Oct 2008 A1
20080268645 Kao et al. Oct 2008 A1
20080292798 Huh et al. Nov 2008 A1
20080293248 Park et al. Nov 2008 A1
20080317965 Son et al. Dec 2008 A1
20090001480 Cheng Jan 2009 A1
20090004849 Eun Jan 2009 A1
20090014127 Shah et al. Jan 2009 A1
20090014323 Yendler et al. Jan 2009 A1
20090014324 Kawaguchi et al. Jan 2009 A1
20090017227 Fu et al. Jan 2009 A1
20090045167 Maruyama Feb 2009 A1
20090072401 Arnold et al. Mar 2009 A1
20090081878 Dhindsa Mar 2009 A1
20090084317 Wu et al. Apr 2009 A1
20090087960 Cho et al. Apr 2009 A1
20090087979 Raghuram Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090095222 Tam et al. Apr 2009 A1
20090095621 Kao et al. Apr 2009 A1
20090098706 Kim et al. Apr 2009 A1
20090104738 Ring et al. Apr 2009 A1
20090104782 Lu et al. Apr 2009 A1
20090111280 Kao et al. Apr 2009 A1
20090117270 Yamasaki et al. May 2009 A1
20090120464 Rasheed et al. May 2009 A1
20090170221 Jacques et al. Jul 2009 A1
20090170331 Cheng et al. Jul 2009 A1
20090179300 Arai Jul 2009 A1
20090189246 Wu et al. Jul 2009 A1
20090189287 Yang et al. Jul 2009 A1
20090191711 Rui et al. Jul 2009 A1
20090194233 Tamura Aug 2009 A1
20090194810 Kiyotoshi et al. Aug 2009 A1
20090197418 Sago Aug 2009 A1
20090202721 Nogami et al. Aug 2009 A1
20090236314 Chen Sep 2009 A1
20090255902 Satoh et al. Oct 2009 A1
20090258162 Furuta et al. Oct 2009 A1
20090269934 Kao et al. Oct 2009 A1
20090274590 Willwerth et al. Nov 2009 A1
20090275146 Takano et al. Nov 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090275206 Katz et al. Nov 2009 A1
20090277587 Lubomirsky et al. Nov 2009 A1
20090277874 Rui et al. Nov 2009 A1
20090280650 Lubomirsky et al. Nov 2009 A1
20090286400 Heo et al. Nov 2009 A1
20090286405 Okesaku et al. Nov 2009 A1
20090293809 Cho et al. Dec 2009 A1
20090294898 Feustel et al. Dec 2009 A1
20090317978 Higashi Dec 2009 A1
20090320756 Tanaka Dec 2009 A1
20100003824 Kadkhodayan et al. Jan 2010 A1
20100006543 Sawada et al. Jan 2010 A1
20100022030 Ditizio Jan 2010 A1
20100025370 Dieguez-Campo et al. Feb 2010 A1
20100047080 Bruce Feb 2010 A1
20100048027 Cheng et al. Feb 2010 A1
20100055408 Lee et al. Mar 2010 A1
20100055917 Kim Mar 2010 A1
20100059889 Gosset et al. Mar 2010 A1
20100062603 Ganguly et al. Mar 2010 A1
20100072172 Ui et al. Mar 2010 A1
20100075503 Bencher Mar 2010 A1
20100081285 Chen et al. Apr 2010 A1
20100093151 Arghavani et al. Apr 2010 A1
20100093168 Naik Apr 2010 A1
20100096367 Jeon et al. Apr 2010 A1
20100099236 Kwon et al. Apr 2010 A1
20100099263 Kao et al. Apr 2010 A1
20100101727 Ji Apr 2010 A1
20100105209 Winniczek et al. Apr 2010 A1
20100116788 Singh et al. May 2010 A1
20100129974 Futase et al. May 2010 A1
20100130001 Noguchi May 2010 A1
20100139889 Kurita et al. Jun 2010 A1
20100144140 Chandrashekar et al. Jun 2010 A1
20100147219 Hsieh et al. Jun 2010 A1
20100164422 Shu et al. Jul 2010 A1
20100173499 Tao et al. Jul 2010 A1
20100178748 Subramanian Jul 2010 A1
20100178755 Lee et al. Jul 2010 A1
20100180819 Hatanaka et al. Jul 2010 A1
20100183825 Becker et al. Jul 2010 A1
20100187534 Nishi et al. Jul 2010 A1
20100187588 Kim et al. Jul 2010 A1
20100187694 Yu et al. Jul 2010 A1
20100190352 Jaiswal Jul 2010 A1
20100197143 Nishimura et al. Aug 2010 A1
20100203739 Becker et al. Aug 2010 A1
20100207195 Fukuzumi et al. Aug 2010 A1
20100207205 Grebs et al. Aug 2010 A1
20100213172 Wilson Aug 2010 A1
20100224324 Kasai Sep 2010 A1
20100240205 Son Sep 2010 A1
20100243165 Um Sep 2010 A1
20100244204 Matsuoka et al. Sep 2010 A1
20100248488 Agarwal et al. Sep 2010 A1
20100258913 Lue Oct 2010 A1
20100267224 Choi et al. Oct 2010 A1
20100267248 Ma et al. Oct 2010 A1
20100273290 Kryliouk Oct 2010 A1
20100273291 Kryliouk et al. Oct 2010 A1
20100288369 Chang et al. Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100310785 Sasakawa et al. Dec 2010 A1
20100314005 Saito et al. Dec 2010 A1
20100330814 Yokota et al. Dec 2010 A1
20110005607 Desbiolles et al. Jan 2011 A1
20110005684 Hayami et al. Jan 2011 A1
20110008950 Xu Jan 2011 A1
20110011338 Chuc et al. Jan 2011 A1
20110034035 Liang et al. Feb 2011 A1
20110039407 Nishizuka et al. Feb 2011 A1
20110045676 Park Feb 2011 A1
20110048325 Choi et al. Mar 2011 A1
20110053380 Sapre et al. Mar 2011 A1
20110058303 Migita Mar 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110061812 Ganguly et al. Mar 2011 A1
20110065276 Ganguly et al. Mar 2011 A1
20110076401 Chao et al. Mar 2011 A1
20110081782 Liang et al. Apr 2011 A1
20110100489 Orito May 2011 A1
20110104393 Hilkene et al. May 2011 A1
20110111596 Kanakasabapathy May 2011 A1
20110114601 Lubomirsky et al. May 2011 A1
20110115378 Lubomirsky et al. May 2011 A1
20110124144 Schlemm et al. May 2011 A1
20110127156 Foad et al. Jun 2011 A1
20110139748 Donnelly et al. Jun 2011 A1
20110140229 Rachmady et al. Jun 2011 A1
20110143542 Feurprier et al. Jun 2011 A1
20110146909 Shi et al. Jun 2011 A1
20110151674 Tang et al. Jun 2011 A1
20110151677 Wang et al. Jun 2011 A1
20110151678 Ashtiani et al. Jun 2011 A1
20110155181 Inatomi Jun 2011 A1
20110159690 Chandrashekar et al. Jun 2011 A1
20110165057 Honda et al. Jul 2011 A1
20110165771 Ring et al. Jul 2011 A1
20110174778 Sawada et al. Jul 2011 A1
20110180847 Ikeda et al. Jul 2011 A1
20110195575 Wang Aug 2011 A1
20110204025 Tahara Aug 2011 A1
20110207332 Liu et al. Aug 2011 A1
20110217851 Liang et al. Sep 2011 A1
20110226734 Sumiya et al. Sep 2011 A1
20110227028 Sekar et al. Sep 2011 A1
20110230008 Lakshmanan et al. Sep 2011 A1
20110230052 Tang et al. Sep 2011 A1
20110232737 Ruletzki et al. Sep 2011 A1
20110232845 Riker et al. Sep 2011 A1
20110244686 Aso et al. Oct 2011 A1
20110244693 Tamura et al. Oct 2011 A1
20110265884 Xu et al. Nov 2011 A1
20110265887 Lee et al. Nov 2011 A1
20110265951 Xu Nov 2011 A1
20110266252 Thadani et al. Nov 2011 A1
20110266256 Cruse et al. Nov 2011 A1
20110266682 Edelstein et al. Nov 2011 A1
20110287633 Lee et al. Nov 2011 A1
20110294300 Zhang et al. Dec 2011 A1
20110298061 Siddiqui et al. Dec 2011 A1
20110304078 Lee et al. Dec 2011 A1
20120003782 Byun et al. Jan 2012 A1
20120009796 Cui et al. Jan 2012 A1
20120025289 Liang et al. Feb 2012 A1
20120031559 Dhindsa et al. Feb 2012 A1
20120034786 Dhindsa et al. Feb 2012 A1
20120035766 Shajii et al. Feb 2012 A1
20120037596 Eto et al. Feb 2012 A1
20120040492 Ovshinsky et al. Feb 2012 A1
20120052683 Kim et al. Mar 2012 A1
20120055402 Moriya et al. Mar 2012 A1
20120068242 Shin et al. Mar 2012 A1
20120070982 Yu et al. Mar 2012 A1
20120070996 Hao et al. Mar 2012 A1
20120091108 Lin et al. Apr 2012 A1
20120100720 Winniczek et al. Apr 2012 A1
20120103518 Kakimoto May 2012 A1
20120104564 Won et al. May 2012 A1
20120122319 Shimizu May 2012 A1
20120129354 Luong May 2012 A1
20120135576 Lee et al. May 2012 A1
20120148369 Michalski et al. Jun 2012 A1
20120149200 Culp et al. Jun 2012 A1
20120161405 Mohn et al. Jun 2012 A1
20120164839 Nishimura Jun 2012 A1
20120171852 Yuan et al. Jul 2012 A1
20120180954 Yang et al. Jul 2012 A1
20120181599 Lung Jul 2012 A1
20120182808 Lue et al. Jul 2012 A1
20120187844 Hoffman et al. Jul 2012 A1
20120196447 Yang et al. Aug 2012 A1
20120196451 Mallick Aug 2012 A1
20120202408 Shajii et al. Aug 2012 A1
20120208361 Ha Aug 2012 A1
20120211462 Zhang et al. Aug 2012 A1
20120211722 Kellam et al. Aug 2012 A1
20120222616 Han et al. Sep 2012 A1
20120223048 Paranjpe et al. Sep 2012 A1
20120223418 Stowers et al. Sep 2012 A1
20120225557 Serry et al. Sep 2012 A1
20120228642 Aube et al. Sep 2012 A1
20120234945 Olgado Sep 2012 A1
20120238102 Zhang et al. Sep 2012 A1
20120238103 Zhang et al. Sep 2012 A1
20120238108 Chen et al. Sep 2012 A1
20120241411 Darling et al. Sep 2012 A1
20120247390 Sawada et al. Oct 2012 A1
20120247670 Dobashi et al. Oct 2012 A1
20120247671 Sugawara Oct 2012 A1
20120255491 Hadidi Oct 2012 A1
20120258600 Godet et al. Oct 2012 A1
20120258607 Holland et al. Oct 2012 A1
20120267346 Kao et al. Oct 2012 A1
20120269968 Rayner Oct 2012 A1
20120282779 Arnold et al. Nov 2012 A1
20120285619 Matyushkin et al. Nov 2012 A1
20120285621 Tan Nov 2012 A1
20120291696 Clarke Nov 2012 A1
20120292664 Kanike Nov 2012 A1
20120304933 Mai et al. Dec 2012 A1
20120309204 Kang et al. Dec 2012 A1
20120309205 Wang et al. Dec 2012 A1
20120322015 Kim Dec 2012 A1
20130001899 Hwang et al. Jan 2013 A1
20130005103 Liu et al. Jan 2013 A1
20130005140 Jeng et al. Jan 2013 A1
20130012030 Lakshmanan et al. Jan 2013 A1
20130012032 Liu et al. Jan 2013 A1
20130023062 Masuda et al. Jan 2013 A1
20130023124 Nemani et al. Jan 2013 A1
20130026135 Kim Jan 2013 A1
20130032574 Liu et al. Feb 2013 A1
20130034666 Liang et al. Feb 2013 A1
20130034968 Zhang et al. Feb 2013 A1
20130037919 Sapra et al. Feb 2013 A1
20130045605 Wang et al. Feb 2013 A1
20130049592 Yeom et al. Feb 2013 A1
20130052827 Wang et al. Feb 2013 A1
20130052833 Ranjan et al. Feb 2013 A1
20130059440 Wang et al. Mar 2013 A1
20130062675 Thomas Mar 2013 A1
20130065398 Ohsawa et al. Mar 2013 A1
20130082197 Yang et al. Apr 2013 A1
20130084654 Gaylord et al. Apr 2013 A1
20130089988 Wang et al. Apr 2013 A1
20130098868 Nishimura et al. Apr 2013 A1
20130105303 Lubomirsky et al. May 2013 A1
20130105948 Kewley May 2013 A1
20130118686 Carducci et al. May 2013 A1
20130119016 Kagoshima May 2013 A1
20130119457 Lue et al. May 2013 A1
20130119483 Alptekin et al. May 2013 A1
20130130507 Wang et al. May 2013 A1
20130133578 Hwang May 2013 A1
20130150303 Kungl et al. Jun 2013 A1
20130155568 Todorow et al. Jun 2013 A1
20130161726 Kim et al. Jun 2013 A1
20130171810 Sun et al. Jul 2013 A1
20130175654 Muckenhirn et al. Jul 2013 A1
20130187220 Surthi Jul 2013 A1
20130193108 Zheng Aug 2013 A1
20130213935 Liao et al. Aug 2013 A1
20130217243 Underwood et al. Aug 2013 A1
20130224953 Salinas et al. Aug 2013 A1
20130224960 Payyapilly et al. Aug 2013 A1
20130260533 Sapre et al. Oct 2013 A1
20130260564 Sapre et al. Oct 2013 A1
20130279066 Lubomirsky et al. Oct 2013 A1
20130284369 Kobayashi et al. Oct 2013 A1
20130284370 Kobayashi et al. Oct 2013 A1
20130284373 Sun et al. Oct 2013 A1
20130284374 Lubomirsky et al. Oct 2013 A1
20130286530 Lin et al. Oct 2013 A1
20130295297 Chou et al. Nov 2013 A1
20130298942 Ren et al. Nov 2013 A1
20130302980 Chandrashekar et al. Nov 2013 A1
20130337655 Lee et al. Dec 2013 A1
20130343829 Benedetti et al. Dec 2013 A1
20140004707 Thedjoisworo et al. Jan 2014 A1
20140004708 Thedjoisworo Jan 2014 A1
20140008880 Miura et al. Jan 2014 A1
20140020708 Kim et al. Jan 2014 A1
20140021673 Chen et al. Jan 2014 A1
20140026813 Wang et al. Jan 2014 A1
20140053866 Baluja et al. Feb 2014 A1
20140057447 Yang et al. Feb 2014 A1
20140062285 Chen Mar 2014 A1
20140065842 Anthis et al. Mar 2014 A1
20140076234 Kao et al. Mar 2014 A1
20140080308 Chen et al. Mar 2014 A1
20140080309 Park Mar 2014 A1
20140080310 Chen et al. Mar 2014 A1
20140083362 Lubomirsky et al. Mar 2014 A1
20140087488 Nam Mar 2014 A1
20140097270 Liang et al. Apr 2014 A1
20140099794 Ingle et al. Apr 2014 A1
20140102367 Ishibashi Apr 2014 A1
20140124364 Yoo et al. May 2014 A1
20140134842 Zhang et al. May 2014 A1
20140134847 Seya May 2014 A1
20140141621 Ren et al. May 2014 A1
20140147126 Yamashita et al. May 2014 A1
20140152312 Snow et al. Jun 2014 A1
20140154668 Chou et al. Jun 2014 A1
20140154889 Wang et al. Jun 2014 A1
20140165912 Kao et al. Jun 2014 A1
20140166617 Chen Jun 2014 A1
20140166618 Tadigadapa et al. Jun 2014 A1
20140175534 Kofuji et al. Jun 2014 A1
20140186772 Pohlers et al. Jul 2014 A1
20140190410 Kim Jul 2014 A1
20140191388 Chen Jul 2014 A1
20140199850 Kim et al. Jul 2014 A1
20140199851 Nemani et al. Jul 2014 A1
20140209245 Yamamoto et al. Jul 2014 A1
20140216337 Swaminathan et al. Aug 2014 A1
20140225504 Kaneko et al. Aug 2014 A1
20140227881 Lubomirsky et al. Aug 2014 A1
20140234466 Gao et al. Aug 2014 A1
20140248773 Tsai et al. Sep 2014 A1
20140248780 Ingle et al. Sep 2014 A1
20140251956 Jeon et al. Sep 2014 A1
20140256131 Wang et al. Sep 2014 A1
20140256145 Abdallah et al. Sep 2014 A1
20140262031 Belostotskiy et al. Sep 2014 A1
20140262038 Wang et al. Sep 2014 A1
20140263172 Xie et al. Sep 2014 A1
20140263272 Duan et al. Sep 2014 A1
20140264507 Lee et al. Sep 2014 A1
20140264533 Simsek-Ege Sep 2014 A1
20140271097 Wang et al. Sep 2014 A1
20140273373 Makala et al. Sep 2014 A1
20140273406 Wang et al. Sep 2014 A1
20140273451 Wang et al. Sep 2014 A1
20140273462 Simsek-Ege et al. Sep 2014 A1
20140273487 Deshmukh et al. Sep 2014 A1
20140273489 Wang et al. Sep 2014 A1
20140273491 Zhang et al. Sep 2014 A1
20140273492 Anthis Sep 2014 A1
20140273496 Kao Sep 2014 A1
20140288528 Py et al. Sep 2014 A1
20140302678 Paterson et al. Oct 2014 A1
20140302680 Singh Oct 2014 A1
20140308758 Nemani et al. Oct 2014 A1
20140308816 Wang et al. Oct 2014 A1
20140311581 Belostotskiy et al. Oct 2014 A1
20140342532 Zhu Nov 2014 A1
20140342569 Zhu et al. Nov 2014 A1
20140349477 Chandrashekar et al. Nov 2014 A1
20140357083 Ling et al. Dec 2014 A1
20140361684 Ikeda et al. Dec 2014 A1
20140363977 Morimoto et al. Dec 2014 A1
20140363979 Or et al. Dec 2014 A1
20150011096 Chandrasekharan et al. Jan 2015 A1
20150014152 Hoinkis et al. Jan 2015 A1
20150031211 Sapre et al. Jan 2015 A1
20150037980 Rha Feb 2015 A1
20150041430 Yoshino et al. Feb 2015 A1
20150050812 Smith Feb 2015 A1
20150060265 Cho et al. Mar 2015 A1
20150064918 Ranjan et al. Mar 2015 A1
20150072508 Or et al. Mar 2015 A1
20150076110 Wu et al. Mar 2015 A1
20150076586 Rabkin et al. Mar 2015 A1
20150079797 Chen et al. Mar 2015 A1
20150118822 Zhang et al. Apr 2015 A1
20150118858 Takaba Apr 2015 A1
20150126035 Diao et al. May 2015 A1
20150126039 Korolik et al. May 2015 A1
20150126040 Korolik et al. May 2015 A1
20150129541 Wang et al. May 2015 A1
20150129545 Ingle et al. May 2015 A1
20150129546 Ingle et al. May 2015 A1
20150132953 Nowling May 2015 A1
20150132968 Ren et al. May 2015 A1
20150152072 Cantat et al. Jun 2015 A1
20150155177 Zhang et al. Jun 2015 A1
20150170879 Nguyen et al. Jun 2015 A1
20150170920 Purayath et al. Jun 2015 A1
20150170924 Nguyen et al. Jun 2015 A1
20150170926 Michalak Jun 2015 A1
20150170935 Wang et al. Jun 2015 A1
20150170943 Nguyen et al. Jun 2015 A1
20150171008 Luo Jun 2015 A1
20150179464 Wang et al. Jun 2015 A1
20150187625 Busche et al. Jul 2015 A1
20150194435 Lee Jul 2015 A1
20150200042 Ling et al. Jul 2015 A1
20150206764 Wang et al. Jul 2015 A1
20150214066 Luere et al. Jul 2015 A1
20150214067 Zhang et al. Jul 2015 A1
20150214092 Purayath et al. Jul 2015 A1
20150214337 Ko et al. Jul 2015 A1
20150221479 Chen et al. Aug 2015 A1
20150221541 Nemani et al. Aug 2015 A1
20150228456 Ye et al. Aug 2015 A1
20150235809 Ito et al. Aug 2015 A1
20150235860 Tomura et al. Aug 2015 A1
20150235863 Chen Aug 2015 A1
20150235865 Wang et al. Aug 2015 A1
20150235867 Nishizuka Aug 2015 A1
20150247231 Nguyen et al. Sep 2015 A1
20150249018 Park et al. Sep 2015 A1
20150255481 Baenninger et al. Sep 2015 A1
20150270140 Gupta et al. Sep 2015 A1
20150275361 Lubomirsky et al. Oct 2015 A1
20150275375 Kim et al. Oct 2015 A1
20150279687 Xue et al. Oct 2015 A1
20150294980 Lee et al. Oct 2015 A1
20150332930 Wang et al. Nov 2015 A1
20150340225 Kim et al. Nov 2015 A1
20150340371 Lue Nov 2015 A1
20150345029 Wang et al. Dec 2015 A1
20150357201 Chen et al. Dec 2015 A1
20150357205 Wang et al. Dec 2015 A1
20150371861 Li et al. Dec 2015 A1
20150371864 Hsu et al. Dec 2015 A1
20150371865 Chen et al. Dec 2015 A1
20150371866 Chen et al. Dec 2015 A1
20150380419 Gunji-Yoneoka et al. Dec 2015 A1
20150380431 Kanamori et al. Dec 2015 A1
20160005572 Liang et al. Jan 2016 A1
20160005833 Collins et al. Jan 2016 A1
20160020071 Khaja et al. Jan 2016 A1
20160027654 Kim et al. Jan 2016 A1
20160027673 Wang et al. Jan 2016 A1
20160035586 Purayath et al. Feb 2016 A1
20160035614 Purayath et al. Feb 2016 A1
20160042968 Purayath et al. Feb 2016 A1
20160043099 Purayath et al. Feb 2016 A1
20160056167 Wang et al. Feb 2016 A1
20160064212 Thedjoisworo et al. Mar 2016 A1
20160064233 Wang et al. Mar 2016 A1
20160079062 Zheng et al. Mar 2016 A1
20160079072 Wang et al. Mar 2016 A1
20160086807 Park et al. Mar 2016 A1
20160086808 Zhang et al. Mar 2016 A1
20160086815 Pandit et al. Mar 2016 A1
20160086816 Wang et al. Mar 2016 A1
20160093505 Chen et al. Mar 2016 A1
20160093506 Chen et al. Mar 2016 A1
20160093737 Li et al. Mar 2016 A1
20160104606 Park et al. Apr 2016 A1
20160118268 Ingle et al. Apr 2016 A1
20160118396 Rabkin et al. Apr 2016 A1
20160126118 Chen et al. May 2016 A1
20160133480 Ko et al. May 2016 A1
20160136660 Song May 2016 A1
20160141419 Baenninger et al. May 2016 A1
20160148805 Jongbloed et al. May 2016 A1
20160148821 Singh et al. May 2016 A1
20160163512 Lubomirsky Jun 2016 A1
20160163513 Lubomirsky Jun 2016 A1
20160172216 Marakhtanov et al. Jun 2016 A1
20160181112 Xue et al. Jun 2016 A1
20160189933 Kobayashi et al. Jun 2016 A1
20160196969 Berry et al. Jul 2016 A1
20160196984 Lill et al. Jul 2016 A1
20160196985 Tan et al. Jul 2016 A1
20160203958 Arase et al. Jul 2016 A1
20160204009 Nguyen et al. Jul 2016 A1
20160218018 Liu et al. Jul 2016 A1
20160225651 Tran et al. Aug 2016 A1
20160225652 Tran et al. Aug 2016 A1
20160237570 Tan et al. Aug 2016 A1
20160240353 Nagami Aug 2016 A1
20160240389 Zhang et al. Aug 2016 A1
20160240402 Park et al. Aug 2016 A1
20160260588 Park et al. Sep 2016 A1
20160260616 Li et al. Sep 2016 A1
20160260619 Zhang et al. Sep 2016 A1
20160284556 Ingle et al. Sep 2016 A1
20160293398 Danek et al. Oct 2016 A1
20160293438 Zhou et al. Oct 2016 A1
20160300694 Yang et al. Oct 2016 A1
20160307772 Choi et al. Oct 2016 A1
20160307773 Lee et al. Oct 2016 A1
20160314961 Liu et al. Oct 2016 A1
20160319452 Eidschun et al. Nov 2016 A1
20160358793 Okumura et al. Dec 2016 A1
20170011922 Tanimura et al. Jan 2017 A1
20170040175 Xu et al. Feb 2017 A1
20170040190 Benjaminson et al. Feb 2017 A1
20170040191 Benjaminson et al. Feb 2017 A1
20170040207 Purayath Feb 2017 A1
20170040214 Lai et al. Feb 2017 A1
20170053808 Kamp et al. Feb 2017 A1
20170062184 Tran et al. Mar 2017 A1
20170110290 Kobayashi et al. Apr 2017 A1
20170110335 Yang et al. Apr 2017 A1
20170110475 Liu et al. Apr 2017 A1
20170133202 Berry May 2017 A1
20170178894 Stone et al. Jun 2017 A1
20170178899 Kabansky et al. Jun 2017 A1
20170207088 Kwon et al. Jul 2017 A1
20170236691 Liang et al. Aug 2017 A1
20170236694 Eason et al. Aug 2017 A1
20170250193 Huo Aug 2017 A1
20170294445 Son et al. Oct 2017 A1
20170309509 Tran et al. Oct 2017 A1
20170338133 Tan et al. Nov 2017 A1
20170338134 Tan et al. Nov 2017 A1
20180005850 Citla et al. Jan 2018 A1
20180025900 Park et al. Jan 2018 A1
20180069000 Bergendahl et al. Mar 2018 A1
20180076031 Yan et al. Mar 2018 A1
20180076044 Choi et al. Mar 2018 A1
20180076083 Ko et al. Mar 2018 A1
20180080124 Bajaj et al. Mar 2018 A1
20180082861 Citla et al. Mar 2018 A1
20180096818 Lubomirsky Apr 2018 A1
20180096819 Lubomirsky et al. Apr 2018 A1
20180096821 Lubomirsky et al. Apr 2018 A1
20180096865 Lubomirsky et al. Apr 2018 A1
20180102255 Chen et al. Apr 2018 A1
20180102256 Chen et al. Apr 2018 A1
20180102259 Wang et al. Apr 2018 A1
20180130818 Kim et al. May 2018 A1
20180138049 Ko et al. May 2018 A1
20180138055 Xu et al. May 2018 A1
20180138075 Kang et al. May 2018 A1
20180138085 Wang et al. May 2018 A1
20180175051 Lue et al. Jun 2018 A1
20180182633 Pandit et al. Jun 2018 A1
20180182777 Cui et al. Jun 2018 A1
20180223437 George et al. Aug 2018 A1
20180226223 Lubomirsky Aug 2018 A1
20180226230 Kobayashi et al. Aug 2018 A1
20180226259 Choi et al. Aug 2018 A1
20180226278 Arnepalli et al. Aug 2018 A1
20180226425 Purayath Aug 2018 A1
20180226426 Purayath Aug 2018 A1
20180261516 Lin et al. Sep 2018 A1
20180261686 Lin et al. Sep 2018 A1
Foreign Referenced Citations (81)
Number Date Country
1847450 Oct 2006 CN
101378850 Mar 2009 CN
102893705 Jan 2013 CN
1675160 Jun 2006 EP
S59-126778 Jul 1984 JP
S62-45119 Feb 1987 JP
63301051 Dec 1988 JP
H01-200627 Aug 1989 JP
H02-114525 Apr 1990 JP
H07-153739 Jun 1995 JP
H8-31755 Feb 1996 JP
H08-107101 Apr 1996 JP
H08-264510 Oct 1996 JP
H09-260356 Oct 1997 JP
2001-313282 Nov 2001 JP
2001-332608 Nov 2001 JP
2002-075972 Mar 2002 JP
2003-174020 Jun 2003 JP
2003-282591 Oct 2003 JP
2004-508709 Mar 2004 JP
2004-296467 Oct 2004 JP
2005-050908 Feb 2005 JP
2006-041039 Feb 2006 JP
2006-066408 Mar 2006 JP
2008-288560 Nov 2008 JP
4191137 Dec 2008 JP
2010-180458 Aug 2010 JP
2011-508436 Mar 2011 JP
2011-518408 Jun 2011 JP
4763293 Aug 2011 JP
2012-19164 Jan 2012 JP
2012-512531 May 2012 JP
2013-243418 Dec 2013 JP
5802323 Oct 2015 JP
2016-111177 Jun 2016 JP
10-2000-008278 Feb 2000 KR
10-2000-0064946 Nov 2000 KR
10-2001-0056735 Jul 2001 KR
2003-0023964 Mar 2003 KR
10-2003-0054726 Jul 2003 KR
10-2003-0083663 Oct 2003 KR
100441297 Jul 2004 KR
10-2005-0007143 Jan 2005 KR
10-2005-0042701 May 2005 KR
2005-0049903 May 2005 KR
10-2006-0080509 Jul 2006 KR
1006-41762 Nov 2006 KR
10-2006-0127173 Dec 2006 KR
100663668 Jan 2007 KR
100678696 Jan 2007 KR
100712727 Apr 2007 KR
2007-0079870 Aug 2007 KR
10-2008-0063988 Jul 2008 KR
10-0843236 Jul 2008 KR
10-2009-0040869 Apr 2009 KR
10-2009-0128913 Dec 2009 KR
10-2010-0093358 Aug 2010 KR
10-2011-0086540 Jul 2011 KR
10-2011-0114538 Oct 2011 KR
10-2011-0126675 Nov 2011 KR
10-2012-0022251 Mar 2012 KR
10-2012-0082640 Jul 2012 KR
10-2016-0002543 Jan 2016 KR
2006-12480 Apr 2006 TW
200709256 Mar 2007 TW
2007-35196 Sep 2007 TW
2011-27983 Aug 2011 TW
2012-07919 Feb 2012 TW
2012-13594 Apr 2012 TW
2012-33842 Aug 2012 TW
2008-112673 Sep 2008 WO
2009-009611 Jan 2009 WO
2009-084194 Jul 2009 WO
2010-010706 Jan 2010 WO
2010-113946 Oct 2010 WO
2011070945 Jun 2011 WO
2011-095846 Aug 2011 WO
2012-118987 Sep 2012 WO
2012-125656 Sep 2012 WO
2012-148568 Nov 2012 WO
2013-118260 Aug 2013 WO
Non-Patent Literature Citations (10)
Entry
Richard Tilley, “Understanding Solids”, John Wiley & Sons, 2004, p. 535.
Instrument Manual: Vacuum Gauge Model MM200, Rev D. TELEVAC (website: www.televac.com), A Division of the Fredericks Company, Huntingdonvalley, PA, US. 2008. pp. 162.
Manual No. TQMA72E1. “Bayard-Alpert Pirani Gauge FRG-730: Short Operating Instructions” Mar. 2012. Agilent Technologies, Lexington, MA 02421, USA. pp. 1-45.
H. Xiao, Introduction to Semiconductor Manufacturing Technology, published by Prentice Hall, 2001, ISBN 0-13-022404-9, pp. 354-356.
International Search Report and Written Opinion of PCT/US2016/045551 dated Nov. 17, 2016, all pages.
International Search Report and Written Opinion of PCT/US2016/045543 dated Nov. 17, 2016, all pages.
J.J. Wang and et al., “Inductively coupled plasma etching of bulk 1-20 6H-SiC and thin-film SiCN in NF3 chemistries,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, 2204 (1998).
“Liang et al. Industrial Application of Plasma Process vol. 3, pp. 61-74, 2010”.
International Search Report and Written Opinion of PCT/US2017/047209 dated Nov. 24, 2017, all pages.
International Search Report and Written Opinion of PCT/US2017/033362 dated Aug. 24, 2017, all pages.
Related Publications (1)
Number Date Country
20160222522 A1 Aug 2016 US
Continuations (1)
Number Date Country
Parent 14288696 May 2014 US
Child 15095342 US