This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2014-054086, filed on Mar. 17, 2014; the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a semiconductor memory device and a method for manufacturing the same.
A planar type NAND flash memory has been conventionally developed by forming a plurality of active areas on a silicon substrate, providing gate electrodes extending in a direction orthogonal to the active areas, and forming a memory cell on every cross-point of the active areas and the gate electrodes. However, in a planar type memory device like this, high integration is approaching to a limit due restriction of micro-fabrication technique.
Then, a stacked type NAND flash memory with memory cells stacked three-dimensionally has been proposed recently. Such a memory device can be constituted by forming a stacked body with an insulating film and an electrode film alternately stacked, forming a piercing hole in the stacked body, forming a memory film being able to store a charge on an inner surface of the piercing hole, and forming a silicon pillar inside the piercing hole to form the memory cell between the silicon pillar and the electrode film.
According to one embodiment, a semiconductor memory device includes a plurality of electrode films, a semiconductor pillar, a tunnel insulating film, a charge storage film, and a block insulating film. The plurality of electrode films are arranged to be separated each other along a first direction. The semiconductor pillar extends in the first direction and pierces the plurality of electrode films. The tunnel insulating film is provided on a side surface of the semiconductor pillar. The charge storage film is provided on a side surface of the tunnel insulating film. The block insulating film is provided on a side surface of the charge storage film. The block insulating film includes a silicon oxide layer, and a high dielectric constant layer made of high dielectric constant material having a dielectric constant higher than a dielectric constant of silicon oxide. The high dielectric constant layer has a first portion and a second portion. The first portion is disposed between the semiconductor pillar and a space between the electrode films. The second portion is disposed between the semiconductor pillar and the electrode films. A thickness of the first portion in a direction perpendicular to the first direction is thinner than a thickness of the second portion in the perpendicular direction.
According to one embodiment, a method for manufacturing a semiconductor memory device is disclosed. The method can include stacking conductive films and a first film alternately along a first direction. The method can include forming a hole extending in a first direction and piercing the conductive films and the first film. The method can include forming a block insulating film on a side surface of the hole. The block insulating film includes a silicon oxide layer and a high dielectric constant layer. The high dielectric constant layer is made of a high dielectric constant material. The high dielectric constant material has a dielectric constant higher than a dielectric constant of silicon oxide. The method can include forming a charge storage film on a side surface of the block insulting film. The method can include forming a tunnel insulating film on a side surface of the charge storage film. The method can include forming a semiconductor pillar on a side surface of the tunnel insulating film. The method can include forming a slit in the stacked body. The method can include removing the first film through the slit. In addition, the method can include removing at least a part of a portion of the high dielectric constant layer. The portion is disposed between the semiconductor pillar and a space between the conductive films.
Various embodiments will be described hereinafter with reference to the accompanying drawings.
Firstly, the first embodiment will be described.
As shown in
As described below, in the specification, an XYZ orthogonal coordinate system is adopted for convenience of description. Two directions parallel to an upper surface of the silicon substrate 10 and orthogonal each other are taken as “X-direction” and “Y-direction”, and a direction perpendicular to the upper surface of the silicon substrate 10, namely, a vertical direction is taken as “Z-direction”.
An insulating film 11 and a back gate electrode BG are provided on the silicon substrate 10. A pipe connector PC having a longitudinal direction in the X-direction and being nearly rectangular parallelepiped is provided in the back gate electrode BG. A plurality of control gate electrode films WL are stacked on the back gate electrode BG via interlayer insulating films 12 and constitute a stacked body 13. That is, in the stacked body 13, the plurality of control gate electrode films WL extend in the Y-direction and are arranged in the Z-direction spaced from one another.
A selection gate electrode SG extending in the Y-direction is provided on the stacked body 13. All the back gate electrode BG, the pipe connector PC, the control gate electrode films WL and the selection gate electrode SG are conductive films formed of silicon (Si) and containing an impurity, for example, boron (B). The back gate electrode BG shape is tabular, and the control gate electrode films WL shape and the selection gate electrode SG shape are band-like. A source line SL extending in the Y-direction and made of, for example, a metal is provided on the selection gate electrode SG. A bit line BL extending in the X-direction and made of, for example, a metal is provided on the source line SL.
A silicon pillar SP extending in the Z-direction is provided between the back gate electrode BG and the source line SL and between the back gate electrode BG and the bit line BL so as to pierce the stacked body 13 and the selection gate electrode SG. The silicon pillar SP connected to the source line SL and the silicon pillar SP connected to the bit line BL are connected each other through the pipe connector PC. A memory film 15 is provided on an outer surface of a structure formed of the silicon pillar SP and the pipe connector PC. This forms a memory cell on every cross-point portion of the silicon pillar SP and the control gate electrode films WL.
As shown in
Furthermore, the control gate electrode film WL includes a polysilicon portion 25 disposed on the silicon pillar SP side and a silicide portion disposed on a side far from the silicon pillar SP. Here, “polysilicon portion” is a name showing a portion having polysilicon as a main component. It is much the same for names of other portions, layers, films or the like.
The tunnel insulating film 21 includes a silicon oxide layer 31, a silicon nitride layer 32 and a silicon oxide layer 33 stacked in order from the silicon pillar SP side. The charge storage film 22 is a monolayer film formed of silicon nitride. The block insulating film 23 includes a silicon oxide layer 34, a high dielectric constant layer 35 and a silicon oxide layer 36 stacked in order from the silicon pillar SP side. The high dielectric constant layer 35 is a layer made of a high dielectric constant material having a dielectric constant higher than a dielectric constant of silicon oxide. In the embodiment, the high dielectric constant material is silicon nitride. Here, a relative dielectric constant of silicon oxide (SiO2) is approximately 3.9 and a relative dielectric constant of silicon nitride (Si3N4) is approximately 7.4.
The high dielectric constant layer 35 is provided continuously along the Z-direction between the control gate electrode films WL and the silicon pillar SP, however the high dielectric constant layer 35 is provided discontinuously along the Z-direction between the silicon pillar SP and a space 18 between the control gate electrode films WL. This divides the high dielectric constant layer 35 every control gate electrode film WL in the Z-direction. A silicon oxide layer 37 is provided in a portion between the high dielectric constant layers 35 in the Z-direction and the space 18 between the control gate electrode films WL. A space between the control gate electrode films WL adjacent in the X-direction and a space between the silicon oxide films 37 adjacent in the X-direction form a slit 19 spreading in a XZ-plane.
More generally, in a direction perpendicular to the Z-direction, an average thickness of a portion 35a disposed between the space 18 and the silicon pillar SP in the high dielectric constant layer 35 is thinner than an average thickness of a portion 35b disposed between the control gate electrode films WL and the silicon pillar SP in the high dielectric constant layer 35. The embodiment includes a special case where the portion 35a has a portion with zero thickness and the portion 35b are separated each other. In this case, the high dielectric constant layer 35 is divided in the portion 35a along the Z-direction.
Next, a method for manufacturing the semiconductor memory device according to the embodiment will be described.
Firstly, as shown in
Next, as shown in
Next, a boron-doped polysilicon film 44 and a non-doped polysilicon film 45 are alternately formed to form the stacked body 13. The boron-doped polysilicon film 44 is a film serving as the control gate electrode film WL in a later process, and is not always needed to be formed from boron-doped polysilicon. A conductive film enable to be processed may be used. The non-doped polysilicon film 45 is a sacrificial film to be removed in a later process, and is not always needed to be formed from non-doped polysilicon. A film favorable for obtaining an etching selection ratio to the boron-doped polysilicon film 44 and the interlayer insulating film 12 may be used.
Next, as shown in
Next, as shown in
Next, amorphous silicon is deposited on a side surface of the tunnel insulating film 21 to form the silicon pillar SP cylindrically in the hole 47, and the pipe connector PC is formed in a square tube shape in the recess 41. Next, silicon oxide is illustratively buried in a space surrounded by the silicon pillar SP to form the insulating member 17.
Next, as shown in
Next, as shown in
Next, as shown in
As a result, the portion 35a disposed between the space 18 and the silicon pillar SP in the high dielectric constant layer 35 is oxidized to change to a silicon oxide layer 38. Therefore, the portion 35a as the high dielectric constant layer is removed. At this time, it is estimated that nitrogen contained in the portion 35a is exhausted outside in the radical oxidation process via the space 18 and the slit 19. As a result, the high dielectric constant layer 35 leaves the portion disposed between the boron-doped polysilicon film 44 and the silicon pillar SP, and is divided every boron-doped polysilicon film 44 along the Z-direction. At this time, an exposed surface of each boron-doped polysilicon film 44 is also oxidized to form the silicon oxide layer 38. Therefore, a thickness of each boron-doped polysilicon film 44, namely, a length in the Z-direction decreases.
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, the effect of the embodiment is described.
As shown in
On the other hand, in the embodiment, the portion 35a is replaced by the silicon oxide film 37 by performing the radical oxidation treatment to the high dielectric constant layer 35. Thereby, a dielectric constant of the portion where the portion 35a exists is decreased and a parasite capacitance C2 between the memory cells adjacent in the Z-direction can be reduced. This reduces parasite coupling between the memory cells, and suppresses interference between the memory cells, and thus is able to prevent malfunction.
The portion 35a of the high dielectric constant layer 35 is replaced with the silicon oxide film 37, and thus a parasite capacitance C3 between the control gate electrode film WL and the portion disposed between the memory cells of the silicon pillar SP is reduced, and the parasite coupling can be suppressed. Thereby, charges are prevented from injecting into the portion disposed between the memory cells in the charge storage film 22, and the operation can be stabilized.
Furthermore, in the embodiment, the slit 19 is formed in the stacked body 13 in a process shown in
Next, a second embodiment will be described.
As shown in
Also in the embodiment, compared with the case where the portion 35a is not removed at all, the parasite capacitances C2 and C3 shown in
Next, a third embodiment will be described.
As shown in
Thereby, in the radical oxidation process, the portion 22a disposed between the space 18 and the silicon pillar SP in the charge storage film 22 is removed and a portion 22b disposed between the boron doped polysilicon film 44 and the silicon pillar SP in the charge storage film 22 is remained. This separates the portions 22b arranged along the Z-direction.
According to the embodiment, since the charge storage film 22 can be divided every memory cell, the charge stored in the charge storage film 22 in a certain memory cell can be prevented from conducting in the charge storage film 22 and transferring to other memory cells. This can improve data retention characteristics. Constitution, manufacturing method, and effects other than those above in the embodiment are the same for the first embodiment described previously.
In the embodiment, it is allowed that the portion 22a of the charge storage film 22 is not removed completely and a portion is remained. In this case, since a portion located between the memory cells in the charge storage film 22 is thinner than a portion located in the memory cell, while charge retention ability is sufficiently confirmed in the memory cell, the charge transfer can be suppressed between the memory cells. Therefore, also in this case, the data retention characteristics can be improved.
In the embodiment, the process of the radical oxidation treatment may be alternately performed with the process of removing silicon oxide by the wet etching. The wet etching of removing silicon oxide includes, for example, the etching based on DHF as etching solution. In this way, after silicon oxide produced by the radical oxidation treatment is removed by the wet etching and the high dielectric constant layer 35 or the charge storage film 22 is newly exposed, the radical oxidation treatment can be performed again and the high dielectric constant layer 35 or the charge storage film 22 can be effectively oxidized. As a result, the charge storage film 22 located in the back can be surely oxidized without excessively increasing oxidation ability of the radical oxidation treatment.
Next, a fourth embodiment will be described.
As shown in
In the semiconductor memory device according to the embodiment, a tunnel insulating film 51 made of a monolayer silicon oxide film is provided in place of the tunnel insulating film 21 (see
In the embodiment, since the charge storage film 52 is divided every control gate electrode film WL in the Z-direction, the charge storage film 52 can be formed of a conductive material. That is, a floating gate can be constituted by the charge storage film 52. This allows the charge storage ability of each memory cell to be improved and the operation margin to be broad. Constitution, manufacturing method, and effects other than those above in the embodiment are the same for the third embodiment described previously. In the embodiment, the charge storage film 52 may be formed of a conductive material other than polysilicon, for example, may be formed of a metal.
Next, a fifth embodiment will be described.
As shown in
As described above, in the embodiment, the high dielectric constant layer 55 is formed of a metal oxide. Since the metal oxide cannot be disappeared by the radical oxidation treatment, the high dielectric constant layer 55 is selectively removed by, for example, the wet etching in place of the radical oxidation treatment in the embodiment.
That is, as shown in
Also in the embodiment, as well as the third embodiment described above, the charge storage film 22 may be selectively selected in addition to the high dielectric constant layer 55. For example, when the charge storage film 22 is formed of silicon nitride or polysilicon, the charge storage film 22 can be removed by performing the radical oxidation treatment after removing the high dielectric constant film 55. When the charge storage film 22 is formed of a metal or a metal oxide, the charger storage film 22 can be removed by performing the wet etching after removing the high dielectric constant film 55.
In the respective embodiments described above, an example of a U-shaped device including the pipe connector PC connecting the lower ends of the two silicon pillars SP is shown as the semiconductor device, however the semiconductor memory device is not limited thereto and, for example, may be an I-shaped device including the source line provided below the silicon pillar SP in a plate-like, a lower end of each silicon pillar being commonly connected to the source line, and an upper end of each silicon pillar SP being connected to the bit line.
In the respective embodiments described above, an example of the oxidation treatment of the high dielectric constant layer being performed by the radical oxidation is shown, however the oxidation treatment is not limited thereto, and may be a treatment capable of oxidizing the high dielectric constant layer to necessary degree. An oxidation treatment having high oxidation ability such as, for example, wet oxidation or the like may be performed in place of the radical oxidation.
According to the embodiments described above, a stably operating semiconductor memory device and a method for manufacturing the same can be achieved.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention. Additionally, the embodiments described above can be combined mutually.
Number | Date | Country | Kind |
---|---|---|---|
2014-054086 | Mar 2014 | JP | national |