This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2005-378682 filed on Dec. 28, 2005 in Japan, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a semiconductor device.
2. Related Art
Along with a demand for logic semiconductor devices capable of performing more complicated information processing, there has been a demand for simpler circuits or higher integration. Particularly, there is an increasing demand for reconfigurable logic semiconductor devices, as quick responses to changes in logic specifications are required and there are possibilities that the logic functions are changed by users. In a conventional reconfigurable logic semiconductor device, a particular control signal is read out in accordance with the combination of input signals. JP-A 2005-127772 (KOKAI) discloses such an example in which there are two input signals. By this method, an output of a desired value in accordance with the combination of input signals can be set by switching control signals.
The number of field effect transistors required for constructing the reconfigurable logic semiconductor device disclosed in the above described document is 34 in total: six for selecting a control signal, four for two inverters (two each), and 24 for four input signals if a SRAM is used for control signals (six each). Because of this large number of field effect transistors, the structure of the reconfigurable logic semiconductor device is complicated, and it is difficult to reduce the area occupied by the field effect transistors. This fact hinders the production of highly-integrated structures.
A semiconductor device according to a first aspect of the present invention includes: a semiconductor element that includes a first semiconductor region of a first conductivity type provided in a plate-like form on a semiconductor substrate; a first ferroelectric insulating film provided on a first side face of the first semiconductor region; a first gate electrode provided on the opposite face of the first ferroelectric insulating film from the first semiconductor region; a second ferroelectric insulating film provided on a second side face of the first semiconductor region; a second gate electrode provided on the opposite face of the second ferroelectric insulating film from the first semiconductor region; a channel region formed in the first semiconductor region and interposed between the first and second gate electrodes; and first source/drain regions of a second conductivity type provided at portions in the first semiconductor region located on both sides of the channel region, the first semiconductor region having a thickness smaller than twice the largest thickness of a depletion layer that is determined by impurity concentration of the first semiconductor region.
A semiconductor device according to a second aspect of the present invention includes: a first semiconductor element and a second semiconductor element, the first semiconductor element including: a first semiconductor region of a first conductivity type provided in a plate-like form on a semiconductor substrate; a first ferroelectric insulating film provided on a first side face of the first semiconductor region; a first gate electrode provided on the opposite face of the first ferroelectric insulating film from the first semiconductor region; a second ferroelectric insulating film provided on a second side face of the first semiconductor region; a second gate electrode provided on the opposite face of the second ferroelectric insulating film from the first semiconductor region; a first channel region formed in the first semiconductor region and interposed between the first and second gate electrodes; and first source/drain regions of a second conductivity type provided at portions in the first semiconductor region located on both sides of the first channel region, the first semiconductor region having a thickness smaller than twice the largest thickness of a depletion layer that is determined by impurity concentration of the first semiconductor region, the second semiconductor element including: a second semiconductor region of the second conductivity type provided in a plate-like form on the semiconductor substrate; a third ferroelectric insulating film provided on a first side face of the second semiconductor region; a third gate electrode provided on the opposite face of the third ferroelectric insulating film from the second semiconductor region; a fourth ferroelectric insulating film provided on a second side face of the second semiconductor region; a fourth gate electrode provided on the opposite face of the fourth ferroelectric insulating film from the second semiconductor region; a second channel region formed in the second semiconductor region and interposed between the third and fourth gate electrodes; and second source/drain regions of the first conductivity type provided at portions in the second semiconductor region located on both sides of the second channel region, the second semiconductor region having a thickness smaller than twice the largest thickness of a depletion layer that is determined by impurity concentration of the second semiconductor region, and one of the first source/drain regions being electrically connected to one of the second source/drain regions, one of the first and second gate electrodes being electrically connected to one of the third and fourth gate electrodes, the other one of the first and second gate electrodes being electrically connected to the other one of the third and fourth gate electrodes.
The following is a description of embodiments of the present invention, with reference to the accompanying drawings. It should be noted that the present invention is not limited to the following embodiments, but various changes and modification may be made to those embodiments.
The thickness of the semiconductor region 3 to form the channel region is thinner than twice the largest thickness of the depletion layer that is determined by the impurity concentration. Polarization of the ferroelectric insulating films 4 and 5 can be controlled by applying a predetermined potential to the gate electrodes 6 and 7 or the source/drain regions 8. In this manner, a logic circuit can be formed far more easily than a conventional semiconductor element. This fact is described below in greater detail.
First, an n-type semiconductor element, or a semiconductor element that has p-type impurities contained in the channel region and n-type impurities contained in the source/drain regions is taken as an example. The thickness of the channel region of a semiconductor element in accordance with this embodiment is thinner than twice the largest thickness of the depletion layer determined by the impurity concentration. Accordingly, inversion layers are not formed independently of each other on the side faces of the channel region on which the gate electrodes exist, but inversion layers are formed on the entire semiconductor region 3 that serves as the channel region, depending on the combination of the potentials of both gate electrodes 6 and 7. In an n-type semiconductor device, if the polarization of the ferroelectric insulating films 4 and 5 forming the gate insulating film is directed to the channel from the gate electrodes 6 and 7, the semiconductor device becomes ON at a lower gate voltage. If the polarization of the ferroelectric insulating films 4 and 5 is directed to the gate electrodes 6 and 7 from the channel, the semiconductor device becomes ON at a higher gate voltage. Therefore, with the power supply voltage being set at 1 and the ground voltage being set at 0 as the potentials of the gate electrodes 6 and 7, the semiconductor device becomes ON with an “OR” of the two gate electrodes 6 and 7 in the case where the polarization of the ferroelectric insulating films 4 and 5 is directed to the channel from the gate electrodes 6 and 7. In the case where the polarization of the ferroelectric insulating films 4 and 5 is directed to the gate electrodes 6 and 7 from the channel, the semiconductor device becomes ON with an “AND” of the two gate electrodes 6 and 7. In this specification, the “largest thickness of the depletion layer that is determined by the impurity concentration in the region” is defined as the thickness of the depletion layer that is formed in a case where a voltage equal to the value obtained by dividing the forbidden band width (1.1 eV in the case of silicon, for example) of a semiconductor forming a substrate by the elementary charge is applied on the surface to an inner portion of a semiconductor substrate having a sufficient thickness containing impurities with the same concentration.
Since a circuit that becomes ON with an “AND” or “OR” of two inputs using conventional n-type field effect transistors is to be formed, a series-connected structure of two n-type field effect transistors needs to be produced so as to form a circuit that becomes on with an “AND”, while a parallel-connection structure of two n-type field effect transistors needs to be produced so as to form a circuit that becomes on with an “OR”.
In accordance with this embodiment, however, such a circuit can be realized by one semiconductor element having a far simpler structure. This is a fact discovered by the inventor of the present invention. Furthermore, only the direction of the polarization of the ferroelectric insulating films 4 and 5 determines whether a semiconductor element of this embodiment becomes ON with an “AND” of the two inputs or with an “OR” of the two inputs. Therefore, the polarization is inverted by adjusting the potentials of the gate electrodes 6 and 7 or the source/drain regions 8, so that the semiconductor element can be controlled to be ON with an “AND” or “OR”. This is also a fact discovered by the inventor of the present invention.
Next, a p-type semiconductor element, or a semiconductor element having n-type impurities contained in the channel region and p-type impurities contained in the source/drain regions is taken as an example. The thickness of the channel region of a semiconductor element in accordance with this embodiment is thinner than twice the largest thickness of the depletion layer determined by the impurity concentration. Accordingly, inversion layers are not formed independently of each other on the side faces of the channel region on which the gate electrodes exist, but inversion layers are formed on the entire semiconductor region 3 that serves as the channel region, depending on the combination of the potentials of both gate electrodes 6 and 7. In a p-type semiconductor device, if the polarization of the ferroelectric insulating films 4 and 5 forming the gate insulating film is directed to the channel from the gate electrodes 6 and 7, the semiconductor device becomes ON at a lower gate voltage. If the polarization of the ferroelectric insulating films 4 and 5 is directed to the gate electrodes 6 and 7 from the channel, the semiconductor device becomes ON at a higher gate voltage. Therefore, with the power supply voltage being set at 1 and the ground voltage being set at 0 as the potentials of the gate electrodes 6 and 7, the semiconductor device becomes ON with a “NOR” of the two gate electrodes 6 and 7 in the case where the polarization of the ferroelectric insulating films 4 and 5 is directed to the channel from the gate electrodes 6 and 7. In the case where the polarization of the ferroelectric insulating films 4 and 5 is directed to the gate electrodes 6 and 7 from the channel, the semiconductor device becomes ON with a “NAND” of the two gate electrodes 6 and 7. This is also a fact discovered by the inventor of the present invention.
Furthermore, only the direction of the polarization of the ferroelectric insulating films 4 and 5 determines whether a semiconductor element of this embodiment becomes ON with a “NAND” of the two inputs or with a “NOR” of the two inputs. Therefore, the polarization is inverted by adjusting the potentials of the gate electrodes 6 and 7 or the source/drain regions 8, so that the semiconductor element can be controlled to be ON with a “NAND” or “NOR”. This is also a fact discovered by the inventor of the present invention.
As described above, a semiconductor element of this embodiment can form a logic circuit with a far simpler structure than a conventional semiconductor element.
Next, a method for manufacturing a semiconductor element in accordance with this embodiment is described.
First, as shown in
As shown in
As shown in
As shown in
As (Arsenic) ions are then injected with energy of 5 keV and a concentration of 1×1015 cm−2, for example, and a heating process is carried out to form the source and drain regions 8.
After that, the semiconductor element of this embodiment is completed through an interlayer insulating film forming procedure and a wiring procedure as in the case of forming a conventional semiconductor element.
Although an n-type semiconductor element has been taken as an example in this embodiment, this embodiment can be applied to a p-type semiconductor element by reversing the conductivity types of impurities and to a complementary semiconductor element by introducing impurities only to a particular region in the substrate by photolithography or the like. Further, this embodiment can be applied to a semiconductor element partially having one of the above features.
Although only the procedures for forming a semiconductor element have been described in this embodiment, the same procedures as above may be carried out to form a part of an integrated circuit containing an active element such as a field effect transistor, a bipolar transistor, or a single-electron transistor, a passive element such as a resistor, a diode, an inductor, or a capacitor, or a part of a semiconductor device including an element using a ferroelectric body, an element using a magnetic body, or a memory device. The same procedures may be carried out to form a part of an OEIC (opto-electrical integrated circuit) or a MEMS (micro electro mechanical system).
Although the semiconductor element of this embodiment is formed on a SOI substrate, it may be formed on a regular bulk semiconductor substrate, to achieve the same effects as above.
In this embodiment, As ions are used as the impurities to form an n-type semiconductor layer, and B ions are used as the impurities to form a p-type semiconductor layer. However, it is also possible to employ other V-group impurities as the impurities to form an n-type semiconductor layer, or employ other III-group impurities as the impurities to form a p-type semiconductor layer. The introduction of III-group or V-group impurities may be carried out with a compound containing those impurities.
Although the introduction of the impurities is performed through ion implantation in this embodiment, methods other than ion implantation such as solid-phase diffusion and gas-phase diffusion may also be used. Moreover, methods of depositing or developing semiconductors containing impurities may also be used.
In this embodiment, impurity introduction to adjust the threshold voltage of the element is not performed. However, it is possible to perform impurity introduction to adjust the threshold voltage independently of the impurity introduction for the well formation. In this manner, the threshold voltage can be readily adjusted to a desired value. This embodiment has the advantage in simpler procedures.
Furthermore, an element including a single drain structure has been described as an example of this embodiment. However, the elements including structures other than the single drain structure, such as an extension structure, a lightly-doped drain (LDD) structure, a graded diffused source/drain (GDD) structure may also be constructed. Alternatively, an element including a halo or pocket structure may be employed, because an element having such a structure has higher resistance to a short-channel effect. Also, the source/drain regions may be made of a metal, metal silicate, or the like, so as to form a so-called Schottky element.
In this embodiment, the source/drain regions are formed after the processing of the gate electrodes and the gate insulating films. However, this order is not essential, but may be reversed. Depending on the materials of the gate electrodes and the gate insulating films, there may be a case where a heating process is not preferable. In such a case, the introduction of impurities to the source/drain regions and the heating process for activation should preferably be carried out before the processing of the gate electrodes and the gate insulating films.
Although the gate electrodes are made of W in this embodiment, they may be formed with a semiconductor such as a single crystalline silicon semiconductor or a noncrystalline silicon semiconductor, a metal other than W, a compound containing a metal, or a stacked film of those materials. A metal or a compound containing a metal can lower the resistance of the gate electrodes. Accordingly, high-speed performance can be expected from the element. Also, the gate electrodes made of a metal can restrict oxidation reaction, and can advantageously increase the controllability at the interface between the ferroelectric insulating films and the gate electrodes. Further, with a semiconductor such as a polycrystalline silicon semiconductor being used at least as a part of the gate electrodes, the control of the work function becomes easier, and the threshold voltage can be advantageously adjusted with ease.
In this embodiment, the gate electrodes are formed by performing anisotropic etching after the deposition of the materials of the gate electrodes. However, an embedding technique such as the damascene process may be utilized to form the gate electrodes. In the case where the source/drain regions are formed before the formation of the gate electrodes, the use of the damascene process is preferable because the source/drain regions and the gate electrodes are formed in a self-aligned manner.
In this embodiment, the lengths of the upper portion and the lower portion of each gate electrode measured in the principal direction of the current flowing through the element are the same, but this is not an essential factor. For example, each gate electrode may have a T-like shape, with the upper portion being longer than the lower portion. In such a case, the gate resistance can be advantageously reduced.
Although not described in this embodiment, the formation of the metal layer for wirings may be carried out by a sputtering technique or a deposition technique or the like. Alternatively, a metal selective growth technique or the damascene process may be utilized. The material of the wirings may be a metal such as an Al (aluminum) material containing silicon or Cu (copper). Especially, Cu is preferred, having a lower resistivity.
Although a silicidation procedure has not been described in this embodiment, a silicide layer may be formed on the source/drain regions. Alternatively, a layer containing a metal may be deposited or grown on the source/drain regions. With this arrangement, the resistance in the source/drain regions is preferably reduced. In a case where the gate electrodes are made of polycrystalline silicon, silicidation may be performed on the gate electrodes. Silicidation is preferable, lowering the gate resistance. An elevated structure may also be employed. With an elevated structure, the resistance in the source/drain regions is advantageously lowered.
In this embodiment, the upper portion of each gate electrode is exposed. However, an insulator such as silicon oxide, silicon nitride, or silicon oxynitride may be provided on the upper portion of each gate electrode. Particularly, in a case where the gate electrodes are made of a material containing a metal and a silicide layer is formed on the source/drain regions, and therefore, the gate electrodes need to be protected during the manufacturing process, it is necessary to provide a protection material such as silicon oxide, silicon nitride, or silicon oxynitride on the upper portion of each gate electrode.
Although PZT film formed through deposition is used for the ferroelectric insulating films in this embodiment, it is also possible to use other ferroelectric materials such as PLZT (PbxLa1-xZryTi1-yO3) or SBT (SrBi2Ta2O9). The film formation method is not limited to deposition, but some other method such as a sputtering method may be utilized.
Although gate sidewalls have not been mentioned in this embodiment, it is possible to provide sidewalls for the gate electrodes. Particularly, if gate sidewalls made of a high-dielectric-constant material are provided, the electric field induced in the ferroelectric insulating films in the vicinity of the lower ends of the gate electrodes is made less intensive, as disclosed in Japanese Patent No. 3658564. Accordingly, the reliability of the ferroelectric insulating films can be advantageously increased.
Although post oxidation after the formation of the gate electrodes has not been mentioned in this embodiment, a post oxidizing procedure may be carried out if possible, with the materials of the gate electrodes and the ferroelectric insulating films being taken into consideration. Other than post oxidation, a process for rounding the edges of the lower ends of the gate electrodes may be carried out with the use of a chemical solution or by exposing the lower ends to a reactive gas. If such procedures are possible, the electric field at the edges of the lower ends of the gate electrode is made less intensive, and accordingly, the reliability of the ferroelectric insulating films is advantageously increased.
Although not mentioned in this embodiment, a silicon oxide film may be employed as the interlayer insulating film, or a material other than silicon oxide, such as a low-dielectric-constant material, may be employed for the interlayer insulating film. As the dielectric constant of the interlayer insulating film is made smaller, the parasitic capacitance of the element is reduced. Thus, high-speed performance can be expected from the element.
Although contact holes have not been mentioned in this embodiment, it is possible to form self-aligned contacts. With self-aligned contacts, the area of the element can be reduced, and the integration rate can be advantageously increased.
In this embodiment, the principal direction of the current flowing through the semiconductor region serving as the channel region is parallel to the surface of the semiconductor substrate 1, and the gate electrodes 6 and 7 are designed to sandwich the semiconductor region at both sides. However, the gate electrodes 6 and 7 may be formed to sandwich the semiconductor region 3 serving as the channel region at the top and the bottom, as shown in
A semiconductor element having the structure shown in
In the semiconductor element shown in
In this embodiment, the gate insulating films are made of a ferroelectric material, and the orientation of the polarization is controlled so as to determine whether the element is to be ON with an “AND” or an “OR”. However, each of the gate insulating films may not be made of a ferroelectric material, but may be formed with a stacked structure of a tunnel gate insulating film, a floating gate electrode, and an inter-poly insulating film. In such a case, the amount of charges stored in the floating gate electrode is adjusted so as to determine whether the element is to be ON with an “AND” or an “OR”. In doing so, however, the equivalent oxide thickness (the thickness of a silicon oxide film having the same capacity per unit area as a parallel plate capacitor formed with the insulating films) of the gate insulating films 4 and 5 becomes the same as the sum of the equivalent oxide thickness of the tunnel gate insulating film and the inter-poly insulating film. Therefore, it is difficult to reduce the equivalent oxide thickness of the gate insulating film, and this hinders miniaturization of the element. With the structure of this embodiment, on the other hand, such difficulties are not caused, and the element can be miniaturized. As a result, a high-performance semiconductor element of a very small size can be advantageously produced.
In a case where the polarization of the ferroelectric insulating films is directed from the gate electrodes to the channel region, the circuit of this embodiment becomes ON with an “OR” of the two gate electrodes. Therefore, if both inputs are “0”, which is the ground potential, “1”, which is the power supply voltage, is output to the output terminal. In any other cases, “0”, which is the ground potential, is output to the output terminal. In this example case, the circuit of this embodiment is a NOR circuit.
To form a NOR circuit with conventional n-type field effect transistors, two n-type field effect transistors are connected in parallel, and a series-connected structure of the two n-type field effect transistors and a resistor is formed. Therefore, two field effect transistors are required.
In this embodiment, on the other hand, a NOR circuit can be formed only with one semiconductor element of the first embodiment. Thus, this circuit can be formed through very simple procedures.
In a case where the polarization of the ferroelectric insulating films is directed from the channel region to the gate electrodes, the semiconductor element 50 in the circuit of this embodiment becomes ON with an “AND” of the two gate electrodes. Accordingly, if both inputs are “1”, which is the power supply voltage, “0”, which is the ground potential, is output to the output terminal. In any other cases, “1”, which is the power supply voltage, is output to the output terminal. Thus, the logic circuit of this embodiment becomes a NAND circuit.
To form a NAND circuit with conventional n-type field effect transistors, two n-type field effect transistors are connected in series, and a series-connected structure of the two n-type field effect transistors and a resistor is formed. Therefore, two field effect transistors are required.
In this embodiment, on the other hand, a NAND circuit can be formed only with one semiconductor element of the first embodiment. Thus, this circuit can be formed through very simple procedures. This is a fact discovered by the inventor of the present invention.
The following example case is now described. The circuit of this embodiment is formed as a part of a logic circuit. The terminal connected to the ground potential and the terminal connected to the power supply voltage in the diagram can be connected to a sufficiently high potential and a sufficiently low potential. Determination is to be made as to whether the output terminal in the diagram is to be connected to the logic circuit. When the connection between the output terminal and the logic circuit is cut off, and the terminal connected to the ground terminal and the terminal connected to the power supply voltage in the diagram are set at a sufficiently low potential, an electric field directed from the gate electrodes to the channel region is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the gate electrodes to the channel region, regardless of the initial state. In this manner, the circuit shown in
As mentioned in “Related Art”, a number of field effect transistors are required to form a reconfigurable logic circuit by a conventional technique, resulting in a very complicated structure. With the use of the semiconductor element of the first embodiment, on the other hand, a reconfigurable logic circuit can be formed very easily. This is also a fact discovered by the inventor of the present invention.
Next, the following example case is described. The circuit of this embodiment is formed as a part of a logic circuit. The two input terminals shown in the diagram can be connected to both a sufficiently high potential and a sufficiently low potential. A “sufficiently high potential” and a “sufficiently low potential” are as follows. If an electric field with intensity higher than a predetermined value is applied in the opposite direction from the direction of the polarization caused in the ferroelectric films, the direction of the polarization is reversed. The product of the intensity of this electric field and the thickness of the ferroelectric films are referred to as the coercive voltage. Here, a potential that is higher than the value obtained by adding the power supply voltage of the logic circuit to the coercive voltage of the ferroelectric films used in the element is referred to as a “sufficiently high potential”, and a potential that is lower than the value obtained by changing the sign of the coercive voltage of the ferroelectric films used in the element is referred to as a “sufficiently low potential”.
When the two input terminals are set at sufficiently high potentials, an electric field directed from the gate electrodes to the channel region is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the gate electrodes to the channel region, regardless of the initial state. In this manner, the circuit shown in
As mentioned in “Related Art”, a number of field effect transistors are required to form a reconfigurable logic circuit by a conventional technique, resulting in a very complicated structure.
With the use of the semiconductor element 50 of the first embodiment, on the other hand, a reconfigurable logic circuit can be formed very easily. This is also a fact discovered by the inventor of the present invention.
As described above, in a case where the two input terminals can be connected to a logic circuit, a sufficiently high potential, or a sufficiently low potential, the number of terminals that need to be switched for connection is two, which is the input terminals connected to the two gate electrodes. In a case where the terminal connected to the ground potential and the terminal connected to the power supply voltage can be connected to a logic circuit, a sufficiently high potential, or a sufficiently low potential, the number of terminals that need to be switched for connection is three, as determination needs to be made as to whether the output terminal is to be connected to the logic circuit. Therefore, the structure in which the two input terminals can be connected to a logic circuit, a sufficiently high potential, or a sufficiently low potential advantageously has a simpler circuit structure.
By a method of controlling the polarization of the ferroelectric insulating films by applying a sufficiently high potential or a sufficiently low potential to the two input terminals, it is necessary to control the polarization while there is a difference in potential between the source and the drain. Therefore, the electric field in the ferroelectric insulating films at the time of the polarization control has not only components vertical to the insulating films but also components in the direction of the source and the drain. As a result, the polarization has not only components vertical to the insulating films but also components in the direction of the source and the drain. In a case where the semiconductor element 50 shown in
In a case where the polarization of the ferroelectric insulating films is controlled by applying a sufficiently high potential or a sufficiently low potential to the terminal 74 connected to the ground potential and the terminal 75 connected to the power supply voltage of
Various changes and modifications as described in the first embodiment can also be made to this embodiment, to achieve the same effects as above.
In a case where the polarization of the ferroelectric insulating films is directed from the gate electrodes to the channel region, the semiconductor element 50 becomes ON with a “NOR” of the two gate electrodes. Therefore, if both inputs are “0”, which is the ground potential, “1”, which is the power supply voltage, is output to the output terminal. In any other cases, “0”, which is the ground potential, is output to the output terminal. In this example case, the circuit of this embodiment is a NOR circuit.
To form a NOR circuit with conventional p-type field effect transistors, two p-type field effect transistors are connected in series, and a series-connected structure of the two p-type field effect transistors and a resistor is formed. Therefore, two field effect transistors are required.
In this embodiment, on the other hand, a NOR circuit can be formed only with one semiconductor element 50 of the first embodiment. Thus, this circuit can be formed through very simple procedures.
In a case where the polarization of the ferroelectric insulating films is directed from the channel region to the gate electrodes, the semiconductor element 50 becomes ON with a “NAND” of the two gate electrodes. Accordingly, if both inputs are “1”, which is the power supply voltage, “0”, which is the ground potential, is output to the output terminal. In any other cases, “1”, which is the power supply voltage, is output to the output terminal. Thus, this circuit becomes a NAND circuit.
To form a NAND circuit with conventional p-type field effect transistors, two p-type field effect transistors are connected in parallel, and a series-connected structure of the two p-type field effect transistors and a resistor is formed. Therefore, two field effect transistors are required.
In this embodiment, on the other hand, a NAND circuit can be formed only with one semiconductor element 50 of the first embodiment. Thus, this circuit can be formed through very simple procedures. This is a fact discovered by the inventor of the present invention.
The following example case is now described. The circuit of this embodiment is formed as a part of a logic circuit. The terminal connected to the ground potential and the terminal connected to the power supply voltage in the diagram can be connected to a sufficiently high potential and a sufficiently low potential. Determination is to be made as to whether the output terminal in the diagram is to be connected to the logic circuit.
When the connection between the output terminal and the logic circuit is cut off, and the terminal connected to the ground terminal and the terminal connected to the power supply voltage in the diagram are set at a sufficiently low potential, an electric field directed from the gate electrodes to the channel region is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the gate electrodes to the channel region, regardless of the initial state. In this manner, the circuit shown in
When the connection between the output terminal and the logic circuit is cut off, and the terminal connected to the ground terminal and the terminal connected to the power supply voltage in the diagram are set at a sufficiently high potential, an electric field directed from the channel region to the gate electrodes is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the channel region to the gate electrodes, regardless of the initial state. In this manner, the circuit shown in
As at least one of the source/drain terminals of the semiconductor element 50 of the first embodiment can be connected to at least three different potentials, the circuit shown in
As mentioned in “Related Art”, a number of field effect transistors are required to form a reconfigurable logic circuit by a conventional technique, resulting in a very complicated structure. With the use of the semiconductor element 50, on the other hand, a reconfigurable logic circuit can be formed very easily. This is also a fact discovered by the inventor of the present invention.
Next, the following example case is described. The circuit of this embodiment is formed as a part of a logic circuit. The two input terminals shown in the diagram can be connected to both a sufficiently high potential and a sufficiently low potential. When the two input terminals are set at sufficiently high potentials, an electric field directed from the gate electrodes to the channel region is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the gate electrodes to the channel region, regardless of the initial state. In this manner, the circuit shown in
When the two input terminals are set at sufficiently low potentials, an electric field directed from the channel region to the gate electrodes is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the channel region to the gate electrodes, regardless of the initial state. In this manner, the circuit shown in
As the gate electrodes of the semiconductor element 50 of the first embodiment can be connected to at least three different potentials, the circuit shown in
As mentioned in “Related Art”, a number of field effect transistors are required to form a reconfigurable logic circuit by a conventional technique, resulting in a very complicated structure. With the use of the semiconductor element 50 of the first embodiment, on the other hand, a reconfigurable logic circuit can be formed very easily. This is also a fact discovered by the inventor of the present invention.
Various changes and modifications as described in the foregoing embodiments can also be made to this embodiment, to achieve the same effects as above.
In a case where the polarization of the ferroelectric insulating films is directed from the gate electrodes to the channel region, the p-type semiconductor element 51 becomes ON with a “NOR” of the two gate electrodes, and the n-type semiconductor element 52 becomes ON with an “OR”. Therefore, if both inputs are “0”, which is the ground potential, “1”, which is the power supply voltage, is output. In any other cases, “0”, which is the ground potential, is output. In this example case, this circuit becomes a NOR circuit.
To form a NOR circuit with conventional complementary field effect transistors, two p-type field effect transistors are connected in series, and the series-connected p-type field effect transistors are series-connected to two n-type field effect transistors connected in parallel, so as to form a series-connected structure. Therefore, four field effect transistors are required.
In this embodiment, on the other hand, a NOR circuit can be formed only with two semiconductor elements of the first embodiment. Thus, this circuit can be formed through very simple procedures.
In a case where the polarization of the ferroelectric insulating films is directed from the channel region to the gate electrodes, the p-type semiconductor element 51 becomes ON with a “NAND” of the two gate electrodes, and the n-type semiconductor element 52 becomes ON with an “AND”. Accordingly, if both inputs are “1”, which is the power supply voltage, “0”, which is the ground potential, is output to the output terminal. In any other cases, “1”, which is the power supply voltage, is output to the output terminal. Thus, this circuit becomes a NAND circuit.
To form a NAND circuit with conventional complementary field effect transistors, two p-type field effect transistors are connected in parallel, and the parallel-connected field effect transistors are series-connected to two n-type field effect transistors connected in series, so as to form a series-connected structure. Therefore, four field effect transistors are required.
In this embodiment, on the other hand, a NAND circuit can be formed only with two semiconductor element of the first embodiment. Thus, this circuit can be formed through very simple procedures. This is a fact discovered by the inventor of the present invention.
The following example case is now described. The circuit of this embodiment is formed as a part of a logic circuit. The terminal connected to the ground potential and the terminal connected to the power supply voltage in the diagram can be connected to a sufficiently high potential and a sufficiently low potential. Determination is to be made as to whether the output terminal in the diagram is to be connected to the logic circuit. When the connection between the output terminal and the logic circuit is cut off, and the terminal connected to the ground terminal and the terminal connected to the power supply voltage in the diagram are set at a sufficiently low potential, an electric field directed from the gate electrodes to the channel region is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the gate electrodes to the channel region, regardless of the initial state. In this manner, the circuit shown in
When the connection between the output terminal and the logic circuit is cut off, and the terminal connected to the ground terminal and the terminal connected to the power supply voltage in the diagram are set at a sufficiently high potential, an electric field directed from the channel region to the gate electrodes is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the channel region to the gate electrodes, regardless of the initial state. In this manner, the circuit shown in
As at least one of the source/drain terminals of each semiconductor element of the first embodiment can be connected to at least three different potentials, the circuit shown in
As mentioned in “Related Art”, a number of field effect transistors are required to form a reconfigurable logic circuit by a conventional technique, resulting in a very complicated structure.
With the use of the semiconductor elements of the first embodiment, on the other hand, a reconfigurable logic circuit can be formed very easily. This is also a fact discovered by the inventor of the present invention.
Next, the following example case is described. The circuit of this embodiment is formed as a part of a logic circuit. The two input terminals shown in the diagram can be connected to both a sufficiently high potential and a sufficiently low potential. When the two input terminals are set at sufficiently high potentials, an electric field directed from the gate electrodes to the channel region is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the gate electrodes to the channel region, regardless of the initial state. In this manner, the circuit shown in
When the two input terminals are set at sufficiently low potentials, an electric field directed from the channel region to the gate electrodes is induced in the ferroelectric insulating films. Accordingly, the polarization is directed from the channel region to the gate electrodes, regardless of the initial state. In this manner, the circuit shown in
As the gate electrodes of each semiconductor element of the first embodiment can be connected to at least three different potentials, the circuit shown in
As mentioned in “Related Art”, a number of field effect transistors are required to form a reconfigurable logic circuit by a conventional technique, resulting in a very complicated structure.
With the use of the semiconductor elements of the first embodiment, on the other hand, a reconfigurable logic circuit can be formed very easily. This is also a fact discovered by the inventor of the present invention.
In the circuit structure of the second embodiment illustrated in
In the circuit structure of this embodiment illustrated in
Various changes and modifications as described in the foregoing embodiments can also be made to this embodiment, to achieve the same effects as above.
Next, a semiconductor element in accordance with a fifth embodiment of the present invention is described.
In a case of a conventional Fin field effect transistor, the same potentials are applied to the gate electrodes formed at both sides of the semiconductor region that serves as a channel region. Therefore, to increase the current drivability, a structure schematically shown in
In the semiconductor element of this embodiment, on the other hand, different potentials need to be applied to the gate electrodes formed at both sides of the semiconductor region that serves as a channel region. Therefore, the structure shown in
Various changes and modifications as described in the foregoing embodiments can also be made to this embodiment, to achieve the same effects as above.
As described so far, each embodiment of the present invention provides a highly-integrated, high-performance semiconductor device with a simplest possible structure.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concepts as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2005-378682 | Dec 2005 | JP | national |