Semiconductor devices are widely used in almost all consumer and home electronic products, as well as in communications, medical, industrial, military, and office products and equipment. Semiconductor devices are manufactured from semiconductor wafers. The wafers are typically round, flat silicon disks. The cleaning of semiconductor wafers is often a critical step in the fabrication processes used to manufacture semiconductor devices. The electronic devices formed on wafers are often just fractions of a micron. This makes these microelectronic devices highly susceptible to performance degradation or even complete failure due to contamination by organic, metal, or other particles. Various types of films or coatings are generally applied to the wafers at various stages of manufacturing. However, these films must be removed before subsequent manufacturing steps take place. Consequently, cleaning the wafers, to remove contamination or films, is often a critical step in the manufacturing process.
For many years, wafers were cleaned in typically three or four separate steps using strong acids, such as sulfuric acid, and/or using strong caustic solutions, such as mixtures of hydrogen peroxide or ammonium hydroxide. Organic solvents have also been used with wafers having metal films. While these methods performed well, they had certain disadvantages, including the high cost of the process chemicals, the relatively long time required to get wafers through the various cleaning steps, high consumption of water due to the need for extensive rinsing between chemical steps, and high disposal costs. As a result, extensive research and development efforts have focused on finding better wafer cleaning techniques.
More recently, the semiconductor manufacturing industry has acknowledged a revolutionary new process for cleaning wafers using ozone. In this new process, ozone gas is provided into the process chamber and moves through a thin layer of heated water on the wafers, via diffusion and/or bulk transport. This ozone gas process has proven to be highly effective in cleaning contamination and organic films off of wafers, while avoiding many of the disadvantages of the older methods using acids and caustics. The advantages of the ozone process are that is it fast, requires no expensive and toxic liquid acids or caustics, and operates effectively as a spray process, which greatly reduces water consumption and space requirements.
The ozone gas cleaning process can be performed in various ways. These include spraying water onto the wafer or workpiece while injecting ozone into the water, spraying water on the workpiece while delivering ozone to the workpiece, delivering a combination of steam or water vapor and ozone to the workpiece, and applying water, ozone, and sonic energy simultaneously to the workpiece. Spray techniques using water at elevated temperatures have been especially successful at increasing the removal rates of various organic films and contaminants from workpiece surfaces.
Notwithstanding its remarkable success in many applications, there are some films that can be more resistant to removal using the ozone methods. These films include anti-reflective coatings (ARC), such as sacrificial light absorbing coatings or films (SLAM) and DUO™ coating manufactured by Honeywell Electronic Materials, Sunnyvale, Calif. 94089, USA. These and similar coatings and/or films, collectively referred to here as “ARC”, while more difficult to remove or clean away, are advantageously used in photolithography steps during the manufacture of certain semiconductor products. However, after these photolithography and/or related steps are performed, the ARC film must be removed before the manufacturing process can continue. Accordingly, there is a need for better equipment and methods for removing ARC films and similar films.
Other types of films or contaminants, such as organic materials, metals, silicon dioxide, and particulates, can also present obstacles during cleaning steps. Accordingly, there is a need for improved methods for cleaning or processing workpieces using the ozone and heated water techniques.
After extensive research, the inventors have now discovered contaminants and films which are not easily removed with ozone and heated water methods, can very effectively be removed in a new process using ozone, heated water and a halogenated additive. Surprisingly, although ozone and heated water alone cannot remove these types of films, and although a halogenated additive alone cannot remove these types of films, when used together, the combination of ozone, heated water and the halogenated additive can quickly and completely remove them.
In one aspect, a method for processing a workpiece includes introducing a heated liquid including a halogenated additive onto the surface of the workpiece. The heated liquid forms a liquid layer on the workpiece. Ozone is provided around the workpiece. The thickness of the liquid on the surface of the workpiece is controlled. The heated liquid, halogenated additive and the ozone act to effectively remove contaminants or films.
In other separate aspects, the liquid is or includes water, the halogenated additive is HF, the concentration of ozone and halogenated additive are selected to avoid allowing the surface of the workpiece to become hydrophobic, or the thickness of the liquid layer is controlled by spinning the workpiece, and/or by controlling the flow rate of the liquid onto the workpiece. These aspects may be used alone or in combinations with each other.
In an additional aspect, the workpiece is rotated in a process chamber. A heated liquid including a halogenated additive is sprayed onto a film on the workpiece, with the heated liquid forming a liquid layer covering the film. Ozone is provided into the chamber. The thickness of the liquid layer is controlled or maintained, to allow diffusion of the ozone through the liquid layer. The film or anti-reflective coating is removed from the surface of the workpiece via a chemical reaction between the halogenated additive in the water, the ozone and the ARC.
In an immersion process, water containing a halogenated additive is heated. A workpiece is immersed into a bath of the heated water. Ozone gas is introduced into the heated water. The ARC film or coating is removed from the surface of the workpiece via a chemical reaction.
The invention resides as well in subcombinations of the apparatus and methods described. It is an object of the invention to provide improved methods and apparatus for cleaning and processing workpieces.
In the drawings, wherein the same reference number indicates the same element throughout the several views:
While showing preferred designs, the drawings include elements which may or may not be essential to the invention. The elements essential to the invention are set forth in the claims. Thus, the drawings include both essential and non-essential elements.
A workpiece or wafer is defined here to include a workpiece formed from a substrate upon which microelectronic circuits or components, data storage elements or layers, and/or micro-mechanical or micro-electro-mechanical elements are formed. The apparatus and methods described here may be used to clean or process workpieces such as semiconductor wafers or articles, as well as other workpieces or objects such as flat panel displays, hard disk media, CD glass, memory media, MEMs devices, optical media or masks, etc.
In one of the basic forms of the invention, a halogenated additive solution, such as a dilute mixture of hydrofluoric acid (HF) in water, is heated to an elevated temperature and is applied to the workpiece surface. A layer of the dilute liquid mixture is formed on the surface. Ozone gas is simultaneously provided into the process chamber. The ozone is entrained in and diffuses through the liquid layer and oxidizes the underlying contaminant material or film. The halogenated additive helps to enable and/or expedite the removal of contaminants or films. As applied specifically to removing ARC films, experimental testing shows that dilute halogenated additive alone, and ozone and water alone, will not remove ARC films. However, it has now been discovered that using heated water, a halogenated additive and ozone diffusing through a layer of the water on the workpiece, is suprisingly effective in removing films such as ARC films. The terms film, coating and contaminant, may be used interchangeably here, to mean a substance on the workpiece which is removed by the processes described. The ozone may be dissolved or entrained in the liquid.
Although the apparatus is illustrated for use in single wafer processing, the apparatus and methods of
Turning now to
The volume of the processing chamber 15 is preferably minimized. The processing chamber 15 is preferably cylindrical for processing multiple workpieces or wafers in a batch. A disk-shaped chamber is advantageously used for single wafer processing. Typically, the chamber volume will range from about 5 liters (for a single wafer) to about 50 liters (for a 50 wafer system).
Referring still to
Process liquid including a halogenated additive, and ozone may be supplied to the nozzles 40 by a fluid line carrying the gas mixed with the liquid. A reservoir 45 or tank preferably holds the liquid. The reservoir 45 is preferably connected to the input of a pump 55. The pump 55 provides the liquid under pressure along a fluid flow path generally designated as 60, for supply to the nozzles 40. While use of a reservoir 45 is preferred, any liquid source may be used, including a pipeline.
As shown in
In the embodiment illustrated in
Referring still to
In the embodiment illustrated in
The holding fixture or cassette, if used, is placed in a closed environment, such as in the processing chamber 15. At step 102, heated deionized water including a halogenated additive is sprayed onto the surfaces of the workpiece 20. The heated deionized water heats the workpiece 20. The boundary layer of deionized water (i.e. the thickness of the layer of water on the workpiece) is controlled at step 104 using one or more techniques. For example, the workpiece 20 may be rotated about axis 37 by the rotor 30 (at e.g., 0-5000 rpm; or 200-4000 rpm; or 500-2500 rpm) to generate centrifugal forces that thin the boundary layer. The flow rate of the deionized water may also be used to control the thickness of the surface boundary layer. Rotation of the workpiece is optional and not essential.
At step 106, ozone is injected into the fluid flow path 60 during the spray of water, or otherwise provided directly into the processing chamber 15. If the apparatus of
Elevated temperature, or heated water or liquid here means temperatures above ambient or room temperature, that is temperatures above 20, 21, 25, 26, 30, 35 or 40° C. and up to about 99° C., for non-boiling/non-pressurized processes, or to about 200° C. in pressurized processes. Preferred temperature ranges are 21 or 26-99° C.; and 21 or 26-65° C. In the methods described, temperatures of 90-100° C., and preferably centering around 95° C., may be used. To avoid boiling at ambient pressures, temperature ranges of 21 or 26 to about 99° C. may be used.
After the workpiece 20 has been processed or cleaned, the workpiece 20 is optionally rinsed at step 108 and dried at step 110.
High ozone flow rates and concentrations can be used to produce faster cleaning or processing rates under various processing conditions including lower wafer rotational speeds and reduced temperatures. Use of lower temperatures, for example ambient temperatures ranging from for example 15-25° C., or above ambient temperatures such as 20, 21, 25, or 26-65° C. may be advantageous when still higher temperatures are undesirable. The concentration of the halogenated additive or HF ranges from about 1 part 49% HF (or halogenated additive) to 1-3,000 parts; 10-2,000 parts; 50-1,500 parts; 100-1,000 parts; 250-750 parts, or 400-600 parts DI water. Typical flow rates are about 300 ml/minute to 4 liters/minute; or 500 ml/minute to 1,000 ml/minute.
Turning to
Referring to
A temperature-controlled surface or plate 66, as shown in
The workpiece may be in any orientation during processing. The supply of liquid, gases, and/or steam may be continuous or pulsed. An ultra-violet or infrared lamp 42 is optionally used in any of the designs described above, to irradiate the surface of the workpiece 20 during processing, and enhance the chemical reactions, which remove the contamination. One of more of the spray nozzles 40 may be megasonic or ultrasonic spray nozzles 41.
Referring to
In any of the non-immersion methods described above, and in any of the systems shown in any one of
The invention contemplates use of heated water including a halogenated additive such as HF, and ozone, regardless of how each of these elements is provided into the chamber. Halogenated additive means an additive including an element from Group 7 of the periodic table, i.e., F, Cl, Br, I or At.
A silicon wafer having a hardened residual layer of photoresist about 1200A-1500A thick and an underlying SLAM (Sacrificial Light Absorbing Layer) layer about 2500 thick was processed as described above. SLAM is one form of an ARC or anti-reflective coating. The wafer was rotated at 1000 rpm. A solution of 49% (weight) HF in de-ionized water was further diluted to a concentration within the range of 0.01 to about 1% (by weight). This solution was heated to 90° C. and sprayed onto the spinning wafer at a flow rate of 500-800 ml/minute. Ozone gas was delivered into the process chamber at about 10 slpm and a concentration of 240 g/m3. The process was performed for 8:00 minutes. The photoresist layer and the SLAM layer were both removed. There was no detectable attack of the carbon doped oxide (CDO) dielectric layer.
Other halogenated additives, especially fluorinated additives, may be used instead of HF, for example NH4F. The ozone can be supplied dissolved in the water, co-injected with the water (with some ozone dissolving and rest entrained as bubbles of gas in the water), or the ozone can be delivered into the chamber separate from the water. Immersion techniques may also be used instead of spraying. With immersion, the workpiece is immersed in a bath of dilute HF and water. Ozone is dissolved in the water, and/or bubbled up through the water around the workpiece.
Thus, while several embodiments have been shown and described, various changes and substitutions may of course be made, without departing from the spirit and scope of the invention. The invention, therefore, should not be limited, except by the following claims, and their equivalents.
This Application is a Continuation of U.S. Patent Application Ser. No. 09/621,028, filed Jul. 21, 2000 and now pending, which is a Continuation-in-Part of International Patent Application PCT/US99/08516, filed Apr. 16, 1999, which is a Continuation-in-Part of U.S. patent application Ser. No. 09/061,318, filed Apr. 16, 1998, and now abandoned, which is a Continuation-in-Part of U.S. patent application Ser. No. 08/853,649, filed May 7, 1997, and now U.S. Pat. No. 6,240,933. Priority to each of these Applications is claimed under 35 U.S.C. §§ 119 and 120. These applications are also incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 09621028 | Jul 2000 | US |
Child | 10917094 | Aug 2004 | US |
Parent | PCT/US99/08516 | Apr 1999 | US |
Child | 09621028 | Jul 2000 | US |
Parent | 09061318 | Apr 1998 | US |
Child | PCT/US99/08516 | Apr 1999 | US |
Parent | 08853649 | May 1997 | US |
Child | 09061318 | Apr 1998 | US |