This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2017-180938, filed on Sep. 21, 2017 and Japanese Patent Application No. 2018-046574, filed on Mar. 14, 2018; the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a photosensitive composition and a method of manufacturing a graphene device.
Graphene can be fabricated by the physical exfoliation of graphite, and ever since its unique properties were experimentally confirmed, it has been drawing attention and research and development have been made on its various applications. For example, because of its high mobility, graphene has been drawing attention as a high-speed communication device, and studies have been made on its application to an optical frequency mixer, an optical communication modulator, a photodetector, further an oscillator, and the like as optical communication devices. Studies have also been made on a switching element that achieves an on/off current value ratio of 105 or more. Another feature of graphene is that the number of its carriers is easily changed by doping. In graphene, due to the absence of a band gap, a potential change or molecular adsorption to the surface of graphene causes charge transfer to easily change the number of holes and electrons serving as the carriers. Graphene has drawing attention also as a gas sensor or the like utilizing this feature.
On a research level, since only a small number of devices need to be fabricated, electron beam lithography using an EB resist which contains polymethyl methacrylate (PMMA) as a base resin and is photosensitive to an electron beam is employed for graphene patterning. However, this requires a lot of time to fabricate the devices and thus is not suitable for the mass production of a large number of devices. On the other hand, the low-cost fabrication of a large number of graphene devices is enabled by using a resist whose exposure light is UV light with a wavelength of 300 nm or more (a g-line with a 436 nm wavelength, and i-line with a 365 nm wavelength, or the like of a halogen lamp or a mercury lamp) or KrF excimer laser light with a 248 nm wavelength.
As the resist sensitive to the UV light with a 300 nm wavelength or more, a novolac resist is typically used. This contains a novolac resin as a base resin and a photosensitizer. The photosensitizer inhibits the novolac resin from dissolving, but when irradiated with the UV light with a 300 nm wavelength or more, the photosensitizer converts into indene carboxylic acid to be hydrophilic, which causes the novolac resin to decompose and dissolve in a developing solution, so that patterning can be done. However, the novolac resin and the photosensitizer each contain a benzene ring and thus are readily π-π stacked with graphene. Accordingly, if the novolac resist is used in the fabrication of a graphene device, the resist cannot be completely removed, and after being processed, contaminates the graphene, causing a problem of degrading the performance of the graphene device.
As a KrF resist adapted to the KrF excimer laser light with a 248 nm wavelength, one containing polyhydroxystyrene (PHS) as a base resin and additionally containing an about several % photo acid generator is used. As the photo acid generator, salt of triphenyl sulfonium hexafluorophosphate which generates an acid when irradiated with the KrF excimer laser light is used, for instance. A polymer chain of PHS includes a portion in which a phenyl group of PHS is protected with a protecting group (for example, a butoxycarbonyl group). The acid generated from the photo acid generator due to the light exposure causes a reaction to remove the protecting group, and the resultant PHS becomes alkali-soluble. Consequently, solubility in an alkali developing solution increases, so that patterning can be done. PHS and a triphenyl sulfonium ion each also contain an aromatic ring (benzene ring). Therefore, the KrF resist cannot be completely removed at the time of the processing of graphene and thus also has a problem of degrading the performance of a graphene device.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
According to an embodiment of the invention, there is provided a photosensitive composition that includes: a resin containing at least one selected from the group consisting of polyacrylic acid, polymethacrylic acid, a cycloolefin-maleic anhydride copolymer, polycycloolefin, and a vinyl ether-maleic anhydride copolymer and having an ester bond which is caused to generate carboxylic acid by an acid or an ether bond which is aused to generate alcohol by an acid; and a photo acid generator which generates an acid by being irradiated with light with a wavelength of not less than 300 nm nor more than 500 nm or KrF excimer laser light, the photo acid generator containing a substance which has a naphthalene ring or a benzene ring and in which at least one carbon atom of the naphthalene ring or the benzene ring is bonded to a bulky group.
A photoresist (photosensitive composition) of an embodiment and a method of manufacturing a graphene device using the same will be hereinafter described with reference to the drawings. Note that, in each embodiment, substantially the same constituent parts are denoted by the same reference signs and a description thereof will be partly omitted in some case. The drawings are schematic, and a relation of thickness and planar dimension of each part, a thickness ratio among parts, and so on are sometimes different from actual ones.
The photoresist (photosensitive composition) of the embodiment is a chemically amplified resist and is basically composed of a resin and a photo acid generator. In the patterning of graphene or a film formed thereon, the photoresist of the embodiment enables the pattern formation by the exposure with the light, of which a wavelength is not less than 300 nm nor more than 500 nm, or KrF excimer laser light and the development while reducing the contamination, property degradation, and so on of the graphene caused by π-π stacking. In the photoresist of the embodiment, a hydrophilic portion of the resin is partly protected with a protecting group, that is, the resin has an ester bond caused to generate carboxylic acid by an acid or an ether bond caused to generate alcohol by an acid, and the protecting group is removed by the acid generated from the photo acid generator at the time of the exposure to the aforesaid light, and the resin becomes soluble in a developing solution, so that patterning can be done. In such a photoresist, what causes performance degradation of a graphene device is that a benzene ring or a naphthalene ring formed of carbons (C) having an sp2 bond is π-π stacked with graphene. Therefore, a resin and a photo acid generator that are not π-π stacked with graphene are constituent elements of the photoresist of the embodiment.
In the photoresist of the embodiment, as the resin, a resin not having an aromatic ring is used. Specifically, a resin containing at least one selected from the group consisting of polyacrylic acid, polymethacrylic acid, a cycloolefin-maleic anhydride copolymer, polycycloolefin, and a vinyl ether-maleic anhydride copolymer and having a protecting group which protects part of its hydrophilic portion, that is, having an ester bond which is caused to generate carboxylic acid by an acid or an ether bond which is caused to generate alcohol by an acid is used. According to the photoresist using such a resin, the resin does not have the aromatic ring and thus can be prevented from being π-π stacked with graphene, making it possible to reduce performance degradation of a graphene device ascribable to the resin.
The resin of the photoresist of the embodiment will be described in detail. First, an example of a base resin forming the resin of the photoresist is polyacrylic acid (
Polyacrylic acid and polymethacrylic acid have characteristics of being higher in etching resistance than other resins. On the other hand, because of their high hydrophobic properties, polyacrylic acid and polymethacrylic acid have a disadvantage of low adhesion. It is effective to introduce a lactone into the resin for the purpose of improving hydrophilic properties of polyacrylic acid and polymethacrylic acid to enhance their adhesion and for the purpose of improving a dissolution contract at the time of the developing.
A second example of the resin include alternating copolymers of cycloolefin-maleic anhydride (COMA) illustrated in
A COMA-based resin has a high hydrophilic property and has good affinity with an oxide film. Further, it has a high dissolution contrast at the time of the developing. However, the COMA-based resin is low in etching resistance, and in addition, it is readily hydrolyzed because of an anhydride ring that it contains, and thus some measure needs to be taken for its preservation stability. Incidentally, since graphene itself has a high etching property, very high etching resistance is not required.
A third example of the resin is polycycloolefin whose main chain is formed of cycloolefin as illustrated in
A fourth example of the resin include vinyl ether-maleic anhydride copolymers (VEMA) illustrated in
As described above, the resin systems constituting the resin of the photosensitive composition have their own merits and demerits and thus it is preferable that they are appropriately selected for use according to the intended use or the like. Further, in order to compensate for the demerits of the resin systems, it is also possible to use a hybrid polymer in which a plurality of resin systems are combined. For example, as illustrated in
Next, the photo acid generator of the photoresist will be described. The photo acid generator is a component that generates an acid when absorbing exposure light. When the exposure light is light with a wavelength of not less than 300 nm not more than 500 nm (a g-line (436 nm wavelength) or an i-line (365 nm wavelength) of a halogen lamp or a mercury lamp), it is effective to have a naphthalene ring. When the exposure light is KrF excimer laser light (248 nm wavelength), it is effective to have a benzene ring. However, an aromatic ring such as a naphthalene ring and a benzene ring is π-π stacked with graphene when capable of coming close to the graphene.
Therefore, in the photo acid generator used in the photoresist of the embodiment, a substance having a naphthalene ring or a benzene ring is used, and in addition, a bulky group is bonded to a carbon of the naphthalene ring or the benzene ring.
In the photo acid generator illustrated in
The naphthalene ring has an sp2 bond. The photo acid generator of the embodiment has the bulky group deviating from the surface formed by the naphthalene ring, which makes the naphthalene ring floated by steric hindrance to prevent it from coming close to the graphene. As a result, the naphthalene ring does not absorb on the graphene and can be prevented from contaminating the graphene. Since the tertiary carbon of the t-butyl group has an sp3 bond, the three methyl groups and the carbon of the naphthalene ring take the tetrahedral structure. Accordingly, the t-butyl group protrudes from the surface formed by the naphthalene ring, preventing the graphene and the naphthalene ring from coming close to each other. Therefore, it is only necessary that the bulky group has the tertiary carbon and the tertiary carbon is bonded to the naphthalene ring, and the bulky group is not limited to the t-butyl group. For example, part of the butyl group may be substituted, and for example, may be fluorinated. A bulky group may be further bonded to the tertiary carbon, and an alicyclic group such as an adamantyl group or a norbornene group may be bonded. A functional group other than the group having the tertiary carbon like the t-butyl group may be further bonded to the carbon of the naphthalene ring.
In the structure in
In
The bonding position of the t-butyl group is not limited to a para position of the benzene ring of the diphenyliodonium ion. The same effect can be expected as long as the t-butyl group is bonded to at least one carbon of the benzene ring in the diphenyliodonium ion. Considering the steric hindrance, the two benzene rings each preferably have the t-butyl group. The group having the tertiary carbon is not limited to the t-butyl group, and since the same effect can be expected as long as at least one carbon of the benzene ring is bonded to the tertiary carbon, part of the methyl group in the butyl group may be substituted or may be, for example, fluorinated. A bulky group may be further bonded to the tertiary carbon, and an alicyclic group such as an adamantyl group or a norbornene group may be bonded. A functional group other than the group having the tertiary carbon like the t-butyl may further be bonded to the benzene ring.
In the description here, the diphenyliodonium ion is taken as an example of the cationic portion of the photo acid generator, but the cationic portion is not limited to this. For example, in a photo acid generator having a triphenyl sulfonium ion as the cationic portion, by bonding a group having a tertiary carbon to the carbon of the benzene ring, it is also possible to obtain the same effect. By bonding a bulky group such as the group having the tertiary carbon to the benzene ring of at least one phenyl group out of three phenyl groups of the triphenyl sulfonium ion, preferably to each of the benzene rings of the three phenyl groups, it is possible to prevent the benzene ring from coming close to the graphene to inhibit the π-π stacking of the benzene ring with the graphene surface.
In the above, the bulky group whose tertiary carbon is bonded to the carbon of the benzene ring or the naphthalene ring is described as an example. However, the bulky group is not limited to the group having the tertiary carbon, and a secondary carbon of an isopropyl group or an isobutyl group having a side chain and not being straight-chained, a sec-butyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, an isohexyl group, or the like may be bonded to the carbon of the benzene ring or the naphthalene ring. Alternatively, a primary carbon bonded to an alicyclic group such as an adamantyl group or a norbornene group may be bonded. In the above, the example where the plural groups each having the tertiary carbon are bonded is described. However, the bulky group is not limited to the group having the tertiary group, but an isopropyl group or an isobutyl group having a side chain and not being straight-chained, a sec-butyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, an isohexyl group, or the like is also usable. Further, an alicyclic group such as an adamantyl group or a norbornene group may be used.
Next, a photo acid generator of a different type from the aforesaid photo acid generator in which the bulky group such as the t-butyl group is bonded to at least one carbon of the naphthalene ring or the benzene ring will be described.
In the above-described photo acid generator, the cationic portion has the sulfonium ion, and since the state where the two portions (groups having carbons) bonded to the sulfur and not bonded to the naphthalene ring are oriented to the outside of the naphthalene ring is stable, it is possible to prevent the graphene and the naphthalene ring from coming close to each other. In obtaining such an effect, the carbons bonded to the sulfur are not limited to the carbons of the methyl groups. The groups bonded to the sulfur may be partly substituted methyl groups, for example, fluorinated methyl groups, or may be alkyl groups other than the methyl groups. A functional group other than the group containing the sulfur may be further bonded to the naphthalene ring.
In the above, the group having the sulfur to which the two methyl groups are bonded is a substituent of the naphthalene ring, but the substituent is not limited to this. The groups bonded to the sulfur may be groups bulkier than the methyl groups. For example, a secondary carbon of an ethyl group, an n-propyl group, an isopropyl group or an isobutyl group having a side chain and not being straight-chained, a sec-butyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, an isohexyl group, or the like may be bonded to the carbon of the benzene ring or the naphthalene ring. A primary carbon bonded to an alicyclic group such as an adamantyl group or a norbornene group may be bonded. Further, in a photo acid generator illustrated in
When the above-described photo acid generator is seen from a different angle, the plural bulky groups (here, the groups each having the tertiary carbon as an example) such as the t-butyl groups are included in the substituent of the naphthalene ring, and accordingly the bulky groups are oriented to the outside of the surface made by the naphthalene ring, which is a stable structure. It is seen that this structure prevents the graphene and the naphthalene ring from coming close to each other. That is, as long as the substituent of the naphthalene ring includes not only the sulfonium ion but also the plural bulky groups such as the t-butyl groups, it is possible to prevent the naphthalene ring and the graphene from coming close to each other.
Further, as the bulky group, a case where carbons bonded to sulfur form a ring as illustrated in
As described above, the photo acid generator contained in the photoresist of the embodiment is formed of a substance having a naphthalene ring or a benzene ring, and for example, has a structure in which at least one carbon atom of the naphthalene ring or the benzene ring is bonded to a tertiary carbon atom, or to a secondary carbon of a group having a side chain, or to a primary carbon bonded to a cyclic group, a structure in which it has a naphthalene ring or a benzene ring, a group bonded to a carbon atom of the naphthalene ring or the benzene ring contains a plurality of bulky groups, in particular, contains a plurality of tertiary carbon atoms, or contains a plurality of groups each having a side chain, or contains a plurality of cyclic groups, or a structure in which at least one carbon atom of the naphthalene ring or the benzene ring is bonded to sulfur atom and the sulfur atom is bonded to two carbon atoms. The photo acid generator having such a molecular structure make it possible to inhibit the π-π bonding of the naphthalene ring or the benzene ring in the molecular structure to the graphene Therefore, using the photoresist containing such a photo acid generator and containing the aforesaid resin not having the aromatic ring makes it possible to prevent the occurrence of the resist residue on the graphene after the patterning step and reduce performance degradation of the graphene device.
In the case where the photo acid generator in the photoresist of the embodiment has the cationic portion and the anionic portion, the cationic portion has the naphthalene ring or the benzene ring. As an example of the anionic portion, SbF6− and PF6− are cited, but the anionic portion is not limited to these. As the anionic portion, CF3SO3−, C4F8SO3−, C8F17SO3−, or the like is also usable. These are selected for the purpose of adjusting resist properties such as the intensity of an acid generated after the light irradiation, and various kinds of generally known anionic ions are usable.
A basic fabrication method of the photoresist of the embodiment is to dissolve the aforesaid resin and photo acid generator in a solvent. As the solvent, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, γ-butyrolactone, 2-heptanone, ethyl lactate, or the like is used. These are selected for the purpose of not only dissolving the resin and the photo acid generator but also obtaining desired coating properties. As for their mixture ratio, for example, the resin whose ratio is within a 1 to 40% by weight to the solvent is dissolved, and the photo acid generator whose ratio is several %, roughly 5% or less to the resin component is dissolved. The photoresist fabricated with such a weight ratio make it possible to obtain favorable resist properties and coating properties.
The photoresist of the embodiment allows the exposure using light with a wavelength of not less than 300 nm nor more than 500 nm (a g-line (436 nm wavelength) or an i-line (365 nm wavelength) of a mercury lamp light source) or KrF excimer laser light with a 248 nm wavelength, and is prevented from contaminating the graphene, based on the aforesaid combination of the resin and the photo acid generator. This enables the low-cost and efficient fabrication of a high-performance graphene device. Incidentally, in an ArF resist for exposure using an ArF excimer laser light with a 193 nm wavelength, an alicyclic resin not containing an aromatic ring, or the like is used as its resin in order to reduce the absorption of the exposure light. However, the ArF resist is not sensitive to light, of which a wavelength is not less than 300 nm nor more than 500 nm. This is because its photo acid generator does not have the absorption and does not generate an acid. Therefore, this resist is different from the photoresist of the embodiment.
Next, a method of manufacturing a graphene device of an embodiment will be described with reference to
As illustrated in
Specifically, as is done in an ordinary chemically amplified resist process, the photoresist of the first embodiment is applied on the substrate 11 and is baked at a predetermined temperature (soft bake). The baked photoresist film is exposed to light with a wavelength of not less than 300 nm nor more than 500 nm (a g-line (436 nm wavelength) or an i-line (365 nm wavelength) of a mercury lamp light source)) or KrF excimer laser light with a 248 nm wavelength through a photomask. After exposure, the photoresist is baked at a predetermined temperature (post exposure bake), and thereby, the photo acid generator generates an acid. A desired area of the photoresist becomes soluble by the generated acid. Thereafter, the photoresist film is developed into a resist pattern using, for example, a tetramethylammonium hydride aqueous solution (TMAH aqueous solution). Next, with the resist pattern used as a mask, etching of the graphene 13 with, for example, O2 plasma is performed to remove unnecessary portions of the graphene 13.
Thereafter, the resist pattern (photoresist film) is stripped off using, for example, N,N-dimethylacetamide or N-methylpyrrolidinone (NMP), whereby sheets of patterned graphene 13X as illustrated in
The above-described embodiment is the example where the resist pattern is used as the etching mask of the graphene, but the photoresist of the embodiment can be effectively used for other purposes. For example, in a case where a pattern is formed on graphene, though the graphene is not a processing target, and the pattern forming is performed using the pattern as a mold, the use of the photoresist of the embodiment also makes it possible to reduce the contamination of the graphene.
For example, in forming similar patterns to those of the above-described embodiment, the electrode patterns are sometimes formed after the graphene is first transferred onto the Si oxide film-substrate. Specifically, after the graphene is transferred onto the Si oxide film-substrate, a base film soluble in a developing solution and the photoresist of the embodiment are formed. When the photoresist of the embodiment is heated and thereafter exposed and developed, the base film dissolves in the developing solution after the resist pattern is formed. Using a development condition under which the base film is set back from the photoresist, forms the photoresist into an eaves shape. On such a photoresist, electrode metals (for example, Ni and Au) are deposited in vacuum. Thereafter, lift-off that removes the base film and the photoresist together with the metals, using a stripping solution (developer) such as NMP is performed to form the electrode patterns. Even if the graphene and the photoresist come into contact with each other during the development, the photoresist of the embodiment does not approach the graphene so closely as to be π-π stacked with the graphene, making it possible to prevent the contamination of the graphene.
In the above-described embodiment, the example where the photoresist of the embodiment is used to fabricate GFET used in the gas sensor is described, but a graphene device fabricated by using the manufacturing method of the embodiment is not limited to this. In the case of the gas sensor, the photoresist of the embodiment is applicable to any of various kinds of structures, and the photoresist of the embodiment is usable for trimming the graphene in this case. For example, the photoresist of the embodiment is also effective for fabricating graphene sensors such as a sensor in which gas molecules adsorb on graphene of channel portions of GFET and a sensor in which an organic substance that captures gas molecules is installed on graphene of channel portions by being π-π bonded to the graphene through a pyrene ring.
In the former, a substance serving as an electron donor or an electron acceptor, such as tetrafluorohydroquinone, tetrafluoro-tetracyanoquinodimethane, or polyethyleneimine or a metal particle of Pt, Pd, Al, or the like is adsorbed. In the latter, a pyrene derivative having a group that reacts with a substance to be sensed is used, and a sensing probe is installed on a graphene surface, by making a pyrene portion of the pyrene derivative π-π bonded to the graphene.
Further, not only in a gas sensor, but also in a liquid phase sensor having a pool in a channel portion and performing sensing in a solution, for example, in a DNA sensor or a protein sensor, a sensing probe is also formed on a graphene surface. This makes it possible to improve the sensitivity of the sensor and selectively identify a substance to be sensed by the sensing probe. Further, the substance to be sensed is not limited to NH3 and NO2 which will be described later, but the graphene device is also effective for detecting gas that industrially needs to be detected, such as CO2 or hydrogen, organic phosphoric acid-based harmful gas such as sarin, tabun, or soman, and a specific substance used for cancer exhalation diagnosis, and if the sensor is a liquid-phase sensor, a virus, for example, a human-infectious influenza virus, or the like. In any of these cases, since graphene with less performance degradation due to contamination can be used as a channel, it is possible to fabricate a graphene FET sensor excellent in performance.
Further, a graphene device is also used in an optical frequency mixer, an optical communication modulator, a photodetector, an oscillator, and the like as optical communication devices. In such graphene devices, the photoresist of the embodiment is also usable for forming the graphene shape. Further, the resist of the present invention is also effective for an electronic device, and is applicable also to a switching element that can achieve an on-off current value ratio of 105. Besides, the photoresist of the embodiment is effective for a graphene device manufacture having a step of graphene patterning or the like.
Next, specific examples and their evaluation results will be described.
First, a thermal Si oxide film with a 285 nm thickness is formed on an n-type highly-doped Si substrate. An oxide film on a rear surface is stripped off, and metal films, here, 20 nm-thick Ti and 100 nm-thick Ag are deposited to form a back gate electrode. Next, a resist pattern serving as an electrode pattern is formed on the Si oxide film using an i-line resist. With the resist pattern used as a mold, electrode metals are deposited in vacuum. Here, after 10 nm-thick Ni is deposited on the Si oxide film, 20 nm-thick Au is deposited. The resultant is immersed in a stripping solution containing N-methylpyrrolidinone (NMP) as a main material, whereby the unnecessary metals together with the resist are lifted off to form the electrode patterns as illustrated in
Next, graphene is transferred. As the graphene, one fabricated on a Cu foil by a CVD method is used. Polymethyl methacrylate (PMMA) is applied on the graphene surface to protect the surface. Since coarse graphene is on a rear surface of the Cu foil, the coarse graphene is removed with O2 plasma. Thereafter, the Cu foil with the graphene is immersed in a Cu stripping solution, so that Cu is dissolved. Here, ammonium peroxodisulfate is used. The graphene is scooped by the Si substrate on which the electrodes are formed, and the graphene is transferred onto the substrate as illustrated in
The photoresist of the embodiment is used for trimming the graphene. In the example 1, a methacrylic resin having the protecting group illustrated in
As illustrated in
In a case where the graphene FET fabricated in this manner is used as a gas sensor, gas introduction causes charge transfer, so that the I-V characteristic illustrated in
A resin that is the COMA-based resin in
The hybrid resin illustrated in
In the example 4 and the comparative example 2, an effect of the photo acid generator is described. By using the photoresist containing the photo acid generator of which the naphthalene ring is capable of coming close to graphene as illustrated in
A methacrylic resin containing a lactone illustrated in
Two types of photo acid generators are prepared. An photo acid generator (NAI-105, manufactured by Midori Kagaku Co., Ltd) of which the naphthalene ring is capable of coming close to graphene is prepared as a photo acid generator of the comparative example 2, and a photo acid generator (NDS-105, manufactured by Midori Kagaku Co., Ltd) of which the naphthalene ring is not capable of coming close to graphene is prepared as a photo acid generator of the example 4. NAI-105 has a structure of which hydrogens of the methyl group illustrated in
The graphene FETs are fabricated by using the two types of photoresists having different photo acid generators. The process for fabricating the graphene FET by using the photoresist is the same as in the example 1. The I-V characteristics of the graphene FETs are measured.
μ=L/(W·Cox)×1/vd×∂Id/∂Ig (1)
In the expression (1), L is channel length, W is channel width, Vd is drain voltage, Id is drain current, Vg is gate voltage, Cox is ϵ0·ϵs×1/t (ϵ0: permittivity of vacuum, ϵs: relative permittivity of SiO2, t: thickness of film).
It is seen that a maximum value of the effective mobility in the example 4 using NDS-105 is larger than in the comparative example 2 using NAI-105. It is found from the result that the deterioration of the graphene by using the photoresist containing NDS-105 of which the naphthalene ring is not capable of coming close to the graphene can be suppressed. The reason why the I-V characteristic of the example 4 is difference from that of the examples 1-3 is that the used graphene in the example 4 is difference from the used graphene in the examples 1-3. The CVD graphene of in-house product is used in the examples 1-3, but the CVD graphene manufactured by Graphenea Inc. is used in the example 4.
While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes may be made without departing from the spirit of the inventions. The inventions described in the accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2017-180938 | Sep 2017 | JP | national |
2018-046574 | Mar 2018 | JP | national |