1. Field of the Invention
The present invention relates to semiconductor packages, and more particularly to packages in which one or more dies are mounted on a flange within an opening in a window frame mounted on the flange and having leads mounted thereon.
2. History of the Prior Art
It is known in the art to provide semiconductor packages in which one or more semiconductor dies are mounted on a heat sink flange within an opening in a window frame which mounts and insulates a plurality of leads. The dies may be of the LDMOS (lateral diffusion metal oxide semiconductor) type and the package of the type for packaging LDMOS power transistors. The window frame, which is typically made of ceramic based materials such as alumina, serves to mount the leads on the semiconductor package and insulate the leads from the heat sink flange and other portions of the package. The window frame has an opening therein which surrounds the semiconductor dies. The dies are electrically coupled to the conductors such as by wire bonds.
In semiconductor packages of the type described, the components parts thereof, including the flange, the window frame and the leads, are joined together such as by brazing/soldering to form a header. One or more dies are then mounted such as by brazing/soldering/adhering to the header and are electrically attached to the leads such as by wire bonding. During assembly of the header, the semiconductor package is typically subjected to very high temperatures on the order of 700-900° C. in order to carry out brazing. Such high temperatures dictate that the materials being joined, including particularly the heat sink flange and the window frame, have similar coefficients of thermal expansion (CTE). Ideally, the flange is made of highly conductive materials such as copper. However, because the alumina or other ceramic materials of the window frame has a much lower rate of thermal expansion, it is often necessary to make the flange of less conductive material having a closer CTE match to the ceramic material of the window frame. Without such a close CTE match, the flange and the window frame expand and contract at substantially different rates so as to place substantial stresses on the package. Complicating such situations is the brittle nature of the ceramic material of the window frame, causing it to break or otherwise fail as a result of such stresses.
It would therefore be desirable to provide a semiconductor package allowing for the use of highly conductive materials such as pure copper for the heat sink flange. The material of the window frame should provide a close CTE match with the flange, and should ideally be flexible and not brittle in order to better withstand the stresses that may occur during assembly of the package.
Further problems may arise during assembly of the header, particularly when brazing is used to join the parts together. The top surface of the flange within the opening in the window frame forms a die attach area for mounting one or more dies. Such die attach area must be smooth and free of brazing material in order to properly attach the dies thereto. However, during assembly of the header, the brazing material at the interface between the window frame and the flange may flow into the die attach area so as to interfere with the subsequent mounting of the die within such area. It would therefore be desirable to prevent such brazing material from flowing into the die attach area during assembly of the header.
The present invention provides improved semiconductor packaging structures. More particularly, the present invention provides an improved window frame which makes possible the use of highly conductive materials in the heat sink flange while at the same time preventing undue stressing and failure during the assembly process.
In accordance with the invention, the window frame is made of non-ceramic based material, such as PTFE with glass fibers. The modulus of elasticity, as shown in Table 1 below, for a non-ceramic based window frame made of PTFE with glass fibers is significantly lower than a traditional window frame made of alumina. The lower modulus indicates that the material is less stiff and less prone to a failure.
Semiconductor packaging structures in accordance with the invention also provide an improved flange having a raised pedestal at a central portion thereof so as to define a separate, raised die attach area within the opening of the window frame. The pedestal prevents brazing materials from flowing onto the die attach area during assembly of the header.
Semiconductor packages in accordance with the invention comprise a window frame of non-ceramic based material which provides a close CTE match to pure copper or other highly conductive materials which may be used to form the heat sink flange as shown in Table 1. As the difference in CTE between two bonding components increases, the stresses within the components increase as well. Pure copper or other high thermally conductive materials provides a significant enhancement to the operating performance of the electronic package. Traditional packages using an alumina window frame are limited to a less conductive heat sink flange such as copper tungsten to better match the CTE. The non-ceramic based material includes a matrix of principally organic material filled with fibers or other geometrical fillers. The matrix may consist of polytetrafluoroethylene (PTFE) or epoxy, and the fibers may be glass or ceramic fibers/fillers. Preferably, the non-ceramic based material is clad with metal to provide a wetable surface for brazing/soldering or other bonding of the window frame to the other components of the header. The application temperature of the solder/braze/adhesive must be below the decomposition temperature of the non-ceramic window frame. Depending on the selection, the surface condition of the cladding can be coated accordingly. In the case with gold/germanium soldering material, preferably the cladding is coated with nickel and gold, particularly where, most preferably, gold/germaninum solder is used to join the window frame to the other components. The metal used for cladding of the matrix preferably comprises either copper or aluminum.
The non-ceramic based material of window frames according to the invention has thermal characteristics providing a close CTE match with the relatively pure copper or other highly conductive material preferred for use as the heat sink flange. Because of such match, the stresses that might otherwise occur due to uneven amounts of thermal expansion and contraction are avoided. In addition, the non-ceramic based material of the window frame is flexible in nature so as to further reduce the likelihood of cracking or failure which might otherwise result.
The non-ceramic based material of window frames according to the invention may be attached to the flange and to the leads such as by brazing. A braze/solder/adhesive material may be used to join the parts, in which case the dies may be subsequently bonded to the flange with a material possessing a lower melting temperature compared to conventional header assemblies so as not to disturb the bonds created during the package assembly. See Table 2 for examples.
The non-ceramic based material of the window frame may be clad by various methods such as lamination, rolling, autoclave, or plating. By choosing copper or other metal of appropriate thickness for cladding to the non-ceramic based material of the window frame, such metal can also form the heat sink flange and/or leads to create the desired structure. In the case where electrical isolation spacing is required, the metal attached to the non-ceramic based material can be patterned by lithographic exposure or mechanical abrasion. Preferably, the non-ceramic based material with metal attached is lithographically processed to obtain metal pattern.
In accordance with the invention, the flange may be formed with a raised pedestal extending upwardly from the flat upper surface at a central portion thereof so as to define a die attach area for mounting one or more dies on the flange. The raised pedestal fits within the opening in the window frame and forms a barrier to brazing material around the die attach area. During brazing of the window frame to the flange, such barrier prevents the brazing material from flowing onto the die attach area.
A detailed description of preferred embodiments of the invention will be made with reference to the accompanying drawings, in which:
The semiconductor package 10 of
Unlike the alumina or other ceramic based material typically used for the window frame in conventional semiconductor packages, the non-ceramic based material of the window frame 14 according to the invention provides a number of distinct advantages. The non-ceramic based material of the window frame 14 provides a close thermal expansion or CTE match to the highly conductive copper or other materials preferably used for the flange 12. As a result, when the flange 12, the window frame 14 and the lead 16 are subjected to high temperature, typically on the order of 400° C. or greater, during brazing together of such components to form the header 24, the window frame 14 undergoes thermal expansion and contraction at a rate similar to that of the highly conductive flange 12. As a result, the high thermal stresses present in prior art structures and methods are avoided (Refer to Table 1 for details). Moreover, and unlike the ceramic based material of conventional window frames, the non-ceramic based material of the window frame 14 according to the invention is not brittle, but rather is flexible in nature, thereby further avoiding the fractures and other failures which occur with conventional structures.
To provide the window frame 14 with a wetable surface for purposes of brazing or otherwise bonding to the other components, the window frame 14 is preferably clad with a layer of metal such as copper or aluminum. Due to the nature of the non-ceramic based material of the window frame 14, it can be difficult to provide a good bond between the cladding metal and the non-ceramic based material. However, a good bond is provided by the technique shown in
In accordance with a feature of the invention, the cladding and laminating operation shown in
In accordance with the invention, the flange 12, the window frame 14 and the leads 16 of the header 24 can be joined together using various processes. As previously noted, gold/germanium solder can be used to join the window frame 14 to both the flange 12 and the leads 16. Where such method is used, the window frame 14 is preferably coated with nickel and then gold following the metal cladding thereof. Alternatively, the window frame 14 can be bonded without soldering/brazing. This is accomplished using epoxy or any suitable adhesive. Epoxies have strong adhesion to the non-ceramic based window frame. At the same time, they are capable of bonding to copper or aluminum cladding as well as to nickel/gold platting on the window frame 14. Epoxy can be used to bond the window frame 14 to both the flange 12 and the lead 16.
As previously described, lamination techniques can be used to join the flange 12 directly to the non-ceramic based material of the window frame 14. Also, as previously described in connection with
Dies attached to the header 24 require a relatively smooth surface, typically having a surface roughness of less than 40 u. The raised periphery of the pedestal 34 of the flange 30 acts as a barrier to prevent flow of the brazing material onto the flat upper surface 36 thereof forming the die attach area. The pedestal 34 of the flange 30 can be formed by any appropriate technique such as by machining or by stamping. Clad material 42 with an optional coating is shown between the brazing layer 38 and the window frame 14 and also between brazing layer 40 and the window frame 14.
Again as previously described, lamination techniques can be used to join the flange directly to the non-ceramic based material of the window frame. Also, the cladding layer can be provided with sufficient thickness so that it forms the flange when joined to the window frame.
The presently disclosed embodiments are to be considered in all respect as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced herein.
This application is a divisional of application Ser. No. 10/339,834, now U.S. Pat. No. 7,298,046, filed Jan. 10, 2003, the entire contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3767839 | Beal | Oct 1973 | A |
4385342 | Puppolo et al. | May 1983 | A |
4725347 | Pimlott | Feb 1988 | A |
4784974 | Butt | Nov 1988 | A |
4930857 | Acarlar | Jun 1990 | A |
5650592 | Cheskis et al. | Jul 1997 | A |
5766740 | Olson | Jun 1998 | A |
5792984 | Bloom | Aug 1998 | A |
5832598 | Greenman et al. | Nov 1998 | A |
5926372 | Rinehart et al. | Jul 1999 | A |
6056186 | Dickson et al. | May 2000 | A |
6113730 | Ohya et al. | Sep 2000 | A |
6114048 | Jech et al. | Sep 2000 | A |
6261868 | Miller et al. | Jul 2001 | B1 |
6332720 | Shimaoka et al. | Dec 2001 | B1 |
6365961 | Tomie | Apr 2002 | B1 |
6414389 | Hume et al. | Jul 2002 | B1 |
6462413 | Polese et al. | Oct 2002 | B1 |
6500529 | McCarthy et al. | Dec 2002 | B1 |
6544638 | Fischer et al. | Apr 2003 | B2 |
6671449 | Yuan et al. | Dec 2003 | B1 |
6727117 | McCoy | Apr 2004 | B1 |
6829823 | Downes et al. | Dec 2004 | B2 |
6867367 | Zimmerman | Mar 2005 | B2 |
6952049 | Ogawa et al. | Oct 2005 | B1 |
6982483 | McLaughlin et al. | Jan 2006 | B2 |
6998180 | Ludtke et al. | Feb 2006 | B2 |
20030107046 | Waitl et al. | Jun 2003 | A1 |
20030131476 | Ocher et al. | Jul 2003 | A1 |
20030201530 | Kurihara et al. | Oct 2003 | A1 |
20040046247 | Tower | Mar 2004 | A1 |
20040195701 | Attarwala | Oct 2004 | A1 |
20040246682 | Osakada et al. | Dec 2004 | A1 |
20050029535 | Mazzochette et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
0475575 | May 1991 | EP |
0859408 | Aug 1998 | EP |
0932199 | Jul 1999 | EP |
63-109104 | May 1988 | JP |
8-31480 | Feb 1996 | JP |
2000-77462 | Mar 2000 | JP |
2000-150746 | May 2000 | JP |
2002-252299 | Sep 2002 | JP |
WO 9515007 | Jun 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20080142963 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10339834 | Jan 2003 | US |
Child | 11942675 | US |