Embodiments of the present disclosure generally relate to the field of substrate process chambers, and more specifically to pre-clean chambers with integrated shutter garages.
Conventional semiconductor device formation is commonly performed in one or more process chambers which have the capability to process substrates (e.g., semiconductor wafers) in a controlled processing environment. To maintain process uniformity and ensure optimal performance of the process chamber, various conditioning operations are periodically performed. For example, in a physical vapor deposition (PVD) process chamber, one commonly used conditioning operation is a “burn-in” process, wherein a target disposed in the PVD process chamber is bombarded with plasma ions to remove oxides or other contaminants from the target prior to performing substrate processes. Another commonly used conditioning operation is a “pasting” process, wherein a covering is applied over material deposited on process chamber surfaces to prevent the material from flaking off the process chamber surfaces and contaminating the substrate during subsequent processes. Another operation is a “preclean” operation. In-situ removal of organic residues and native oxide using a preclean process in a preclean chamber ensures a clean surface that promotes low contact resistance and excellent adhesion.
In all of the aforementioned conditioning/preclean operations, a shutter disk may be positioned via a transfer robot atop a substrate support disposed in the process chamber to prevent the deposition of any materials upon the substrate support. The shutter disk typically comprises a material having a mechanical stiffness sufficient enough to resist deformation due to the additional weight of the deposited material. For example, the shutter disk commonly comprises a metal alloy, such as stainless steel, or a ceramic, such as silicon carbide.
However, the inventors have observed that during a conditioning and preclean processes, the shutter disk heats up. Due to heat gradient and/or deposition on the disc, the shutter disk may develop stresses from a thermal mismatch between the top and bottom surfaces of the shutter disk, for example, causing the shutter disk to deform (e.g., bow up at the ends). This warping/deformation creates a gap which results in plasma exposure to the substrate support through the gap. Metal deposition on the substrate support could lead to substrate wafer arcing, substrate wafer sticking and/or breaking, electrostatic chucking force reduction if the substrate support is an electrostatic chuck, etc.
In addition, shutter disks are often stored clear of the processing area and moved by buffer chamber robots into a desired position during use. In order for the robots to be able to handle the disks, the weight and thickness of shutter disks must be minimized. These lighter weight/lower thickness shutter disks deform more during the pasting and burn-in processes.
Various solution have been tried to address the aforementioned problems. For example, use of lower RF powers, longer cooling periods, and addition of a cooling gas to the backside of a shutter disk have been tried. However, the inventors have observed that none of these solutions sufficiently protected the substrate support from undesired material deposition.
Accordingly, improved two-piece shutter disk assemblies are provided herein.
Substrate processing chambers with integrated shutter garage are provided herein. In some embodiments, a pre-clean substrate processing chamber may include a chamber body, wherein the chamber body includes a first side configured to be attached to mainframe substrate processing tool, and a second side disposed opposite the first side, a substrate support configured to support a substrate when disposed thereon, a shutter disk garage disposed on the second side of the process chamber, and a shutter disk assembly mechanism comprising a rotatable shaft, and a robot shutter arm coupled to the shaft, wherein the robot shutter arm includes a shutter disk assembly support section configured to support a shutter disk assembly, and wherein the shutter disk assembly mechanism is configured to move the robot shutter arm between a storage position within the shutter garage and a processing position within the process chamber over the substrate support.
Other embodiments and variations of the present disclosure are disclosed in greater detail below.
Embodiments of the present disclosure, briefly summarized above and discussed in greater detail below, can be understood by reference to the illustrative embodiments of the disclosure depicted in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. The figures are not drawn to scale and may be simplified for clarity. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the present disclosure generally relate to an integrated shutter garage and shutter arm assembly for moving shutter disk assemblies for use in substrate process chambers, such as, for example, semiconductor manufacturing process chambers, and to substrate process chambers incorporating such shutter disk assemblies. In some embodiments, the inventive apparatus includes an integrated shutter garage and shutter arm assembly on a pre-clean chamber. The inventive apparatus may advantageously reduce interference with other chambers by its placement on the back of the process chamber. In addition, embodiments of the present disclosure advantageously can improve kit life, controls defects, improve throughput, and prevent cross contamination through the use of an integrated shutter garage disposed on the back of the process chamber, and associated shutter disk assembly, for use in pre-clean and other substrate processing operations.
The process chamber 100 includes a chamber body 102 and a lid assembly 104 that defines an evacuable process volume 106. The chamber body 102 generally includes one or more sidewalls 108 and a bottom 110. The one or more sidewalls 108 may be a single circular sidewall or multiple sidewalls in process chambers having non-circular configurations. The sidewalls generally contain a shutter disk assembly port 112. In some embodiments, a shutter garage 113 located outside of process chamber 100 may store the shutter disk assembly 140 and move it into process chamber 100 through shutter disk assembly port 112 in process chamber 100. A housing 116 generally covers the shutter disk assembly port 112 to maintain the integrity of the vacuum within the process volume 106. Additional ports may be provided in the sidewalls, such as a sealable access port to provide for the entrance and egress of the substrate 114 from the process chamber 100. A pumping port may be provided in the sidewalls and/or the bottom of the chamber body 102 and is coupled to a pumping system that evacuates and controls the pressure within the process volume 106.
The lid assembly 104 of the chamber body 102 generally supports an annular shield 118 that supports a shadow ring 120. The shadow ring 120 is generally configured to confine deposition to a portion of the substrate 114 exposed through the center of the shadow ring 120. The lid assembly 104 generally comprises a target 122 and a magnetron 124.
The target 122 provides material that is deposited on the substrate 114 during the deposition process while the magnetron 124 enhances uniform consumption of the target material during processing. The target 122 and substrate support 126 are biased relative each other by a power source 128. An inert gas, for example, argon, is supplied to the process volume 106 from a gas source 130. A plasma is formed between the substrate 114 and the target 122 from the gas. Ions within the plasma are accelerated toward the target 122 and cause material to become dislodged from the target 122. The dislodged target material is attracted towards the substrate 114 and deposits a film of material thereon.
The substrate support 126 is generally disposed on the bottom 110 of the chamber body 102 and supports the substrate 114 during processing. A shutter disk assembly mechanism 132 is generally disposed proximate the substrate support 126. The shutter disk assembly mechanism 132 generally includes a robot shutter arm 134 that supports the shutter disk assembly 140 and an actuator 136 coupled to the robot shutter arm 134 by a shaft 138 to control the position of the robot shutter arm 134. The robot shutter arm 134 may be moved between the retracted, or cleared position shown in
In some embodiments, the shutter disk assembly 140 comprises an upper disk member 142 and a lower carrier member 144. Although described herein as a two-piece assembly, the shutter disk assembly may include additional components. In addition, although described herein as a disk, the shutter disk assembly and its components may have any suitable geometry for protecting a substrate support within a particular process chamber. In some embodiments, the upper disk member 142 may be a target itself and used for pasting processes. The lower carrier member 144 forms an electrically insulated barrier around the upper disk member 142 target. This allows for pasting process using the upper disk member 142 as a target while preventing arcing to the substrate support. The lower carrier member 144 and the upper disk member 142 are movably disposed or coupled with respect to each other such that the lower carrier member 144 and the upper disk member 142 may move in relation to each, for example, to allow for independent thermal expansion and contraction of the components. In some embodiments, the upper disk member 142 may merely rest upon the lower carrier member 144.
In some embodiments, a first central self-centering feature 500 as shown in
As shown in
In some embodiments, the shape of the robot shutter arm 134 is such that it is designed to reduce weight, and therefore inertia during movement. For example, as shown in
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 62/670,749, filed May 12, 2018 which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5358615 | Grant et al. | Oct 1994 | A |
6045670 | Adams et al. | Apr 2000 | A |
6098637 | Parke | Aug 2000 | A |
6824627 | Dhindsa et al. | Nov 2004 | B2 |
8211324 | Dhindsa et al. | Jul 2012 | B2 |
9252002 | Cheng-Hsiung et al. | Feb 2016 | B2 |
11043406 | Tsai | Jun 2021 | B2 |
20040089536 | Feltsman et al. | May 2004 | A1 |
20040182698 | Feltsman | Sep 2004 | A1 |
20040245098 | Eckerson | Dec 2004 | A1 |
20060156979 | Thakur | Jul 2006 | A1 |
20070032081 | Chang et al. | Feb 2007 | A1 |
20090130336 | Dekempeneer et al. | May 2009 | A1 |
20090142512 | Forster et al. | Jun 2009 | A1 |
20090173446 | Yang et al. | Jul 2009 | A1 |
20100071625 | Brown | Mar 2010 | A1 |
20100326818 | Ikemoto et al. | Dec 2010 | A1 |
20110126984 | Kang et al. | Jun 2011 | A1 |
20120103793 | Fujii | May 2012 | A1 |
20140020629 | Tsai | Jan 2014 | A1 |
20140271081 | Lavitsky | Sep 2014 | A1 |
20190326154 | Tsai | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
WO 2006113170 | Oct 2006 | WO |
Entry |
---|
International Search Report for PCT/US2019/031100, dated Aug. 19, 2019. |
International Search Report and Written Opinion dated Sep. 25, 2013 for PCT Application No. PCT/US2013/050490. |
U.S. Appl. No. 16/383,772, filed Apr. 15, 2019. |
Number | Date | Country | |
---|---|---|---|
20190348264 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62670749 | May 2018 | US |