The present technology relates to semiconductor processes and equipment. More specifically, the present technology relates to processing system plasma components.
Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers, or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process that etches one material faster than another facilitating, for example, a pattern transfer process. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits, and processes, etch processes have been developed with a selectivity towards a variety of materials.
Dry etches produced in local plasmas formed within the substrate processing region can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures. However, as integrated circuit technology continues to scale down in size, the equipment that delivers the precursors can impact the uniformity and quality of the precursors and plasma species used, and the formation and profile of the plasma may also affect the quality of film deposition and etching.
Thus, there is a need for improved system components that can be used in plasma environments effectively to provide improved control over plasma and plasma characteristics. These and other needs are addressed by the present technology.
Semiconductor processing systems are described including a process chamber. The process chamber may include a lid assembly, grid electrode, conductive insert, and ground electrode. Each component may be coupled with one or more power supplies operable to produce a plasma within the process chamber. Each component may be electrically isolated through the positioning of a plurality of insulation members. The one or more power supplies may be electrically coupled with the process chamber with the use of switching mechanisms. The switches may be switchable to electrically couple the one or more power supplies to the components of the process chamber.
An exemplary processing system may include a processing chamber that includes a lid assembly defining a precursor inlet through which precursor species may be delivered. The chamber may also include a ground electrode and a grid electrode disposed between the lid assembly and the ground electrode, and defining a first plasma region within the chamber between the grid electrode and the lid assembly and a second plasma region within the chamber between the grid electrode and the ground electrode. The chamber may also include a conductive insert disposed between the lid assembly and the grid electrode at a periphery of the first plasma region. The chamber may further include an insulation member positioned to electrically isolate the grid electrode from the conductive insert. The processing system may also include a first power supply electrically coupled with the lid assembly, and a second power supply electrically coupled with at least one of the lid assembly, the grid electrode, or the conductive insert.
A switch such as a first switch may be electrically coupled with the second power supply. The switch may be switchable to electrically couple the second power supply to one of the lid assembly, the grid electrode, or the conductive insert, among other conductive portions of the processing chamber. The processing system may additionally include a second switch that is switchable to electrically couple at least two of the lid assembly, the ground electrode, or the grid electrode such that an electrical potential applied to one of the coupled structures will be applied to both of the coupled structures. The processing system may have the first switch switched to electrically couple the second power supply with the conductive insert. The second switch may also be switched to electrically couple the grid electrode and the ground electrode.
Additionally, the second power supply may be configured to deliver a negative voltage to the conductive insert, and the first power supply may be configured to ignite a plasma in the first plasma region where electron flux is directed to the grid electrode. The second power supply may also be configured to deliver a positive voltage to the conductive insert, and the first power supply may be configured to ignite a plasma in the first plasma region where ion flux is directed to the grid electrode. The first switch may also be switched to electrically couple the second power supply with the lid assembly such that both the first and second power supplies are electrically coupled with the lid assembly. The second switch may also be switched to electrically couple the grid electrode and the ground electrode. The second power supply may also be configured to provide constant voltage to the lid assembly, and the first power supply may be configured to provide pulsed frequency power to the lid assembly.
The processing system may also be configured where the first switch may be switched to electrically couple the second power supply with the lid assembly such that both the first and second power supplies are electrically coupled with the lid assembly, and the second switch may be switched to electrically couple the grid electrode and the lid assembly. The second power supply may also be configured to provide constant voltage to the lid assembly, and the first power supply may be configured to provide pulsed frequency power to the lid assembly. Also, the first switch may be switched to electrically couple the second power supply with the grid electrode. In another arrangement, the second power supply may be configured to provide constant voltage to the grid electrode, and the first power supply may be configured to provide pulsed frequency power to the lid assembly. In disclosed embodiments the first power supply may be an RF power supply, and the second power supply may be a DC power supply.
Methods of producing a plasma in a semiconductor processing chamber are also described, and may include coupling a first power supply with the processing chamber lid assembly to form a plasma within the processing chamber. The methods may also include coupling a second power supply with the processing chamber, and tuning the plasma with the second power supply. The tuning may include a variety of operations including applying a negative voltage with the second power supply to increase the electron flux. Also, the tuning may include applying a positive voltage with the second power supply to increase the ion flux.
The methods may include electrically coupling the second power supply with a switch that may be switchably coupled with multiple conductive sections of the processing chamber. In one example, the second power supply may be switched to be coupled with the lid assembly. The methods may include operating the first power supply so that it provides pulsing power to the lid assembly. The methods may also include utilizing an RF power supply for the first power supply, and a DC power supply for the second power supply.
Such technology may provide numerous benefits over conventional equipment. For example, tunable plasmas may allow increased control over plasma profiles being used in processing operations. Additionally, by adjusting the ion/electron flux profile, etching operations may be tuned in situ as processes are being performed. These and other embodiments, along with many of their advantages and features, are described in more detail in conjunction with the below description and attached figures.
A further understanding of the nature and advantages of the present technology may be realized by reference to the remaining portions of the specification and the drawings.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label with a letter that distinguishes among the similar components and/or features. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the letter suffix.
Systems and methods are described for the generation and/or control of a plasma inside a semiconductor processing chamber. The plasma may originate inside the processing chamber, outside the processing chamber in a remote plasma unit, or both. Inside the chamber, the plasma is contained and may be separated from a substrate wafer with the use of power supplies electrically coupled with components of the processing chamber that may serve as electrodes. In some instances, the components may also function as part of a gas/precursor distribution system and may include a suppressor and/or a showerhead, as well as other components of the processing system. In additional instances, the components may function to define a partition between a plasma generation region and a gas reaction region that etches and/or deposits material on exposed surfaces of the substrate wafer.
The present technology includes improved power and control schemes for plasma modulation within a semiconductor process chamber. While conventional plasma generation may simply provide an internal plasma with limited tuning, the presently described technology may allow for improved control and modulation of etching chemistries via plasma manipulation. In so doing, etching depths, profiles, and selectivities may be adjusted as required for a variety of operational conditions.
Exemplary processing system configurations include one or more power supplies that are used as part of a capacitively coupled plasma (“CCP”) system. In some embodiments, an RF power supply may be electrically coupled with one portion of the processing chamber, while a DC power supply may be coupled with the same or a different portion of the processing chamber. The DC power supply may allow for a plasma within the processing chamber to be sustained during cycling of the RF power supply, along with manipulation of the generated plasma. The manipulation may include adjusting the specific etch chemistry directed to the substrate wafer or chamber post, the ion flux directed to the substrate wafer or chamber post, as well as the functional capabilities of the ions utilized.
The CCP system may be composed of several of the processing chamber components, and may function to generate a plasma inside the processing chamber 105. The components of the CCP system may include a lid assembly or hot electrode 115 that may be composed of several components including a gas box, a blocker, and a faceplate. These components may be directly or indirectly coupled mechanically in order to function as a single electrode. The CCP system also may include a grid electrode 120 that also may be composed of one or more chamber components. For example, the grid electrode 120 may be composed of an ion suppressor or blocker and/or a manifold or showerhead for precursor delivery to the substrate wafer. Again, the components may be electrically coupled with each other in order to function as a single electrode. The CCP system may also include a ground electrode 125 that may include one or more chamber components including a lid spacer.
In some embodiments, the lid 115 and grid electrode 120 are electrically conductive electrodes that can be electrically biased with respect to each other to generate an electric field strong enough to ionize gases between the electrodes into a plasma. An electrical insulator 130 may separate the lid 115 and the grid 120 electrodes to prevent them from short-circuiting when a plasma is generated. The electrical insulator 130 may include multiple layers of material, as will be explained in more detail below with regard to the embodiments discussed with
Plasma generating gases may travel from a gas supply system 110 through a gas inlet 140 into the plasma excitation region 135. The plasma generating gases may be used to strike a plasma in the excitation region 135, or may maintain a plasma that has already been formed. In some embodiments, the plasma generating gases may have already been at least partially converted into plasma excited species in a remote plasma system 145 positioned outside the processing chamber 105 before traveling downstream though the inlet 140 to the plasma excitation region 135. When the plasma excited species reach the plasma excitation region 135, they may be further excited and affected by the characteristics of the plasma generated in the plasma excitation region. In some operations, the degree of added excitation provided by the CCP system may change over time depending on the substrate processing sequence and/or conditions.
The plasma generating gases and/or plasma excited species may pass through a plurality of holes (not shown) in lid 115 for a more uniform delivery into the plasma excitation region 135. Exemplary configurations include having the inlet 140 open into a gas supply region 150 partitioned from the plasma excitation region 135 by lid 115 so that the gases/species flow through the holes in the lid 115 into the plasma excitation region 135. Structural and operational features may be selected to prevent significant backflow of plasma from the plasma excitation region 135 back into the supply region 150, inlet 140, and fluid supply system 110. The structural features may include the selection of dimensions and cross-sectional geometry of the holes in lid 115 that deactivates back-streaming plasma. The operational features may include maintaining a pressure difference between the gas supply region 150 and plasma excitation region 135 that maintains a unidirectional flow of plasma through the grid electrode 120.
As noted above, the lid 115 and the grid electrode 120 may function as a first electrode and second electrode, respectively, so that the lid 115 and/or grid electrode 120 may receive an electric charge. In these configurations, electrical power such as RF power may be applied to the lid 115, grid electrode 120, or both. In one example, electrical power may be applied to the lid 115 while the grid electrode 120 is grounded. The substrate processing system 100 may include an RF generator 155 that provides electrical power to the lid 115 and/or one or more other components of the chamber 105. The electrically charged lid 115 may facilitate a uniform distribution of plasma, i.e., reduce localized plasma, within the plasma excitation region 135. To enable the formation of a plasma in the plasma excitation region 135, insulator 130 may electrically insulate lid 115 and grid electrode 120. Insulator 130 may be made from a ceramic and may have a high breakdown voltage to avoid sparking. In other embodiments discussed in more detail below, the insulator 130 includes several components that may be further utilized to affect the generated plasma, and may include additional electrode materials. The CCP system may also include a DC power system as will be described further below for modulating the RF generated plasma inside the chamber. The CCP system may further include a cooling unit (not shown) that includes one or more cooling fluid channels to cool surfaces exposed to the plasma with a circulating coolant (e.g., water). The cooling unit may include jacketing coupled with the exterior of the chamber 105 walls, as well as channels defined within the interior of the chamber walls that circulate a temperature controlled fluid.
The grid electrode 120 may include a plurality of holes 122 that suppress the migration of ionically-charged species out of the plasma excitation region 135 while allowing uncharged neutral or radical species to pass through the grid electrode 120. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the holes 122. As noted above, the migration of ionic species through the holes 122 may be reduced, and in some instances completely suppressed. Controlling the amount of ionic species passing through the grid electrode 120 may provide increased control over the gas mixture brought into contact with the underlying wafer substrate, which in turn increases control of the deposition and/or etch characteristics of the gas mixture. For example, adjustments in the ion concentration of the gas mixture can significantly alter its etch selectivity (e.g., SiOx:SiNx etch ratios, Poly-Si:SiOx etch ratios, etc.), as well as shift the balance of conformal-to-flowable of a deposited dielectric material. These features will be explained in more detail below.
The plurality of holes 122 may be configured to control the passage of the activated gas (i.e., the ionic, radical, and/or neutral species) through the grid electrode 120. For example, the aspect ratio of the holes 122 (i.e., the hole diameter to length) and/or the geometry of the holes 122 may be controlled so that the flow of ionically-charged species in the activated gas passing through the grid electrode 120 is reduced. In embodiments where the grid electrode includes an electrically coupled ion suppressor and showerhead, the holes in the ion blocker, which may be disposed above the showerhead, may include a tapered portion that faces the plasma excitation region 135, and a cylindrical portion that faces the showerhead. The cylindrical portion may be shaped and dimensioned to control the flow of ionic species passing to the showerhead. An adjustable electrical bias may also be applied to the grid electrode 120 as an additional means to control the flow of ionic species through the electrode.
Depending on whether a deposition or an etching process is performed, gases and plasma excited species may pass through the grid electrode 120 and be directed to the substrate. The showerhead, which may be a component included in the grid electrode, can further direct the flow of gases or plasma species. The showerhead may be a dual-zone showerhead that may include multiple fluid channels for directing the flow of one or more gases. The dual-zone showerhead may have a first set of channels to permit the passage of plasma excited species into reaction region 160, and a second set of channels that deliver a second gas/precursor mixture into the reaction region 160.
A fluid delivery source may be coupled with the showerhead to deliver a precursor that is able to bypass plasma excitation region 135 and enter reaction region 160 from within the showerhead through the second set of channels. The second set of channels in the showerhead may be fluidly coupled with a source gas/precursor mixture (not shown) that is selected for the process to be performed. For example, when the processing system is configured to perform an etch on the substrate surface, the source gas/precursor mixture may include etchants such as oxidants, halogens, water vapor and/or carrier gases that mix in the reaction region 160 with plasma excited species distributed from the first set of channels in the showerhead. Excessive ions in the plasma excited species may be reduced as the species move through the holes 122 in the grid electrode 120, and reduced further as the species move through channels in the showerhead.
The processing system may still further include a pedestal 165 that is operable to support and move the substrate or wafer. The distance between the pedestal 165 and the bottom of the grid electrode 120 help define the reaction region 160 along with lid spacer 125 defining the periphery of the reaction region 160. The pedestal 165 may be vertically or axially adjustable within the processing chamber 105 to increase or decrease the reaction region 160 and affect the deposition or etching of the wafer substrate by repositioning the wafer substrate with respect to the gases passed through the grid electrode 120. The pedestal 165 may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the wafer substrate. Circulation of the heat exchange fluid allows the substrate temperature to be maintained at relatively low temperatures (e.g., about −20° C. to about 90° C.). Exemplary heat exchange fluids include ethylene glycol and water.
The pedestal 165 may also be configured with a heating element such as a resistive heating element to maintain the substrate at heating temperatures (e.g., about 90° C. to about 1100° C.). Exemplary heating elements may include a single-loop heater element embedded in the substrate support platter that makes two or more full turns in the form of parallel concentric circles. An outer portion of the heater element may run adjacent to a perimeter of the support platten, while an inner portion may run on the path of a concentric circle having a smaller radius. The wiring to the heater element may pass through the stem of the pedestal.
A dual-zone showerhead, as well as the processing system and chamber, are more fully described in patent application Ser. No. 13/251,714 filed on Oct. 3, 2011, which is hereby incorporated by reference for all purposes to the extent not inconsistent with the claimed features and description herein.
Processing chamber 205 may include a grid electrode 220 that may include one or more chamber components electrically coupled. The grid electrode 220 may include one or more manifolds, and may include an ion blocker, as well as a showerhead, such as a dual-zone showerhead as previously described. The processing chamber 205 may include a ground electrode 225 that may be composed of additional chamber 205 components. For example, the ground electrode 225 may be a lid spacer or other wall component of the processing chamber 205. The ground electrode may alternatively include a ground connection to a substrate pedestal (not shown), but this may not be required for embodiments of the technology.
Processing chamber 205 may include an insulation section 230 similar to insulator 130 as illustrated in
A plurality of insulation members may additionally be incorporated into processing chamber 205 to electrically isolate the chamber components. For example, insulation members 240a-c are positioned between each of the conductive components and electrodes of the chamber housing. The insulation members 240 may be of a single annular shape, or be composed of several sections that when combined provide an electrical barrier between chamber components. For example, the insulation member may resist the flow of electrical charge, and may be of a material having a high dielectric strength. Exemplary insulation members include ceramic plates that may be annular in shape and disposed above and below components including the conductive insert 235. Multiple layers of the insulation members may be positioned in chamber 205 to further isolate components of the chamber. At least one of the plurality of insulation members may be positioned to electrically isolate the conductive insert 235 from the grid electrode 220. The insulation members may additionally isolate both the conductive insert 235 and the grid electrode 220 from the lid assembly 215 and the ground electrode 225. In this way, each conductive section may be electrically isolated from any other conductive section of the processing chamber 205.
The chamber components may define plasma regions within the processing chamber. A first plasma region 245 may be at least partially defined above and below by the lid assembly 215 and the grid electrode 220. The conductive insert may be disposed along the periphery of the first plasma region 245. A second plasma region 250 may be at least partially defined above by the grid electrode 220. The second plasma region 250 may be at least partially defined below by a substrate pedestal (not shown), that may be moveable vertically, axially, or both, to define the area in which the second plasma region 250 exists. The ground electrode 225 may be disposed along the periphery of the second plasma region 250, or may be utilized to produce a boundary at least partially defining the lower bounds of the second plasma region 250.
Power supplies 255, 260 and optionally electrical switches 265, 270 may be coupled with processing chamber 205 to produce a processing system 200 with plasma control. The optional switches may be used to electrically couple components of the system. For example, electrical switch 265 may be electrically coupled with power supply 260, alternatively with power supply 255 and 260, alternatively with power supply 255, or still alternatively with either power supply while an additional switch (not shown) is used to electrically couple the other power supply. In yet another alternative, the switches may be bypassed to directly couple each of the power supplies 255, 260 to portions of the processing chamber. The power supplies 255, 260 may be of any type of power useful in semiconductor manufacturing, and may include RF power supplies, DC power supplies, etc. Optional switch 270 may be used to electrically couple components of the processing chamber 205. For example, switch 270 may be switchable to electrically couple any two or more of the lid assembly 215, the conductive insert 235, the grid electrode 220, and the ground electrode 225. Alternatively, optional switch 270 may be bypassed to directly electrically couple one or more components of the processing chamber 205. The switches 265, 270 may provide additional functionality so that the type of plasma generated, and the location of the plasma may be adjusted at any time during processing operations. The optional switches 265, 270 and power supplies 255, 260 may additionally include remotely located controls to manipulate the settings of the components as will be described further below.
As illustrated in
The RF power supply 355 may be configured to deliver an adjustable amount of power to the lid assembly 315 depending on the process performed. Exemplary power supplies may be configured to deliver an adjustable amount of power over a range of from 0 to about 3 kW of power. In deposition processes for example, the power delivered to the lid assembly 315 may be adjusted to set the conformality of the deposited layer. Deposited dielectric films are typically more flowable at lower plasma powers and shift from flowable to conformal when the plasma power is increased. For example, an argon containing plasma maintained in the plasma excitation region 345 may produce a more flowable silicon oxide layer as the plasma power is decreased from about 1000 Watts to about 100 Watts or lower (e.g., about 900, 700, 500, 300, 200, 100, 50, 25 Watts, or less), and a more conformal layer as the plasma power is increased from about 1000 Watts, or more (e.g., about 1200, 1500, 1800, 2000, 2200, 2400, 2600, 2800 Watts, or more). As the plasma power increases from low to high, the transition from a flowable to conformal deposited film may be relatively smooth and continuous or progress through relatively discrete thresholds. The plasma power (either alone or in addition to other deposition parameters) may be adjusted to select a balance between the conformal and flowable properties of the deposited film. For etching processes, reducing the power from 3 kW down below 1 kW or less can affect the removal rate of material being etched, and may reduce the rate at which deposited films are removed. Increasing the power above 1 kW and up to 3 kW can produce higher removal rates of deposited films.
Alternatively, for exemplary etch processes, the frequency and duty cycle of the RF power may be adjusted to modulate the chemistry and flux characteristics of the films. The inventors have also determined that certain frequencies of RF supply may affect the impact on chamber components, such as the grid electrode. A variety of frequencies may be employed, and during continuous operation of the RF power supply 355, frequencies such as up to about 400 kHz, between about 400 kHz and about 13.56 MHz, between about 13.56 MHz and about 60 MHz, and above 60 MHz may be employed. During certain operations, increasing the frequency may produce etchant radicals more efficiently, as well as reduce the damage caused to chamber components.
Power supply 360 may also be utilized during the operation of power supply 355, and may be a DC power supply in some embodiments. Exemplary DC power supplies may be configured for adjustable control between about 500 to about −500 V. Alternatively, power supply 360 may be configured for adjustable control between about 400 to about −400 V, between about 300 to about −300 V, between about 200 to about −200 V, between about 100 to about −100 V, etc., or less. Power supply 360 may be directly coupled with components of chamber 305, or electrically coupled to components with switch 365 that may be switchable to electrically couple power supply 360 to components of the chamber 305. In one embodiment, DC power supply 360 is electrically coupled with conductive insert 335.
RF power supply 355 and DC power supply 360 may be operated together, alternately, or in some other combination. In an exemplary operation, as illustrated in
An alternative operational scheme as illustrated by
Alternatively or simultaneously, the duty cycle may be modulated. Adjusting the duty cycle, or the time in the active state, for the RF power supply may affect the flux of ions produced in the plasma. For example, when a reduction in the duty cycle occurs, a relatively or substantially commensurate reduction in ion current may be produced. During etching processes, by reducing the ion current, the etching rate may be reduced proportionately. However, when an RF power supply is cycled, it is switched on and off during the cycling time. When the RF power is cycled off, the generated plasma may dissipate. Accordingly, the amount of duty cycle reduction may conventionally have been limited to the times that may allow the plasma to be maintained at a certain level. However, the inventors have determined that with configurations such as those described here, the DC power supply 360 may be capable of adjusting the chemistry by maintaining ion and electron movement during the periods that the RF power is off. Additionally, by having a certain amount of DC power during the periods when the RF power is off, the plasma may be at least partially sustained by the DC power. In this way, the plasma may not fully dissipate when the RF power is cycled off. This may allow further adjustment of the chemistry because the etchant chemistry may adjust when the RF power is switched from on to off. By utilizing the DC power supply 360 during some or all of the on and/or off times of the RF power supply 355, the etchant chemistries may be further modified. Accordingly, further adjustment of the RF power may be acceptable with reduced duty cycles. As such, the duty cycle of the RF power may be operated from about 100% to about 0% during operation, less than or about 75%, less than or about 50%, or less than or about 25%. Alternatively, the duty cycle may be operated at about 90%, 80%, 75%, 70%, 60% 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, or less. In still alternative configurations, the power supply may be configured to have an adjustable duty cycle at or between any of the listed cycle percentages, as well as ranges of any of the recited cycles. Pulsing of the RF power supply may allow further adjustment of the etching parameters by allowing reduced and more selective removals. For example, when a large amount of material is being removed, a continuous supply of RF power may be utilized. On the other hand, when small amounts of material, or more selective removals are required, RF pulsing may be employed. The RF pulsing may be capable of removing amounts of less than 100 nm of material, or alternatively less than or about 50 nm, 30 nm, 22 nm, 15 nm, or less including down to a monolayer of deposited film.
As illustrated in
Power supply 460 may also be utilized during the operation of power supply 455, and may be a DC power supply in some embodiments. Exemplary DC power supplies may be configured for adjustable control with any of the parameters as previously described. DC power supply 460 may be operated in continuous or pulsing fashion as previously described. As illustrated in
In operation, RF power supply 455 and DC power supply 460 may be operated as illustrated in
In one example, DC power supply 460 may be operated in continuous fashion while RF power supply 455 is pulsed. DC power supply 460, when electrically coupled with lid assembly 415 and operated continuously, may maintain a plasma in plasma region 445 generated by RF power supply 455. Accordingly, RF power supply may be modulated on and off, and continuously operated power supply 460 may maintain the plasma during the off cycle. As such, RF power supply 455 may be modulated with reduced duty cycles. For example, the duty cycle of the RF power may be operated from about 100% to about 0% during operation, less than or about 75%, less than or about 50%, or less than or about 25%. Alternatively, the duty cycle may be operated at about 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, or less. In still alternative configurations, the power supply may be configured to have an adjustable duty cycle at or between any of the listed cycle percentages, as well as ranges of any of the recited cycles.
The pulsing capability of RF power supply 455 may be modulated continuously as previously discussed from continuous wave to about 1000 kHz or more. Alternatively, the RF may be adjusted in discrete increments from continuous wave to about 0.01 kHz, or alternatively about 0.1 kHz, 1 kHz, 10 kHz, 100 kHz, 1000 kHz, etc., or more. In still other embodiments, the RF power supply 455 may be pulsed in any variety or range of values between the listed values. When pulsed, the ion current may be reduced as compared to continuous wave operation. Because the DC power supply may assist in holding a plasma during the ‘off’ cycle of RF power supply 455, further pulsing modulation may be effected. Consequently, reduced etching may be performed to the level of less than 100 nm during an etching process. As the ion current is reduced during an etching process, the same time period for etching may result in a reduced etching amount. Accordingly, further reduction of the ion current via power supply modulation as discussed may allow etching amounts of less than or about 50 nm, 40 nm, 30 nm, 20 nm, 10 nm, 5 nm, etc., or less. Additionally, reducing the duty cycle may further modify the etching amounts by additionally reducing the ion current as the duty cycle is reduced. In combination, pulsing and reduced duty cycle may be combined to provide further chemistry modulation and ion current to allow improved flexibility of operation.
In comparison to the modulation discussed with respect to
As illustrated in
Power supply 560 may also be utilized during the operation of power supply 555, and may be a DC power supply in some embodiments. Exemplary DC power supplies may be configured for adjustable control with any of the parameters as previously described. DC power supply 560 may be operated in continuous or pulsing fashion as previously described. As illustrated in
The exemplary system configuration illustrated in
As illustrated in
Power supply 660 may also be utilized during the operation of power supply 655, and may be a DC power supply in some embodiments. Exemplary DC power supplies may be configured for adjustable control with any of the parameters as previously described. DC power supply 660 may be operated in continuous or pulsing fashion as previously described, and also may be electrically coupled with any of the components of processing chamber 605 as previously described. In the exemplary system illustrated in
In operation, RF power supply 655 and DC power supply 660 may be operated as illustrated in
DC power supply 660 may be operated to assist RF power supply 655 in any of the ways previously described. When DC power supply 660 is electrically coupled with grid electrode 620, the DC power supply 660 may be used to provide additional ion and electron flux control with the plasma generated. When electrically coupled with the grid electrode, ion and electron flux can be adjusted through the grid electrode 620 components depending on the bias and power level of the DC power supply as explained above. Alternative embodiments may also electrically couple the DC power supply 660 with the conductive insert 635 or the lid assembly 615 as previously described.
Turning to
A plasma may be ignited or otherwise formed in the processing chamber by engaging the first power supply. The action of coupling the power supply if engaged may ignite the plasma between the structure to which the first power supply is electrically coupled and a ground source located within the chamber. In operation 730, the second power supply may be used to tune the plasma profile in one or more ways. For example, a negative voltage may be applied with the second power supply, which may cause a greater electron flux to flow through the chamber such as towards a grid electrode or processing region. Also, a positive voltage may be applied with the second power supply to increase the ion flux through the chamber towards an electrode structure or the processing region. The first power supply may also be operated in a variety of modes, and for example, the first power supply may provide pulsing power to the lid assembly. In disclosed embodiments, the first power supply may include an RF power supply, and the second power supply may include a DC power supply.
In the preceding description, for the purposes of explanation, numerous details have been set forth in order to provide an understanding of various embodiments of the present technology. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosed embodiments. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present technology. Accordingly, the above description should not be taken as limiting the scope of the technology.
It is noted that individual embodiments may be described as a process which is depicted as a flowchart, a flow diagram, or a block diagram. Although a flowchart may describe the method as a sequential process, many of the operations may be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may be terminated when its operations are completed, but could have additional steps not discussed or included in a figure. Furthermore, not all operations in any particularly described process may occur in all embodiments. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc.
Where a range of values is provided, it is understood that each intervening value, to the smallest fraction of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of those smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a dielectric material” includes a plurality of such materials, and reference to “the application” includes reference to one or more applications and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise”, “comprising”, “contains”, “containing”, “include”, “including”, and “includes”, when used in this specification and in the following claims, are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
This application claims the benefit of U.S. Provisional Application No. 61/678,964, filed Aug. 2, 2012, entitled “Semiconductor Processing With DC Assisted RF Power for Improved Control.” The entire disclosure of which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2369620 | Sullivan et al. | Feb 1945 | A |
3451840 | Hough | Jun 1969 | A |
3937857 | Brummett et al. | Feb 1976 | A |
3969077 | Hill | Jul 1976 | A |
4006047 | Brummett et al. | Feb 1977 | A |
4209357 | Gorin et al. | Jun 1980 | A |
4214946 | Forget et al. | Jul 1980 | A |
4232060 | Mallory et al. | Nov 1980 | A |
4234628 | DuRose | Nov 1980 | A |
4265943 | Goldstein et al. | May 1981 | A |
4361441 | Tylko | Nov 1982 | A |
4364803 | Nidola et al. | Dec 1982 | A |
4368223 | Kobayashi et al. | Jan 1983 | A |
4374698 | Sanders et al. | Feb 1983 | A |
4397812 | Mallory, Jr. | Aug 1983 | A |
4468413 | Bachmann | Aug 1984 | A |
4565601 | Kakehi et al. | Jan 1986 | A |
4571819 | Rogers et al. | Feb 1986 | A |
4579618 | Celestino et al. | Apr 1986 | A |
4585920 | Hoog et al. | Apr 1986 | A |
4632857 | Mallory, Jr. | Dec 1986 | A |
4656052 | Satou et al. | Apr 1987 | A |
4690746 | McInerney et al. | Sep 1987 | A |
4714520 | Gwozdz | Dec 1987 | A |
4715937 | Moslehi et al. | Dec 1987 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4753898 | Parrillo et al. | Jun 1988 | A |
4786360 | Cote et al. | Nov 1988 | A |
4793897 | Dunfield et al. | Dec 1988 | A |
4807016 | Douglas | Feb 1989 | A |
4810520 | Wu | Mar 1989 | A |
4816638 | Ukai et al. | Mar 1989 | A |
4820377 | Davis et al. | Apr 1989 | A |
4828649 | Davis | May 1989 | A |
4838990 | Jucha et al. | Jun 1989 | A |
4851370 | Doklan et al. | Jul 1989 | A |
4857140 | Loewenstein | Aug 1989 | A |
4865685 | Palmour | Sep 1989 | A |
4868071 | Walsh et al. | Sep 1989 | A |
4872947 | Wang et al. | Oct 1989 | A |
4878994 | Jucha et al. | Nov 1989 | A |
4886570 | Davis et al. | Dec 1989 | A |
4892753 | Wang et al. | Jan 1990 | A |
4894352 | Lane et al. | Jan 1990 | A |
4904341 | Blaugher et al. | Feb 1990 | A |
4904621 | Lowenstein et al. | Feb 1990 | A |
4913929 | Moslehi et al. | Apr 1990 | A |
4946903 | Gardella et al. | Aug 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960488 | Law et al. | Oct 1990 | A |
4980018 | Mu et al. | Dec 1990 | A |
4981551 | Palmour | Jan 1991 | A |
4985372 | Narita et al. | Jan 1991 | A |
4991542 | Kohmura et al. | Feb 1991 | A |
4992136 | Tachi et al. | Feb 1991 | A |
4994404 | Sheng et al. | Feb 1991 | A |
5000113 | Wang et al. | Mar 1991 | A |
5006192 | Deguchi | Apr 1991 | A |
5013691 | Lory et al. | May 1991 | A |
5028565 | Chang | Jul 1991 | A |
5030319 | Nishino et al. | Jul 1991 | A |
5061838 | Lane et al. | Oct 1991 | A |
5083030 | Stavov | Jan 1992 | A |
5089441 | Moslehi | Feb 1992 | A |
5089442 | Olmer | Feb 1992 | A |
5147692 | Bengston | Sep 1992 | A |
5156881 | Okano et al. | Oct 1992 | A |
5180435 | Markunas et al. | Jan 1993 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5188706 | Hori et al. | Feb 1993 | A |
5198034 | deBoer et al. | Mar 1993 | A |
5203911 | Sricharoenchalkit et al. | Apr 1993 | A |
5215787 | Homma | Jun 1993 | A |
5228501 | Tepman et al. | Jul 1993 | A |
5231690 | Soma et al. | Jul 1993 | A |
5235139 | Bengston et al. | Aug 1993 | A |
5238499 | van de Ven et al. | Aug 1993 | A |
5240497 | Shacham et al. | Aug 1993 | A |
5248371 | Maher et al. | Sep 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5252178 | Moslehi | Oct 1993 | A |
5269881 | Sekiya | Dec 1993 | A |
5270125 | America et al. | Dec 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5275977 | Otsubo et al. | Jan 1994 | A |
5279669 | Lee | Jan 1994 | A |
5279865 | Chebi et al. | Jan 1994 | A |
5288518 | Homma | Feb 1994 | A |
5290382 | Zarowin et al. | Mar 1994 | A |
5292370 | Tsai | Mar 1994 | A |
5302233 | Kim et al. | Apr 1994 | A |
5306530 | Stronglin et al. | Apr 1994 | A |
5314724 | Tsukune et al. | May 1994 | A |
5316804 | Tomikawa et al. | May 1994 | A |
5319247 | Matsuura | Jun 1994 | A |
5326427 | Jerbic | Jul 1994 | A |
5328218 | Lowrey et al. | Jul 1994 | A |
5328558 | Kawamura et al. | Jul 1994 | A |
5334552 | Homma | Aug 1994 | A |
5345999 | Hosokawa | Sep 1994 | A |
5352636 | Beinglass | Oct 1994 | A |
5356478 | Chen et al. | Oct 1994 | A |
5362526 | Wang et al. | Nov 1994 | A |
5368897 | Kurihara et al. | Nov 1994 | A |
5380560 | Kaja et al. | Jan 1995 | A |
5382311 | Ishikawa et al. | Jan 1995 | A |
5384284 | Doan et al. | Jan 1995 | A |
5385763 | Okana et al. | Jan 1995 | A |
5399237 | Keswick et al. | Mar 1995 | A |
5399529 | Homma | Mar 1995 | A |
5403434 | Moslehi | Apr 1995 | A |
5413670 | Langan et al. | May 1995 | A |
5413967 | Matsuda et al. | May 1995 | A |
5415890 | Kloiber et al. | May 1995 | A |
5416048 | Blalock et al. | May 1995 | A |
5420075 | Homma et al. | May 1995 | A |
5429995 | Nishiyama et al. | Jul 1995 | A |
5439553 | Grant et al. | Aug 1995 | A |
5451259 | Krogh | Sep 1995 | A |
5464499 | Moslehi | Nov 1995 | A |
5468342 | Nulty et al. | Nov 1995 | A |
5474589 | Ohga et al. | Dec 1995 | A |
5478462 | Walsh | Dec 1995 | A |
5483920 | Pryor | Jan 1996 | A |
5500249 | Telford et al. | Mar 1996 | A |
5505816 | Barnes et al. | Apr 1996 | A |
5510216 | Calabrese et al. | Apr 1996 | A |
5516367 | Lei et al. | May 1996 | A |
5518962 | Murao | May 1996 | A |
5531835 | Fodor et al. | Jul 1996 | A |
5534070 | Okamura et al. | Jul 1996 | A |
5536360 | Nguyen et al. | Jul 1996 | A |
5549780 | Koinuma et al. | Aug 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5560779 | Knowles et al. | Oct 1996 | A |
5563105 | Dobuzinsky et al. | Oct 1996 | A |
5567243 | Foster et al. | Oct 1996 | A |
5571576 | Qian et al. | Nov 1996 | A |
5578130 | Hayashi et al. | Nov 1996 | A |
5578161 | Auda | Nov 1996 | A |
5580421 | Hiatt et al. | Dec 1996 | A |
5591269 | Arami et al. | Jan 1997 | A |
5599740 | Jang et al. | Feb 1997 | A |
5614055 | Fairbairn | Mar 1997 | A |
5616518 | Foo et al. | Apr 1997 | A |
5624582 | Cain | Apr 1997 | A |
5626922 | Miyanaga et al. | May 1997 | A |
5628829 | Foster et al. | May 1997 | A |
5635086 | Warren, Jr. | Jun 1997 | A |
5645645 | Zhang et al. | Jul 1997 | A |
5648125 | Cane | Jul 1997 | A |
5648175 | Russell et al. | Jul 1997 | A |
5656093 | Burkhart et al. | Aug 1997 | A |
5661093 | Ravi | Aug 1997 | A |
5674787 | Zhao et al. | Oct 1997 | A |
5676758 | Hasgawa et al. | Oct 1997 | A |
5679606 | Wang et al. | Oct 1997 | A |
5685946 | Fathauer et al. | Nov 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5712185 | Tsai et al. | Jan 1998 | A |
5716500 | Bardos et al. | Feb 1998 | A |
5716506 | Maclay et al. | Feb 1998 | A |
5719085 | Moon et al. | Feb 1998 | A |
5733816 | Iyer et al. | Mar 1998 | A |
5747373 | Yu | May 1998 | A |
5753886 | Iwamura | May 1998 | A |
5755859 | Brusic et al. | May 1998 | A |
5756400 | Ye et al. | May 1998 | A |
5756402 | Jimbo et al. | May 1998 | A |
5772770 | Suda et al. | Jun 1998 | A |
5781693 | Ballance et al. | Jul 1998 | A |
5786276 | Brooks et al. | Jul 1998 | A |
5789300 | Fulford | Aug 1998 | A |
5800686 | Littau et al. | Sep 1998 | A |
5804259 | Robles | Sep 1998 | A |
5812403 | Fong et al. | Sep 1998 | A |
5814365 | Mahawili | Sep 1998 | A |
5820723 | Benjamin et al. | Oct 1998 | A |
5824599 | Schacham-Diamand et al. | Oct 1998 | A |
5830805 | Schacham-Diamand et al. | Nov 1998 | A |
5838055 | Kleinhenz et al. | Nov 1998 | A |
5843538 | Ehrsam et al. | Dec 1998 | A |
5843847 | Pu et al. | Dec 1998 | A |
5844195 | Fairbairn et al. | Dec 1998 | A |
5846332 | Zhao et al. | Dec 1998 | A |
5846375 | Gilchrist et al. | Dec 1998 | A |
5846598 | Semkow et al. | Dec 1998 | A |
5849639 | Molloy et al. | Dec 1998 | A |
5850105 | Dawson et al. | Dec 1998 | A |
5855681 | Maydan et al. | Jan 1999 | A |
5856240 | Sinha et al. | Jan 1999 | A |
5858876 | Chew | Jan 1999 | A |
5865896 | Nowak | Feb 1999 | A |
5866483 | Shiau et al. | Feb 1999 | A |
5872052 | Iyer | Feb 1999 | A |
5872058 | Van Cleemput et al. | Feb 1999 | A |
5882424 | Taylor et al. | Mar 1999 | A |
5882786 | Nassau et al. | Mar 1999 | A |
5883012 | Chiou | Mar 1999 | A |
5885404 | Kim et al. | Mar 1999 | A |
5885749 | Huggins et al. | Mar 1999 | A |
5888906 | Sandhu et al. | Mar 1999 | A |
5891349 | Tobe et al. | Apr 1999 | A |
5891513 | Dubin et al. | Apr 1999 | A |
5897751 | Makowiecki | Apr 1999 | A |
5899752 | Hey et al. | May 1999 | A |
5904827 | Reynolds | May 1999 | A |
5907790 | Kellam | May 1999 | A |
5910340 | Uchida et al. | Jun 1999 | A |
5913140 | Roche et al. | Jun 1999 | A |
5913147 | Dubin et al. | Jun 1999 | A |
5915190 | Pirkle | Jun 1999 | A |
5918116 | Chittipeddi | Jun 1999 | A |
5920792 | Lin | Jul 1999 | A |
5926737 | Ameen et al. | Jul 1999 | A |
5932077 | Reynolds et al. | Aug 1999 | A |
5933757 | Yoshikawa et al. | Aug 1999 | A |
5935334 | Fong et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5939831 | Fong et al. | Aug 1999 | A |
5942075 | Nagahata et al. | Aug 1999 | A |
5944902 | Redeker et al. | Aug 1999 | A |
5948702 | Rotondaro | Sep 1999 | A |
5951601 | Lesinski et al. | Sep 1999 | A |
5951776 | Selyutin et al. | Sep 1999 | A |
5951896 | Mahawill | Sep 1999 | A |
5953591 | Ishihara et al. | Sep 1999 | A |
5953635 | Andideh | Sep 1999 | A |
5968610 | Liu et al. | Oct 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5976327 | Tanaka | Nov 1999 | A |
5990000 | Hong et al. | Nov 1999 | A |
5990013 | Berenguer et al. | Nov 1999 | A |
5993916 | Zhao et al. | Nov 1999 | A |
6004884 | Abraham | Dec 1999 | A |
6007635 | Mahawill | Dec 1999 | A |
6007785 | Liou | Dec 1999 | A |
6010962 | Liu et al. | Jan 2000 | A |
6013191 | Nasser-Faili et al. | Jan 2000 | A |
6013584 | M'Saad | Jan 2000 | A |
6015724 | Yamazaki et al. | Jan 2000 | A |
6015747 | Lopatin et al. | Jan 2000 | A |
6020271 | Yanagida | Feb 2000 | A |
6030666 | Lam et al. | Feb 2000 | A |
6030881 | Papasouliotis et al. | Feb 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6037018 | Jang et al. | Mar 2000 | A |
6037266 | Tao et al. | Mar 2000 | A |
6039851 | Iyer | Mar 2000 | A |
6053982 | Halpin et al. | Apr 2000 | A |
6059643 | Hu et al. | May 2000 | A |
6063683 | Wu et al. | May 2000 | A |
6063712 | Gilton et al. | May 2000 | A |
6065424 | Shacham-Diamand et al. | May 2000 | A |
6072147 | Koshiishi | Jun 2000 | A |
6072227 | Yau et al. | Jun 2000 | A |
6074512 | Collins | Jun 2000 | A |
6077780 | Dubin | Jun 2000 | A |
6080529 | Ye et al. | Jun 2000 | A |
6083344 | Hanawa et al. | Jul 2000 | A |
6083844 | Bui-Le et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6087278 | Kim et al. | Jul 2000 | A |
6090212 | Mahawill | Jul 2000 | A |
6093457 | Okumura | Jul 2000 | A |
6093594 | Yeap et al. | Jul 2000 | A |
6099697 | Hausmann | Aug 2000 | A |
6107199 | Allen et al. | Aug 2000 | A |
6110530 | Chen et al. | Aug 2000 | A |
6110836 | Cohen et al. | Aug 2000 | A |
6113771 | Landau et al. | Sep 2000 | A |
6117245 | Mandrekar et al. | Sep 2000 | A |
6120640 | Shih et al. | Sep 2000 | A |
6136163 | Cheung et al. | Oct 2000 | A |
6136685 | Narwankar et al. | Oct 2000 | A |
6136693 | Chan et al. | Oct 2000 | A |
6140234 | Uzoh et al. | Oct 2000 | A |
6144099 | Lopatin et al. | Nov 2000 | A |
6147009 | Grill et al. | Nov 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6150628 | Smith et al. | Nov 2000 | A |
6153935 | Edelstein et al. | Nov 2000 | A |
6165912 | McConnell et al. | Dec 2000 | A |
6167834 | Wang et al. | Jan 2001 | B1 |
6169021 | Akram et al. | Jan 2001 | B1 |
6170428 | Redeker et al. | Jan 2001 | B1 |
6171661 | Zheng et al. | Jan 2001 | B1 |
6174450 | Patrick et al. | Jan 2001 | B1 |
6174812 | Hsiung et al. | Jan 2001 | B1 |
6176198 | Kao et al. | Jan 2001 | B1 |
6176667 | Fairbaim | Jan 2001 | B1 |
6177245 | Ward et al. | Jan 2001 | B1 |
6179924 | Zhao et al. | Jan 2001 | B1 |
6180523 | Lee et al. | Jan 2001 | B1 |
6182602 | Redeker et al. | Feb 2001 | B1 |
6184121 | Buchwalter et al. | Feb 2001 | B1 |
6189483 | Ishikawa et al. | Feb 2001 | B1 |
6190233 | Hong et al. | Feb 2001 | B1 |
6191026 | Rana et al. | Feb 2001 | B1 |
6194038 | Rossman | Feb 2001 | B1 |
6197181 | Chen | Mar 2001 | B1 |
6197364 | Paunovic et al. | Mar 2001 | B1 |
6197680 | Lin et al. | Mar 2001 | B1 |
6197688 | Simpson | Mar 2001 | B1 |
6197705 | Vassiliev | Mar 2001 | B1 |
6203863 | Liu et al. | Mar 2001 | B1 |
6204200 | Shieh et al. | Mar 2001 | B1 |
6210486 | Mizukami et al. | Apr 2001 | B1 |
6217658 | Orczyk et al. | Apr 2001 | B1 |
6220201 | Nowak | Apr 2001 | B1 |
6228233 | Lakshmikanthan et al. | May 2001 | B1 |
6228751 | Yamazaki et al. | May 2001 | B1 |
6228758 | Pellerin et al. | May 2001 | B1 |
6235643 | Mui et al. | May 2001 | B1 |
6237527 | Kellerman et al. | May 2001 | B1 |
6238513 | Arnold et al. | May 2001 | B1 |
6238582 | Williams et al. | May 2001 | B1 |
6241845 | Gadgil et al. | Jun 2001 | B1 |
6242349 | Nogami et al. | Jun 2001 | B1 |
6244211 | Nishikawa | Jun 2001 | B1 |
6245396 | Nogami | Jun 2001 | B1 |
6245670 | Cheung et al. | Jun 2001 | B1 |
6251236 | Stevens | Jun 2001 | B1 |
6251802 | Moore et al. | Jun 2001 | B1 |
6258220 | Dordi et al. | Jul 2001 | B1 |
6258223 | Cheung et al. | Jul 2001 | B1 |
6258270 | Hilgendorff et al. | Jul 2001 | B1 |
6261637 | Oberle | Jul 2001 | B1 |
6277733 | Smith | Aug 2001 | B1 |
6277752 | Chen | Aug 2001 | B1 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6281072 | Li et al. | Aug 2001 | B1 |
6291282 | Wilk et al. | Sep 2001 | B1 |
6291348 | Lopatin et al. | Sep 2001 | B1 |
6303044 | Koemtzopoulos | Oct 2001 | B1 |
6306772 | Lin | Oct 2001 | B1 |
6312554 | Ye | Nov 2001 | B1 |
6312995 | Yu | Nov 2001 | B1 |
6313035 | Sandhu et al. | Nov 2001 | B1 |
6319387 | Krishnamoorthy et al. | Nov 2001 | B1 |
6322716 | Qiao et al. | Nov 2001 | B1 |
6323128 | Sambucetti et al. | Nov 2001 | B1 |
6335261 | Natzle et al. | Jan 2002 | B1 |
6335288 | Kwan et al. | Jan 2002 | B1 |
6340435 | Bjorkman et al. | Jan 2002 | B1 |
6342733 | Hu et al. | Jan 2002 | B1 |
RE37546 | Mahawill | Feb 2002 | E |
6344410 | Lopatin et al. | Feb 2002 | B1 |
6350320 | Sherstinsky et al. | Feb 2002 | B1 |
6350697 | Richardson | Feb 2002 | B1 |
6351013 | Luning et al. | Feb 2002 | B1 |
6352081 | Lu et al. | Mar 2002 | B1 |
6355573 | Okumura | Mar 2002 | B1 |
6364949 | Or et al. | Apr 2002 | B1 |
6364954 | Umotoy et al. | Apr 2002 | B2 |
6364957 | Schneider et al. | Apr 2002 | B1 |
6372657 | Hineman et al. | Apr 2002 | B1 |
6375748 | Yudovsky et al. | Apr 2002 | B1 |
6376386 | Oshima | Apr 2002 | B1 |
6379575 | Yin et al. | Apr 2002 | B1 |
6383951 | Li | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6391753 | Yu | May 2002 | B1 |
6395150 | Van Cleemput et al. | May 2002 | B1 |
6403491 | Liu et al. | Jun 2002 | B1 |
6415736 | Hao et al. | Jul 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6416874 | Cox et al. | Jul 2002 | B1 |
6423284 | Arno | Jul 2002 | B1 |
6427623 | Ko | Aug 2002 | B2 |
6432819 | Pavate et al. | Aug 2002 | B1 |
6432831 | Dhindsa et al. | Aug 2002 | B2 |
6436193 | Kasai et al. | Aug 2002 | B1 |
6436816 | Lee et al. | Aug 2002 | B1 |
6440863 | Tsai et al. | Aug 2002 | B1 |
6441492 | Cunningham | Aug 2002 | B1 |
6446572 | Brcka | Sep 2002 | B1 |
6448537 | Nering | Sep 2002 | B1 |
6461974 | Ni et al. | Oct 2002 | B1 |
6462371 | Weimer et al. | Oct 2002 | B1 |
6465051 | Sahin | Oct 2002 | B1 |
6465366 | Nemani et al. | Oct 2002 | B1 |
6477980 | White et al. | Nov 2002 | B1 |
6479373 | Dreybrodt et al. | Nov 2002 | B2 |
6488984 | Wada et al. | Dec 2002 | B1 |
6494959 | Samoilov et al. | Dec 2002 | B1 |
6499425 | Sandhu et al. | Dec 2002 | B1 |
6500728 | Wang | Dec 2002 | B1 |
6503843 | Xia et al. | Jan 2003 | B1 |
6506291 | Tsai et al. | Jan 2003 | B2 |
6509623 | Zhao | Jan 2003 | B2 |
6516815 | Stevens et al. | Feb 2003 | B1 |
6527968 | Wang et al. | Mar 2003 | B1 |
6528409 | Lopatin et al. | Mar 2003 | B1 |
6531377 | Knorr et al. | Mar 2003 | B2 |
6537733 | Campana et al. | Mar 2003 | B2 |
6541397 | Bencher | Apr 2003 | B1 |
6541671 | Martinez et al. | Apr 2003 | B1 |
6544340 | Yudovsky | Apr 2003 | B2 |
6547977 | Yan et al. | Apr 2003 | B1 |
6551924 | Dalton et al. | Apr 2003 | B1 |
6558564 | Loewenhardt | May 2003 | B1 |
6565729 | Chen et al. | May 2003 | B2 |
6569773 | Gellrich et al. | May 2003 | B1 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6573606 | Sambucetti et al. | Jun 2003 | B2 |
6585851 | Ohmi | Jul 2003 | B1 |
6586163 | Okabe et al. | Jul 2003 | B1 |
6596599 | Guo | Jul 2003 | B1 |
6596602 | Iizuka et al. | Jul 2003 | B2 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6602434 | Hung et al. | Aug 2003 | B1 |
6603269 | Vo et al. | Aug 2003 | B1 |
6605874 | Leu et al. | Aug 2003 | B2 |
6616967 | Test | Sep 2003 | B1 |
6627532 | Gaillard et al. | Sep 2003 | B1 |
6638810 | Bakli et al. | Oct 2003 | B2 |
6645301 | Sainty et al. | Nov 2003 | B2 |
6645550 | Cheung et al. | Nov 2003 | B1 |
6656831 | Lee et al. | Dec 2003 | B1 |
6656837 | Xu et al. | Dec 2003 | B2 |
6663715 | Yuda et al. | Dec 2003 | B1 |
6677242 | Liu et al. | Jan 2004 | B1 |
6677247 | Yuan et al. | Jan 2004 | B2 |
6679981 | Pan et al. | Jan 2004 | B1 |
6688375 | Turner | Feb 2004 | B1 |
6713356 | Skotnicki et al. | Mar 2004 | B1 |
6713835 | Horak et al. | Mar 2004 | B1 |
6717189 | Inoue et al. | Apr 2004 | B2 |
6720213 | Gambino et al. | Apr 2004 | B1 |
6740585 | Yoon et al. | May 2004 | B2 |
6740977 | Ahn et al. | May 2004 | B2 |
6743473 | Parkhe et al. | Jun 2004 | B1 |
6743732 | Lin et al. | Jun 2004 | B1 |
6756235 | Liu et al. | Jun 2004 | B1 |
6759261 | Shimokohbe et al. | Jul 2004 | B2 |
6762127 | Boiteux et al. | Jul 2004 | B2 |
6762435 | Towle | Jul 2004 | B2 |
6764958 | Nemani et al. | Jul 2004 | B1 |
6765273 | Chau et al. | Jul 2004 | B1 |
6767834 | Chung et al. | Jul 2004 | B2 |
6770166 | Fischer | Aug 2004 | B1 |
6772827 | Keller et al. | Aug 2004 | B2 |
6792889 | Nakano | Sep 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6794311 | Huang et al. | Sep 2004 | B2 |
6796314 | Graff et al. | Sep 2004 | B1 |
6797189 | Hung et al. | Sep 2004 | B2 |
6800336 | Fornsel et al. | Oct 2004 | B1 |
6800830 | Mahawili | Oct 2004 | B2 |
6802944 | Ahmad et al. | Oct 2004 | B2 |
6808564 | Dietze | Oct 2004 | B2 |
6808748 | Kapoor et al. | Oct 2004 | B2 |
6821571 | Huang | Nov 2004 | B2 |
6823589 | White et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6835995 | Li | Dec 2004 | B2 |
6846745 | Papasouliotis et al. | Jan 2005 | B1 |
6852550 | Tuttle et al. | Feb 2005 | B2 |
6858153 | Bjorkman et al. | Feb 2005 | B2 |
6861097 | Goosey et al. | Mar 2005 | B1 |
6861332 | Park et al. | Mar 2005 | B2 |
6867141 | Jung et al. | Mar 2005 | B2 |
6869880 | Krishnaraj et al. | Mar 2005 | B2 |
6875280 | Ikeda et al. | Apr 2005 | B2 |
6878206 | Tzu et al. | Apr 2005 | B2 |
6879981 | Rothschild et al. | Apr 2005 | B2 |
6886491 | Kim et al. | May 2005 | B2 |
6892669 | Xu et al. | May 2005 | B2 |
6893967 | Wright et al. | May 2005 | B1 |
6897532 | Schwarz et al. | May 2005 | B1 |
6900596 | Yang | May 2005 | B2 |
6903031 | Karim et al. | Jun 2005 | B2 |
6903511 | Chistyakov | Jun 2005 | B2 |
6908862 | Li et al. | Jun 2005 | B2 |
6911112 | An et al. | Jun 2005 | B2 |
6911401 | Khandan et al. | Jun 2005 | B2 |
6921556 | Shimizu et al. | Jul 2005 | B2 |
6924191 | Liu et al. | Aug 2005 | B2 |
6930047 | Yamazaki | Aug 2005 | B2 |
6935269 | Lee | Aug 2005 | B2 |
6942753 | Choi et al. | Sep 2005 | B2 |
6946033 | Tsuel et al. | Sep 2005 | B2 |
6951821 | Hamelin et al. | Oct 2005 | B2 |
6958175 | Sakamoto et al. | Oct 2005 | B2 |
6958286 | Chen et al. | Oct 2005 | B2 |
6974780 | Schuegraf | Dec 2005 | B2 |
6995073 | Liou | Feb 2006 | B2 |
7017269 | White et al. | Mar 2006 | B2 |
7018941 | Cui et al. | Mar 2006 | B2 |
7030034 | Fucsko et al. | Apr 2006 | B2 |
7049200 | Arghavani et al. | May 2006 | B2 |
7071532 | Geffken et al. | Jul 2006 | B2 |
7078312 | Sutanto et al. | Jul 2006 | B1 |
7081414 | Zhang et al. | Jul 2006 | B2 |
7084070 | Lee et al. | Aug 2006 | B1 |
7115525 | Abatchev et al. | Oct 2006 | B2 |
7122949 | Strikovski | Oct 2006 | B2 |
7145725 | Hasel et al. | Dec 2006 | B2 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183214 | Nam et al. | Feb 2007 | B2 |
7196342 | Ershov et al. | Mar 2007 | B2 |
7205240 | Karim et al. | Apr 2007 | B2 |
7223701 | Min et al. | May 2007 | B2 |
7226805 | Hallin et al. | Jun 2007 | B2 |
7235137 | Kitayama et al. | Jun 2007 | B2 |
7244474 | Hanawa | Jul 2007 | B2 |
7252716 | Kim et al. | Aug 2007 | B2 |
7253123 | Arghavani et al. | Aug 2007 | B2 |
7256370 | Guiver | Aug 2007 | B2 |
7288482 | Panda et al. | Oct 2007 | B2 |
7291360 | Hanawa | Nov 2007 | B2 |
7316761 | Doan | Jan 2008 | B2 |
7329608 | Babayan | Feb 2008 | B2 |
7341633 | Lubomirsky et al. | Mar 2008 | B2 |
7358192 | Merry et al. | Apr 2008 | B2 |
7364956 | Saito | Apr 2008 | B2 |
7365016 | Ouellet et al. | Apr 2008 | B2 |
7390710 | Derderian et al. | Jun 2008 | B2 |
7396480 | Kao et al. | Jul 2008 | B2 |
7416989 | Liu et al. | Aug 2008 | B1 |
7465358 | Weidman et al. | Dec 2008 | B2 |
7468319 | Lee | Dec 2008 | B2 |
7484473 | Keller et al. | Feb 2009 | B2 |
7488688 | Seung-Pil et al. | Feb 2009 | B2 |
7494545 | Lam et al. | Feb 2009 | B2 |
7500445 | Zhao | Mar 2009 | B2 |
7553756 | Hayashi et al. | Jun 2009 | B2 |
7575007 | Tang et al. | Aug 2009 | B2 |
7581511 | Mardian et al. | Sep 2009 | B2 |
7604708 | Wood et al. | Oct 2009 | B2 |
7628897 | Mungekar et al. | Dec 2009 | B2 |
7682518 | Chandrachood et al. | Mar 2010 | B2 |
7695590 | Hanawa | Apr 2010 | B2 |
7708859 | Huang et al. | May 2010 | B2 |
7709396 | Bencher et al. | May 2010 | B2 |
7722925 | White et al. | May 2010 | B2 |
7723221 | Hayashi | May 2010 | B2 |
7749326 | Kim et al. | Jul 2010 | B2 |
7785672 | Choi et al. | Aug 2010 | B2 |
7790634 | Munro et al. | Sep 2010 | B2 |
7806078 | Yoshida | Oct 2010 | B2 |
7807578 | Bencher et al. | Oct 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7837828 | Ikeda et al. | Nov 2010 | B2 |
7845309 | Condrashoff | Dec 2010 | B2 |
7871926 | Xia et al. | Jan 2011 | B2 |
7910491 | Soo Kwon et al. | Mar 2011 | B2 |
7915139 | Lang et al. | Mar 2011 | B1 |
7932181 | Singh et al. | Apr 2011 | B2 |
7939422 | Ingle et al. | May 2011 | B2 |
7968441 | Xu | Jun 2011 | B2 |
7976631 | Burrows et al. | Jul 2011 | B2 |
7981806 | Jung | Jul 2011 | B2 |
7989365 | Park et al. | Aug 2011 | B2 |
8008166 | Sanchez et al. | Aug 2011 | B2 |
8058179 | Draeger et al. | Nov 2011 | B1 |
8071482 | Kawada | Dec 2011 | B2 |
8074599 | Choi et al. | Dec 2011 | B2 |
8076198 | Lee et al. | Dec 2011 | B2 |
8083853 | Choi et al. | Dec 2011 | B2 |
8114245 | Ohmi | Feb 2012 | B2 |
8119530 | Hori et al. | Feb 2012 | B2 |
8133349 | Panagopoulos | Mar 2012 | B1 |
8183134 | Wu | May 2012 | B2 |
8187486 | Liu et al. | May 2012 | B1 |
8211808 | Sapre et al. | Jul 2012 | B2 |
8272346 | Bettencourt | Sep 2012 | B2 |
8298627 | Minami et al. | Oct 2012 | B2 |
8309440 | Sanchez et al. | Nov 2012 | B2 |
8312839 | Baek | Nov 2012 | B2 |
8313610 | Dhindsa | Nov 2012 | B2 |
8328939 | Choi et al. | Dec 2012 | B2 |
8357435 | Lubomirsky | Jan 2013 | B2 |
8368308 | Banna et al. | Feb 2013 | B2 |
8427067 | Espiau et al. | Apr 2013 | B2 |
8435902 | Tang et al. | May 2013 | B2 |
8475674 | Thadani et al. | Jul 2013 | B2 |
8480850 | Tyler | Jul 2013 | B2 |
8491805 | Kushibiki et al. | Jul 2013 | B2 |
8501629 | Tang et al. | Aug 2013 | B2 |
8506713 | Takagi | Aug 2013 | B2 |
8512509 | Bera et al. | Aug 2013 | B2 |
8540844 | Hudson | Sep 2013 | B2 |
8551891 | Liang | Oct 2013 | B2 |
8573152 | De La Llera | Nov 2013 | B2 |
8622021 | Taylor | Jan 2014 | B2 |
8623148 | Mitchell et al. | Jan 2014 | B2 |
8623471 | Tyler | Jan 2014 | B2 |
8642481 | Wang et al. | Feb 2014 | B2 |
8652298 | Dhindsa | Feb 2014 | B2 |
8679982 | Wang et al. | Mar 2014 | B2 |
8679983 | Wang et al. | Mar 2014 | B2 |
8702902 | Blom | Apr 2014 | B2 |
8741778 | Yang et al. | Jun 2014 | B2 |
8747680 | Deshpande | Jun 2014 | B1 |
8765574 | Zhang et al. | Jul 2014 | B2 |
8771536 | Zhang | Jul 2014 | B2 |
8771539 | Zhang et al. | Jul 2014 | B2 |
8772888 | Jung et al. | Jul 2014 | B2 |
8778079 | Begarney et al. | Jul 2014 | B2 |
8801952 | Wang et al. | Aug 2014 | B1 |
8808563 | Wang et al. | Aug 2014 | B2 |
8846163 | Kao et al. | Sep 2014 | B2 |
8869742 | Dhindsa | Oct 2014 | B2 |
8895449 | Zhu et al. | Nov 2014 | B1 |
8900364 | Wright | Dec 2014 | B2 |
8921234 | Liu et al. | Dec 2014 | B2 |
8927390 | Sapre et al. | Jan 2015 | B2 |
8951429 | Liu et al. | Feb 2015 | B1 |
8956980 | Chen | Feb 2015 | B1 |
8969212 | Ren et al. | Mar 2015 | B2 |
8980005 | Carlson et al. | Mar 2015 | B2 |
8980758 | Ling et al. | Mar 2015 | B1 |
8980763 | Wang et al. | Mar 2015 | B2 |
8992733 | Sorensen et al. | Mar 2015 | B2 |
8999656 | Zhang et al. | Apr 2015 | B2 |
8999839 | Su et al. | Apr 2015 | B2 |
8999856 | Zhang | Apr 2015 | B2 |
9012302 | Sapre et al. | Apr 2015 | B2 |
9017481 | Pettinger et al. | Apr 2015 | B1 |
9023732 | Wang | May 2015 | B2 |
9023734 | Chen et al. | May 2015 | B2 |
9034770 | Park et al. | May 2015 | B2 |
9040422 | Wang et al. | May 2015 | B2 |
9064815 | Zhang | Jun 2015 | B2 |
9064816 | Kim et al. | Jun 2015 | B2 |
9072158 | Ikeda et al. | Jun 2015 | B2 |
9093371 | Wang et al. | Jul 2015 | B2 |
9093390 | Wang et al. | Jul 2015 | B2 |
9111877 | Chen et al. | Aug 2015 | B2 |
9111907 | Kamineni | Aug 2015 | B2 |
9114438 | Hoinkis et al. | Aug 2015 | B2 |
9117855 | Cho et al. | Aug 2015 | B2 |
9132436 | Liang et al. | Sep 2015 | B2 |
9136273 | Purayath et al. | Sep 2015 | B1 |
9144147 | Yang | Sep 2015 | B2 |
9153442 | Wang et al. | Oct 2015 | B2 |
9159606 | Purayath | Oct 2015 | B1 |
9165786 | Purayath | Oct 2015 | B1 |
9184055 | Wang et al. | Nov 2015 | B2 |
9190293 | Wang | Nov 2015 | B2 |
9190302 | Ni | Nov 2015 | B2 |
9209012 | Chen et al. | Dec 2015 | B2 |
9236265 | Korolik | Jan 2016 | B2 |
9245762 | Zhang | Jan 2016 | B2 |
20010008803 | Takamatsu et al. | Jul 2001 | A1 |
20010015261 | Kobayashi et al. | Aug 2001 | A1 |
20010028093 | Yamazaki et al. | Oct 2001 | A1 |
20010028922 | Sandhu | Oct 2001 | A1 |
20010030366 | Nakano et al. | Oct 2001 | A1 |
20010034106 | Moise et al. | Oct 2001 | A1 |
20010034121 | Fu et al. | Oct 2001 | A1 |
20010036706 | Kitamura | Nov 2001 | A1 |
20010037856 | Park | Nov 2001 | A1 |
20010037941 | Thompson | Nov 2001 | A1 |
20010041444 | Shields et al. | Nov 2001 | A1 |
20010047760 | Mosiehl | Dec 2001 | A1 |
20010053585 | Kikuchi et al. | Dec 2001 | A1 |
20010053610 | Athavale | Dec 2001 | A1 |
20010054381 | Umotoy et al. | Dec 2001 | A1 |
20020000202 | Yuda et al. | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020016080 | Khan et al. | Feb 2002 | A1 |
20020016085 | Huang et al. | Feb 2002 | A1 |
20020028582 | Nallan et al. | Mar 2002 | A1 |
20020028585 | Chung et al. | Mar 2002 | A1 |
20020029747 | Powell et al. | Mar 2002 | A1 |
20020033233 | Savas | Mar 2002 | A1 |
20020036143 | Segawa et al. | Mar 2002 | A1 |
20020040764 | Kwan et al. | Apr 2002 | A1 |
20020040766 | Takahashi | Apr 2002 | A1 |
20020045966 | Lee et al. | Apr 2002 | A1 |
20020054962 | Huang | May 2002 | A1 |
20020069820 | Yudovsky | Jun 2002 | A1 |
20020070414 | Drescher et al. | Jun 2002 | A1 |
20020074573 | Takeuchi et al. | Jun 2002 | A1 |
20020090781 | Skotnicki et al. | Jul 2002 | A1 |
20020090835 | Chakravarti et al. | Jul 2002 | A1 |
20020096493 | Hattori | Jul 2002 | A1 |
20020098681 | Hu et al. | Jul 2002 | A1 |
20020106845 | Chao et al. | Aug 2002 | A1 |
20020129769 | Kim et al. | Sep 2002 | A1 |
20020129902 | Babayan | Sep 2002 | A1 |
20020153808 | Skotnicki et al. | Oct 2002 | A1 |
20020164885 | Lill et al. | Nov 2002 | A1 |
20020177322 | Li et al. | Nov 2002 | A1 |
20020187280 | Johnson et al. | Dec 2002 | A1 |
20020187655 | Tan et al. | Dec 2002 | A1 |
20020197823 | Yoo et al. | Dec 2002 | A1 |
20030003757 | Naltan et al. | Jan 2003 | A1 |
20030007910 | Diamant Lazarovich | Jan 2003 | A1 |
20030010645 | Ting et al. | Jan 2003 | A1 |
20030019428 | Ku et al. | Jan 2003 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030026060 | Hiramatsu et al. | Feb 2003 | A1 |
20030029566 | Roth | Feb 2003 | A1 |
20030029567 | Dhindsa | Feb 2003 | A1 |
20030029715 | Yu et al. | Feb 2003 | A1 |
20030032284 | Enomoto et al. | Feb 2003 | A1 |
20030038127 | Liu et al. | Feb 2003 | A1 |
20030038305 | Wasshuber | Feb 2003 | A1 |
20030054608 | Tseng et al. | Mar 2003 | A1 |
20030072639 | White et al. | Apr 2003 | A1 |
20030075808 | Inoue et al. | Apr 2003 | A1 |
20030077909 | Jiwari | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030087531 | Kang et al. | May 2003 | A1 |
20030091938 | Fairbairn et al. | May 2003 | A1 |
20030098125 | An | May 2003 | A1 |
20030109143 | Hsieh et al. | Jun 2003 | A1 |
20030116087 | Nguyen et al. | Jun 2003 | A1 |
20030116439 | Seo et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030121609 | Ohmi | Jul 2003 | A1 |
20030124842 | Hytros et al. | Jul 2003 | A1 |
20030127740 | Hsu et al. | Jul 2003 | A1 |
20030129106 | Sorensen et al. | Jul 2003 | A1 |
20030129827 | Lee et al. | Jul 2003 | A1 |
20030132319 | Hytros | Jul 2003 | A1 |
20030140844 | Maa et al. | Jul 2003 | A1 |
20030143328 | Chen et al. | Jul 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030152691 | Baude | Aug 2003 | A1 |
20030159307 | Sago et al. | Aug 2003 | A1 |
20030173333 | Wang et al. | Sep 2003 | A1 |
20030173347 | Guiver | Sep 2003 | A1 |
20030173675 | Watanabe | Sep 2003 | A1 |
20030181040 | Ivanov et al. | Sep 2003 | A1 |
20030183244 | Rossman | Oct 2003 | A1 |
20030190426 | Padhi et al. | Oct 2003 | A1 |
20030196760 | Tyler | Oct 2003 | A1 |
20030199170 | Li | Oct 2003 | A1 |
20030205329 | Gujer et al. | Nov 2003 | A1 |
20030215963 | AmRhein et al. | Nov 2003 | A1 |
20030216044 | Lin et al. | Nov 2003 | A1 |
20030221780 | Lei et al. | Dec 2003 | A1 |
20030224217 | Byun et al. | Dec 2003 | A1 |
20030224617 | Baek et al. | Dec 2003 | A1 |
20040005726 | Huang | Jan 2004 | A1 |
20040020801 | Zhao et al. | Feb 2004 | A1 |
20040026371 | Nguyen et al. | Feb 2004 | A1 |
20040033678 | Arghavani et al. | Feb 2004 | A1 |
20040033684 | Li | Feb 2004 | A1 |
20040050328 | Kumagai et al. | Mar 2004 | A1 |
20040058293 | Nguyen et al. | Mar 2004 | A1 |
20040069225 | Fairbairn et al. | Apr 2004 | A1 |
20040070346 | Choi | Apr 2004 | A1 |
20040072446 | Liu et al. | Apr 2004 | A1 |
20040092063 | Okumura | May 2004 | A1 |
20040099378 | Kim et al. | May 2004 | A1 |
20040101667 | O'Loughlin et al. | May 2004 | A1 |
20040108068 | Senzaki | Jun 2004 | A1 |
20040110354 | Natzle et al. | Jun 2004 | A1 |
20040115876 | Goundar et al. | Jun 2004 | A1 |
20040129224 | Yamazaki | Jul 2004 | A1 |
20040129671 | Ji et al. | Jul 2004 | A1 |
20040137161 | Segawa et al. | Jul 2004 | A1 |
20040144490 | Zhao | Jul 2004 | A1 |
20040147126 | Yamashita et al. | Jul 2004 | A1 |
20040149394 | Doan | Aug 2004 | A1 |
20040152342 | Li | Aug 2004 | A1 |
20040154535 | Chen et al. | Aug 2004 | A1 |
20040157444 | Chiu | Aug 2004 | A1 |
20040175929 | Schmitt et al. | Sep 2004 | A1 |
20040182315 | Laflamme et al. | Sep 2004 | A1 |
20040192032 | Ohmori et al. | Sep 2004 | A1 |
20040194799 | Kim et al. | Oct 2004 | A1 |
20040200499 | Harvey | Oct 2004 | A1 |
20040211357 | Gadgil et al. | Oct 2004 | A1 |
20040219737 | Quon | Nov 2004 | A1 |
20040219789 | Wood et al. | Nov 2004 | A1 |
20040245091 | Karim et al. | Dec 2004 | A1 |
20040263827 | Xu | Dec 2004 | A1 |
20050001276 | Gao et al. | Jan 2005 | A1 |
20050003676 | Ho et al. | Jan 2005 | A1 |
20050009340 | Saijo et al. | Jan 2005 | A1 |
20050009358 | Choi et al. | Jan 2005 | A1 |
20050026430 | Kim et al. | Feb 2005 | A1 |
20050026431 | Kazumi et al. | Feb 2005 | A1 |
20050035455 | Hu et al. | Feb 2005 | A1 |
20050048801 | Karim et al. | Mar 2005 | A1 |
20050051094 | Schaepkens et al. | Mar 2005 | A1 |
20050073051 | Yamamoto et al. | Apr 2005 | A1 |
20050079706 | Kumar et al. | Apr 2005 | A1 |
20050090120 | Hasegawa et al. | Apr 2005 | A1 |
20050098111 | Shimizu et al. | May 2005 | A1 |
20050105991 | Hofmeister et al. | May 2005 | A1 |
20050112876 | Wu | May 2005 | A1 |
20050112901 | Bing et al. | May 2005 | A1 |
20050121750 | Chan et al. | Jun 2005 | A1 |
20050164479 | Perng et al. | Jul 2005 | A1 |
20050167394 | Liu et al. | Aug 2005 | A1 |
20050181588 | Kim | Aug 2005 | A1 |
20050196967 | Savas et al. | Sep 2005 | A1 |
20050199489 | Stevens et al. | Sep 2005 | A1 |
20050205110 | Kao et al. | Sep 2005 | A1 |
20050205862 | Koemtzopoulos et al. | Sep 2005 | A1 |
20050208215 | Eguchi et al. | Sep 2005 | A1 |
20050214477 | Hanawa | Sep 2005 | A1 |
20050218507 | Kao et al. | Oct 2005 | A1 |
20050221552 | Kao et al. | Oct 2005 | A1 |
20050230350 | Kao et al. | Oct 2005 | A1 |
20050236694 | Wu et al. | Oct 2005 | A1 |
20050239282 | Chen et al. | Oct 2005 | A1 |
20050251990 | Choi et al. | Nov 2005 | A1 |
20050266622 | Arghavani et al. | Dec 2005 | A1 |
20050266691 | Gu et al. | Dec 2005 | A1 |
20050269030 | Kent et al. | Dec 2005 | A1 |
20050287755 | Bachmann | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060000802 | Kumar et al. | Jan 2006 | A1 |
20060000805 | Todorow et al. | Jan 2006 | A1 |
20060005856 | Sun et al. | Jan 2006 | A1 |
20060006057 | Laermer | Jan 2006 | A1 |
20060011298 | Lim et al. | Jan 2006 | A1 |
20060011299 | Condrashoff | Jan 2006 | A1 |
20060016783 | Wu et al. | Jan 2006 | A1 |
20060019456 | Bu et al. | Jan 2006 | A1 |
20060019486 | Yu et al. | Jan 2006 | A1 |
20060021574 | Armour et al. | Feb 2006 | A1 |
20060024954 | Wu et al. | Feb 2006 | A1 |
20060024956 | Zhijian et al. | Feb 2006 | A1 |
20060033678 | Lubomirsky et al. | Feb 2006 | A1 |
20060040055 | Nguyen et al. | Feb 2006 | A1 |
20060043066 | Kamp | Mar 2006 | A1 |
20060046412 | Nguyen et al. | Mar 2006 | A1 |
20060046419 | Sandhu et al. | Mar 2006 | A1 |
20060046484 | Abatchev et al. | Mar 2006 | A1 |
20060051966 | Or et al. | Mar 2006 | A1 |
20060051968 | Joshi et al. | Mar 2006 | A1 |
20060054184 | Mozetic et al. | Mar 2006 | A1 |
20060060942 | Minixhofer et al. | Mar 2006 | A1 |
20060093756 | Rajagopalan et al. | May 2006 | A1 |
20060097397 | Russell et al. | May 2006 | A1 |
20060102076 | Smith et al. | May 2006 | A1 |
20060102587 | Kimura | May 2006 | A1 |
20060121724 | Duofeng et al. | Jun 2006 | A1 |
20060124242 | Kanarik et al. | Jun 2006 | A1 |
20060130971 | Chang et al. | Jun 2006 | A1 |
20060157449 | Takahashi et al. | Jul 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060166107 | Chen et al. | Jul 2006 | A1 |
20060166515 | Karim et al. | Jul 2006 | A1 |
20060178008 | Yeh et al. | Aug 2006 | A1 |
20060185592 | Matsuura | Aug 2006 | A1 |
20060191479 | Mizukami et al. | Aug 2006 | A1 |
20060191637 | Zajac et al. | Aug 2006 | A1 |
20060207504 | Hasebe et al. | Sep 2006 | A1 |
20060210723 | Ishizaka | Sep 2006 | A1 |
20060211260 | Tran et al. | Sep 2006 | A1 |
20060216878 | Lee | Sep 2006 | A1 |
20060216923 | Tran et al. | Sep 2006 | A1 |
20060222481 | Foree | Oct 2006 | A1 |
20060228889 | Edelberg et al. | Oct 2006 | A1 |
20060240661 | Annapragada et al. | Oct 2006 | A1 |
20060244107 | Sugihara | Nov 2006 | A1 |
20060246717 | Weidman et al. | Nov 2006 | A1 |
20060251800 | Weidman et al. | Nov 2006 | A1 |
20060251801 | Weidman et al. | Nov 2006 | A1 |
20060252252 | Zhu et al. | Nov 2006 | A1 |
20060252265 | Jin et al. | Nov 2006 | A1 |
20060254716 | Mosden et al. | Nov 2006 | A1 |
20060260750 | Rueger | Nov 2006 | A1 |
20060261490 | Su et al. | Nov 2006 | A1 |
20060264003 | Eun | Nov 2006 | A1 |
20060264043 | Stewart et al. | Nov 2006 | A1 |
20060266288 | Choi | Nov 2006 | A1 |
20070025907 | Rezeq | Feb 2007 | A1 |
20070048977 | Lee et al. | Mar 2007 | A1 |
20070056925 | Liu et al. | Mar 2007 | A1 |
20070062453 | Ishikawa | Mar 2007 | A1 |
20070071888 | Shanmugasundram et al. | Mar 2007 | A1 |
20070072408 | Enomoto et al. | Mar 2007 | A1 |
20070099428 | Shamiryan et al. | May 2007 | A1 |
20070099431 | Li | May 2007 | A1 |
20070099438 | Ye et al. | May 2007 | A1 |
20070107750 | Sawin et al. | May 2007 | A1 |
20070108404 | Stewart et al. | May 2007 | A1 |
20070111519 | Lubomirsky et al. | May 2007 | A1 |
20070119370 | Ma et al. | May 2007 | A1 |
20070119371 | Ma et al. | May 2007 | A1 |
20070123051 | Arghavani et al. | May 2007 | A1 |
20070131274 | Stollwerck et al. | Jun 2007 | A1 |
20070154838 | Lee | Jul 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070181057 | Lam et al. | Aug 2007 | A1 |
20070193515 | Jeon et al. | Aug 2007 | A1 |
20070197028 | Byun et al. | Aug 2007 | A1 |
20070212288 | Holst | Sep 2007 | A1 |
20070227554 | Satoh et al. | Oct 2007 | A1 |
20070231109 | Pak et al. | Oct 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070235134 | Iimuro | Oct 2007 | A1 |
20070238199 | Yamashita | Oct 2007 | A1 |
20070238321 | Futase et al. | Oct 2007 | A1 |
20070243685 | Jiang et al. | Oct 2007 | A1 |
20070259467 | Tweet et al. | Nov 2007 | A1 |
20070264820 | Liu | Nov 2007 | A1 |
20070266946 | Choi | Nov 2007 | A1 |
20070269976 | Futase et al. | Nov 2007 | A1 |
20070277734 | Lubomirsky et al. | Dec 2007 | A1 |
20070281106 | Lubomirsy et al. | Dec 2007 | A1 |
20070287292 | Li et al. | Dec 2007 | A1 |
20080020570 | Naik | Jan 2008 | A1 |
20080063810 | Park et al. | Mar 2008 | A1 |
20080075668 | Goldstein | Mar 2008 | A1 |
20080085604 | Hoshino et al. | Apr 2008 | A1 |
20080099147 | Myo et al. | May 2008 | A1 |
20080099431 | Kumar et al. | May 2008 | A1 |
20080099876 | Seto | May 2008 | A1 |
20080102570 | Fischer et al. | May 2008 | A1 |
20080102640 | Hassan et al. | May 2008 | A1 |
20080121970 | Aritome | May 2008 | A1 |
20080124919 | Huang et al. | May 2008 | A1 |
20080124937 | Xu et al. | May 2008 | A1 |
20080142483 | Hua et al. | Jun 2008 | A1 |
20080142831 | Hua et al. | Jun 2008 | A1 |
20080153306 | Cho et al. | Jun 2008 | A1 |
20080156771 | Jeon et al. | Jul 2008 | A1 |
20080157225 | Datta et al. | Jul 2008 | A1 |
20080160210 | Yang et al. | Jul 2008 | A1 |
20080162781 | Haller et al. | Jul 2008 | A1 |
20080171407 | Nakabayashi et al. | Jul 2008 | A1 |
20080173906 | Zhu | Jul 2008 | A1 |
20080182381 | Kiyotoshi | Jul 2008 | A1 |
20080182382 | Ingle et al. | Jul 2008 | A1 |
20080182383 | Lee et al. | Jul 2008 | A1 |
20080202892 | Smith et al. | Aug 2008 | A1 |
20080230519 | Takahashi | Sep 2008 | A1 |
20080233709 | Conti et al. | Sep 2008 | A1 |
20080236751 | Aramaki | Oct 2008 | A1 |
20080254635 | Benzel et al. | Oct 2008 | A1 |
20080261404 | Kozuka et al. | Oct 2008 | A1 |
20080268645 | Kao et al. | Oct 2008 | A1 |
20080292798 | Huh et al. | Nov 2008 | A1 |
20080293248 | Park et al. | Nov 2008 | A1 |
20090001480 | Cheng | Jan 2009 | A1 |
20090004849 | Eun | Jan 2009 | A1 |
20090017227 | Fu et al. | Jan 2009 | A1 |
20090045167 | Maruyama | Feb 2009 | A1 |
20090072401 | Arnold et al. | Mar 2009 | A1 |
20090081878 | Dhindsa | Mar 2009 | A1 |
20090084317 | Wu et al. | Apr 2009 | A1 |
20090087960 | Cho et al. | Apr 2009 | A1 |
20090087979 | Raghuram | Apr 2009 | A1 |
20090095621 | Kao et al. | Apr 2009 | A1 |
20090098706 | Kim et al. | Apr 2009 | A1 |
20090104738 | Ring et al. | Apr 2009 | A1 |
20090104764 | Xia et al. | Apr 2009 | A1 |
20090104782 | Lu et al. | Apr 2009 | A1 |
20090111280 | Kao et al. | Apr 2009 | A1 |
20090120464 | Rasheed et al. | May 2009 | A1 |
20090170221 | Jacques et al. | Jul 2009 | A1 |
20090170331 | Cheng et al. | Jul 2009 | A1 |
20090179300 | Arai | Jul 2009 | A1 |
20090194810 | Kiyotoshi et al. | Aug 2009 | A1 |
20090197418 | Sago | Aug 2009 | A1 |
20090202721 | Nogami et al. | Aug 2009 | A1 |
20090255902 | Satoh et al. | Oct 2009 | A1 |
20090258162 | Furuta et al. | Oct 2009 | A1 |
20090269934 | Kao et al. | Oct 2009 | A1 |
20090275146 | Takano et al. | Nov 2009 | A1 |
20090275205 | Kiehlbauch et al. | Nov 2009 | A1 |
20090275206 | Katz et al. | Nov 2009 | A1 |
20090277587 | Lubomirsky | Nov 2009 | A1 |
20090277874 | Rui et al. | Nov 2009 | A1 |
20090280650 | Lubomirsky | Nov 2009 | A1 |
20090286400 | Heo et al. | Nov 2009 | A1 |
20090294898 | Feustel et al. | Dec 2009 | A1 |
20100003824 | Kadkhodayan et al. | Jan 2010 | A1 |
20100022030 | Ditizio | Jan 2010 | A1 |
20100048027 | Cheng et al. | Feb 2010 | A1 |
20100055408 | Lee et al. | Mar 2010 | A1 |
20100055917 | Kim | Mar 2010 | A1 |
20100059889 | Gosset et al. | Mar 2010 | A1 |
20100062603 | Ganguly et al. | Mar 2010 | A1 |
20100075503 | Bencher | Mar 2010 | A1 |
20100093151 | Arghavani et al. | Apr 2010 | A1 |
20100098884 | Balseanu et al. | Apr 2010 | A1 |
20100099236 | Kwon et al. | Apr 2010 | A1 |
20100099263 | Kao et al. | Apr 2010 | A1 |
20100101727 | Ji | Apr 2010 | A1 |
20100105209 | Winniczek et al. | Apr 2010 | A1 |
20100130001 | Noguchi | May 2010 | A1 |
20100144140 | Chandrashekar et al. | Jun 2010 | A1 |
20100164422 | Shu et al. | Jul 2010 | A1 |
20100173499 | Tao et al. | Jul 2010 | A1 |
20100178748 | Subramanian | Jul 2010 | A1 |
20100178755 | Lee et al. | Jul 2010 | A1 |
20100180819 | Hatanaka et al. | Jul 2010 | A1 |
20100187534 | Nishi et al. | Jul 2010 | A1 |
20100187588 | Gil-Sub et al. | Jul 2010 | A1 |
20100187694 | Yu et al. | Jul 2010 | A1 |
20100190352 | Jaiswal | Jul 2010 | A1 |
20100197143 | Nishimura | Aug 2010 | A1 |
20100203739 | Becker et al. | Aug 2010 | A1 |
20100207205 | Grebs et al. | Aug 2010 | A1 |
20100240205 | Son | Sep 2010 | A1 |
20100294199 | Tran et al. | Nov 2010 | A1 |
20110008950 | Xu | Jan 2011 | A1 |
20110011338 | Chuc et al. | Jan 2011 | A1 |
20110039407 | Nishizuka | Feb 2011 | A1 |
20110045676 | Park | Feb 2011 | A1 |
20110053380 | Sapre et al. | Mar 2011 | A1 |
20110061810 | Ganguly | Mar 2011 | A1 |
20110061812 | Ganguly | Mar 2011 | A1 |
20110065276 | Ganguly | Mar 2011 | A1 |
20110100489 | Orito | May 2011 | A1 |
20110111596 | Kanakasabapathy | May 2011 | A1 |
20110114601 | Lubomirsky et al. | May 2011 | A1 |
20110115378 | Lubomirsky et al. | May 2011 | A1 |
20110124144 | Schlemm et al. | May 2011 | A1 |
20110143542 | Feurprier et al. | Jun 2011 | A1 |
20110151674 | Tang et al. | Jun 2011 | A1 |
20110151676 | Ingle et al. | Jun 2011 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110155181 | Inatomi | Jun 2011 | A1 |
20110159690 | Chandrashekar et al. | Jun 2011 | A1 |
20110165057 | Honda | Jul 2011 | A1 |
20110165771 | Ring et al. | Jul 2011 | A1 |
20110180847 | Ikeda et al. | Jul 2011 | A1 |
20110217851 | Liang et al. | Sep 2011 | A1 |
20110226734 | Sumiya et al. | Sep 2011 | A1 |
20110227028 | Sekar et al. | Sep 2011 | A1 |
20110230052 | Tang et al. | Sep 2011 | A1 |
20110232737 | Ruletzki et al. | Sep 2011 | A1 |
20110266252 | Thadani et al. | Nov 2011 | A1 |
20110266682 | Edelstein et al. | Nov 2011 | A1 |
20110294300 | Zhang et al. | Dec 2011 | A1 |
20110298061 | Siddiqui et al. | Dec 2011 | A1 |
20120009796 | Cui et al. | Jan 2012 | A1 |
20120025289 | Liang et al. | Feb 2012 | A1 |
20120031559 | Dhindsa | Feb 2012 | A1 |
20120034786 | Dhindsa | Feb 2012 | A1 |
20120052683 | Kim et al. | Mar 2012 | A1 |
20120103518 | Kakimoto | May 2012 | A1 |
20120104564 | Won et al. | May 2012 | A1 |
20120129354 | Luong | May 2012 | A1 |
20120161405 | Mohn et al. | Jun 2012 | A1 |
20120164839 | Nishimura | Jun 2012 | A1 |
20120180954 | Yang et al. | Jul 2012 | A1 |
20120181599 | Lung | Jul 2012 | A1 |
20120196447 | Yang et al. | Aug 2012 | A1 |
20120211462 | Zhang et al. | Aug 2012 | A1 |
20120223048 | Paranjpe et al. | Sep 2012 | A1 |
20120225557 | Serry et al. | Sep 2012 | A1 |
20120228642 | Aube et al. | Sep 2012 | A1 |
20120238102 | Zhang | Sep 2012 | A1 |
20120238103 | Zhang | Sep 2012 | A1 |
20120247390 | Sawada | Oct 2012 | A1 |
20120247670 | Dobashi et al. | Oct 2012 | A1 |
20120247671 | Sugawara | Oct 2012 | A1 |
20120267346 | Kao et al. | Oct 2012 | A1 |
20120285621 | Tan | Nov 2012 | A1 |
20120292664 | Kanike | Nov 2012 | A1 |
20120309204 | Kang et al. | Dec 2012 | A1 |
20130005103 | Liu et al. | Jan 2013 | A1 |
20130005140 | Jeng et al. | Jan 2013 | A1 |
20130032574 | Liu | Feb 2013 | A1 |
20130034666 | Liang | Feb 2013 | A1 |
20130034968 | Zhang | Feb 2013 | A1 |
20130045605 | Wang | Feb 2013 | A1 |
20130052827 | Wang et al. | Feb 2013 | A1 |
20130052833 | Ranjan et al. | Feb 2013 | A1 |
20130059440 | Wang et al. | Mar 2013 | A1 |
20130065398 | Ohsawa et al. | Mar 2013 | A1 |
20130082197 | Yang et al. | Apr 2013 | A1 |
20130089988 | Wang et al. | Apr 2013 | A1 |
20130098868 | Nishimura et al. | Apr 2013 | A1 |
20130119016 | Kagoshima | May 2013 | A1 |
20130119457 | Lue et al. | May 2013 | A1 |
20130119483 | Alptekin et al. | May 2013 | A1 |
20130130507 | Wang et al. | May 2013 | A1 |
20130187220 | Surthi | Jul 2013 | A1 |
20130193108 | Zheng | Aug 2013 | A1 |
20130217243 | Underwood et al. | Aug 2013 | A1 |
20130224960 | Payyapilly et al. | Aug 2013 | A1 |
20130260564 | Sapre et al. | Oct 2013 | A1 |
20130284369 | Kobayashi et al. | Oct 2013 | A1 |
20130284370 | Kobayashi et al. | Oct 2013 | A1 |
20130295297 | Chou | Nov 2013 | A1 |
20130298942 | Ren et al. | Nov 2013 | A1 |
20130302980 | Chandrashekar et al. | Nov 2013 | A1 |
20130337655 | Lee et al. | Dec 2013 | A1 |
20140004708 | Thedjoisworo | Jan 2014 | A1 |
20140020708 | Kim | Jan 2014 | A1 |
20140021673 | Chen et al. | Jan 2014 | A1 |
20140057447 | Yang | Feb 2014 | A1 |
20140065842 | Anthis et al. | Mar 2014 | A1 |
20140080308 | Chen et al. | Mar 2014 | A1 |
20140080309 | Park | Mar 2014 | A1 |
20140080310 | Chen et al. | Mar 2014 | A1 |
20140083362 | Lubomirsky et al. | Mar 2014 | A1 |
20140087488 | Nam et al. | Mar 2014 | A1 |
20140097270 | Liang et al. | Apr 2014 | A1 |
20140099794 | Ingle et al. | Apr 2014 | A1 |
20140134847 | Seya | May 2014 | A1 |
20140141621 | Ren et al. | May 2014 | A1 |
20140166617 | Chen | Jun 2014 | A1 |
20140166618 | Tadigadapa et al. | Jun 2014 | A1 |
20140190410 | Kim | Jul 2014 | A1 |
20140199851 | Nemani et al. | Jul 2014 | A1 |
20140225504 | Kaneko et al. | Aug 2014 | A1 |
20140227881 | Lubomirsky | Aug 2014 | A1 |
20140234466 | Gao et al. | Aug 2014 | A1 |
20140248780 | Ingle et al. | Sep 2014 | A1 |
20140256131 | Wang et al. | Sep 2014 | A1 |
20140262031 | Belostotskiy et al. | Sep 2014 | A1 |
20140262038 | Wang et al. | Sep 2014 | A1 |
20140263272 | Duan et al. | Sep 2014 | A1 |
20140264533 | Simsek-Ege | Sep 2014 | A1 |
20140271097 | Wang et al. | Sep 2014 | A1 |
20140273373 | Makala et al. | Sep 2014 | A1 |
20140273406 | Wang et al. | Sep 2014 | A1 |
20140273451 | Wang et al. | Sep 2014 | A1 |
20140273462 | Simsek-Ege et al. | Sep 2014 | A1 |
20140273489 | Wang et al. | Sep 2014 | A1 |
20140273491 | Zhang et al. | Sep 2014 | A1 |
20140273492 | Anthis et al. | Sep 2014 | A1 |
20140273496 | Kao | Sep 2014 | A1 |
20140288528 | Py et al. | Sep 2014 | A1 |
20140302678 | Paterson et al. | Oct 2014 | A1 |
20140302680 | Singh | Oct 2014 | A1 |
20140308758 | Nemani et al. | Oct 2014 | A1 |
20140308816 | Wang et al. | Oct 2014 | A1 |
20140311581 | Belostotskiy | Oct 2014 | A1 |
20140342532 | Zhu | Nov 2014 | A1 |
20140342569 | Zhu et al. | Nov 2014 | A1 |
20140349477 | Chandrashekar et al. | Nov 2014 | A1 |
20150011096 | Chandrasekharan et al. | Jan 2015 | A1 |
20150014152 | Hoinkis et al. | Jan 2015 | A1 |
20150031211 | Sapre et al. | Jan 2015 | A1 |
20150060265 | Cho et al. | Mar 2015 | A1 |
20150076110 | Wu et al. | Mar 2015 | A1 |
20150079797 | Chen et al. | Mar 2015 | A1 |
20150118858 | Takaba | Apr 2015 | A1 |
20150126035 | Diao et al. | May 2015 | A1 |
20150126039 | Korolik et al. | May 2015 | A1 |
20150126040 | Korolik et al. | May 2015 | A1 |
20150129541 | Wang et al. | May 2015 | A1 |
20150129545 | Ingle et al. | May 2015 | A1 |
20150129546 | Ingle et al. | May 2015 | A1 |
20150132953 | Nowling | May 2015 | A1 |
20150132968 | Ren et al. | May 2015 | A1 |
20150155177 | Zhang et al. | Jun 2015 | A1 |
20150170879 | Nguyen | Jun 2015 | A1 |
20150170920 | Purayath et al. | Jun 2015 | A1 |
20150170924 | Nguyen | Jun 2015 | A1 |
20150170935 | Wang et al. | Jun 2015 | A1 |
20150170943 | Nguyen | Jun 2015 | A1 |
20150171008 | Luo | Jun 2015 | A1 |
20150179464 | Wang et al. | Jun 2015 | A1 |
20150206764 | Wang et al. | Jul 2015 | A1 |
20150214066 | Luere et al. | Jul 2015 | A1 |
20150214067 | Zhang et al. | Jul 2015 | A1 |
20150214092 | Purayath et al. | Jul 2015 | A1 |
20150214337 | Ko | Jul 2015 | A1 |
20150221541 | Nemani et al. | Aug 2015 | A1 |
20150235809 | Ito | Aug 2015 | A1 |
20150235863 | Chen | Aug 2015 | A1 |
20150235865 | Wang | Aug 2015 | A1 |
20150235867 | Nishizuka | Aug 2015 | A1 |
20150247231 | Nguyen et al. | Sep 2015 | A1 |
20150249018 | Park et al. | Sep 2015 | A1 |
20150270140 | Gupta et al. | Sep 2015 | A1 |
20150275361 | Lubomirsky et al. | Oct 2015 | A1 |
20150275375 | Kim et al. | Oct 2015 | A1 |
20150294980 | Lee et al. | Oct 2015 | A1 |
20150332930 | Wang et al. | Nov 2015 | A1 |
20150357201 | Chen et al. | Dec 2015 | A1 |
20150357205 | Wang et al. | Dec 2015 | A1 |
20150371861 | Li et al. | Dec 2015 | A1 |
20150371864 | Hsu et al. | Dec 2015 | A1 |
20150371865 | Chen et al. | Dec 2015 | A1 |
20150371866 | Chen et al. | Dec 2015 | A1 |
20160005572 | Liang et al. | Jan 2016 | A1 |
20160005833 | Collins et al. | Jan 2016 | A1 |
20160027654 | Kim et al. | Jan 2016 | A1 |
20160027673 | Wang et al. | Jan 2016 | A1 |
20160035586 | Purayath et al. | Feb 2016 | A1 |
20160035614 | Purayath et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1375575 | Oct 2002 | CN |
1412861 | Apr 2003 | CN |
101465386 | Jun 2009 | CN |
0329406 | Aug 1989 | EP |
0376252 | Jul 1990 | EP |
0475567 | Mar 1992 | EP |
0 496 543 | Jul 1992 | EP |
0 658 928 | Jun 1995 | EP |
0697467 | Feb 1996 | EP |
0913498 | May 1999 | EP |
1099776 | May 2001 | EP |
1107288 | Jun 2001 | EP |
1496542 | Jan 2005 | EP |
1568797 | Aug 2005 | EP |
2285174 | Jun 1995 | GB |
61-276977 | Dec 1986 | JP |
2058836 | Feb 1990 | JP |
02-121330 | May 1990 | JP |
02256235 | Oct 1990 | JP |
4-239750 | Jul 1992 | JP |
4-341568 | Nov 1992 | JP |
07-130713 | May 1995 | JP |
7-161703 | Jun 1995 | JP |
7297543 | Nov 1995 | JP |
08-306671 | Nov 1996 | JP |
09153481 | Jun 1997 | JP |
09-205140 | Aug 1997 | JP |
10-178004 | Jun 1998 | JP |
11124682 | May 1999 | JP |
H11-204442 | Jul 1999 | JP |
2000-012514 | Jan 2000 | JP |
2001-308023 | Nov 2001 | JP |
2002-100578 | Apr 2002 | JP |
2002-141349 | May 2002 | JP |
2002-222861 | Aug 2002 | JP |
2002-256235 | Sep 2002 | JP |
2003-019433 | Jan 2003 | JP |
2003-059914 | Feb 2003 | JP |
2003-179038 | Jun 2003 | JP |
2003-217898 | Jul 2003 | JP |
2003-318158 | Nov 2003 | JP |
2003-347278 | Dec 2003 | JP |
2004-047956 | Feb 2004 | JP |
2004-156143 | Jun 2004 | JP |
04-239723 | Aug 2004 | JP |
2005-033023 | Feb 2005 | JP |
2007-173383 | Jul 2007 | JP |
08-148470 | Jun 2008 | JP |
2010-154699 | Aug 2010 | JP |
10-0155601 | Dec 1998 | KR |
10-0236219 | Dec 1999 | KR |
1020000008278 | Feb 2000 | KR |
2000-0044928 | Jul 2000 | KR |
2001-0014064 | Feb 2001 | KR |
10-2001-0049274 | Jun 2001 | KR |
10-2001-0058774 | Jul 2001 | KR |
10-2001-0082109 | Aug 2001 | KR |
1020030081177 | Oct 2003 | KR |
10-2004-0049739 | Jun 2004 | KR |
10-2004-0096365 | Nov 2004 | KR |
1020050042701 | May 2005 | KR |
1020080063988 | Jul 2008 | KR |
10-2010-0013980 | Feb 2010 | KR |
10-2010-0074508 | Jul 2010 | KR |
10-1050454 | Jul 2011 | KR |
1020110126675 | Nov 2011 | KR |
1020120082640 | Jul 2012 | KR |
9220833 | Nov 1992 | WO |
9926277 | May 1999 | WO |
9954920 | Oct 1999 | WO |
9962108 | Dec 1999 | WO |
0013225 | Mar 2000 | WO |
0022671 | Apr 2000 | WO |
0194719 | Dec 2001 | WO |
02083981 | Oct 2002 | WO |
03014416 | Feb 2003 | WO |
03096140 | Dec 2003 | WO |
2004006303 | Jan 2004 | WO |
2004074932 | Sep 2004 | WO |
2004114366 | Dec 2004 | WO |
2005036615 | Apr 2005 | WO |
2006069085 | Jun 2006 | WO |
2009071627 | Jun 2009 | WO |
2011087580 | Jul 2011 | WO |
2011115761 | Sep 2011 | WO |
2011139435 | Nov 2011 | WO |
2012018449 | Feb 2012 | WO |
2012125654 | Sep 2012 | WO |
Entry |
---|
International Search Report of PCT/2013/052039 mailed on Nov. 8, 2013, 9 pages. |
International Search Report of PCT/2013/037202 mailed on Aug. 23, 2013, 11 pages. |
Abraham, “Reactive Facet Tapering of Plasma Oxide for Multilevel Interconnect Applications”, IEEE, V-MIC Conference, Jun. 15-16, 1987, pp. 115-121. |
Applied Materials, Inc., “Applied Siconi ™ Preclean,” printed on Aug. 7, 2009, 8 pages. |
Carlson, et al., “A Negative Spacer Lithography Process for Sub-100nm Contact Holes and Vias”, University of California at Berkeley, Jun. 19, 2007, 4 pp. |
Chang et al. “Frequency Effects and Properties of Plasma Deposited Fluorinated Silicon Nitride”, J. Vac Sci Technol B 6(2), Mar./Apr. 1988, pp. 524-532. |
Cheng, et al., “New Test Structure to Identify Step Coverage Mechanisms in Chemical Vapor Deposition of Silicon Dioxide,” Appl. Phys. Lett., 58 (19), May 13, 1991, p. 2147-2149. |
C.K. Hu, et al. “Reduced Electromigration of Cu Wires by Surface Coating” Applied Physics Letters, vol. 81, No. 10, Sep. 2, 2002—pp. 1782-1784. |
European Search Report dated May 23, 2006 for EP Application No. 05251143.3. |
European Examination Report dated Nov. 13, 2007 for EP Application No. 05251143.3 (APPM/008802EP). |
EP Partial Search Report, Application No. 08150111.601235/1944796, dated Aug. 22, 2008. |
Examination Report dated Jun. 28, 2010 for European Patent Application No. 05251143.3.I (APPM/008802 EPC E). |
Eze, F. C., “Eiectroless deposition of CoO thin films,” J. Phys. D: Appl. Phys. 32 (1999), pp. 533-540. |
Fukada et al. “Preparation of SiOF Films with Low Dielectric Constant by ECR Plasma CVD”, ISMIC, DUMIC Conference, Feb. 21-22, 1995, pp. 43-49. |
Galiano et al. “Stress-Temperature Behavior of Oxide Films Used for Intermetal Dielectric Applications”, VMIC Conference, Jun. 9-10, 1992, pp. 100-106. |
Hashim et al.; Characterization of thin oxide removal by RTA Treatment; ICSE 1998 Proc. Nov. 1998, Rangi, Malaysia, pp. 213-216. |
Hausmann, et al., “Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates,” Science, Oct. 11, 2002, p. 402-406, vol. 298. |
Hayasaka, N. et al. “High Quality Low Dielectric Constant SiO2 CVD Using High Density Plasma,” Proceedings of the Dry Process Symposium, 1993, pp. 163-168. |
Hwang et al., “Smallest Bit-Line Contact of 76nm pitch on NAND Flash Cell by using Reversal PR (Photo Resist) and SADP (Self-Align Double Patterning) Process,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2007, 3 pages. |
Iijima, et al., “Highly Selective SiO2 Etch Employing Inductively Coupled Hydro-Fluorocarbon Plasma Chemistry for Self Aligned Contact Etch”, Jpn. J. Appl. Phys., Sep. 1997, pp. 5498-5501, vol. 36, Part 1, No. 9A. |
International Search Report and Written Opinion of the International Searching Authority mailed Jul. 3, 2008 (PCT/US05/46226; APPM8802PC02). |
International Search Report and Written Opinion for PCT Application No. PCT/US2011/027221, mailed on Nov. 1, 2011, 8 pages. |
International Search Report and Written Opinion of PCT/US2010/057676 mailed on Jun. 27, 2011, 9 pages. |
International Search Report and Written Opinion of PCT/US2011/030582 mailed Dec. 7, 2011, 9 pages. |
International Search Report and Written Opinion of PCT/US2011/064724 mailed on Oct. 12, 2012, 8 pages. |
International Search Report and Written Opinion of PCT/US2012/028952 mailed on Oct. 29, 2012, 9 pages. |
International Search Report and Written Opinion of PCT/US2012/048842 mailed on Nov. 28, 2012, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/053329 mailed on Feb. 15, 2013, 8 pages. |
International Search Report and Written Opinion of PCT/US2012/057294 mailed on Mar. 18, 2013, 12 pages. |
International Search Report and Written Opinion of PCT/US2012/057358 mailed on Mar. 25, 2013, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/058818 mailed on Apr. 1, 2013, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for PCT Application No. PCT/US2012/028957, mailed on Oct. 18, 2012, 9 pages. |
International Search Report of PCT/US2009/059743 mailed on Apr. 26, 2010, 4 pages. |
International Search report and Written Opinion of PCT/CN2010/000932 dated Mar. 31, 2011. |
International Search report and Written Opinion of PCT/CN2012/061726 mailed on May 16, 2013, 3 pages. |
Japanese Patent Office, Official Action for Application No. 2007-317207 mailed on Dec. 21, 2011, 2 pages. |
Jung, et al., “Patterning with amorphous carbon spacer for expanding the resolution limit of current lithography tool”, Proc. SPIE , 2007, 9 pages, vol. 6520, 65201C. |
Laxman, “Low ε Dielectrics: CVD Fluorinated Silicon Dioxides”, Semiconductor International, May 1995, pp. 71-74. |
Lee, et al., “Dielectric Planarization Techniques for Narrow Pitch Multilevel Interconnects,” IEEE, V- MIC Conference Jun. 15-16, 1987, pp. 85-92 (1987). |
Lin, et al., “Manufacturing of Cu Electroless Nickei/Sn-Pb Flip Chip Solder Bumps”, IEEE Transactions on Advanced Packaging, vol. 22, No. 4 (Nov. 1999), pp. 575-579. |
Lopatin, et al., “Thin Electroless barrier for copper films”, Part of the SPIE Conference of Multilevel Interconnect technology II, SPIE vol. 3508 (1998), pp. 65-77. |
Matsuda, et al. “Dual Frequency Plasma CVD Fluorosilicate Glass Deposition for 0.25 um Interlevel Dielectrics”, ISMIC, DUMIC Conference Feb. 21-22, 1995, 1995. pp. 22-28. |
Meeks, Ellen et al., “Modeling of SiO2 deposition in high density plasma reactors and comparisons of model predictions with experimental measurements,” J. Vac. Sci. Technol. A, Mar./Apr. 1998, pp. 544-563, vol. 16(2). |
Mukai, et al., “A Study of CD Budget in Spacer Patterning Process”, Toshiba, SPIE 2008, Feb. 26, 2008, 12 pages. |
Musaka, “Single Step Gap Filling Technology fo Subhalf Micron Metal Spacings on Plasma Enhanced TEOS/O2 Chemical Vapor Deposition System,” Extended Abstracts of the 1993 International Conference on Solid State Devices and Materials pages, 1993, 510-512. |
Nishino, et al.; Damage-Free Selective Etching of SI Native Oxides Using NH3/NF3 and SF6/H20 Down-Flow Etching, The Japanese Society of Applied Physics, vol. 74, No. 2, pp. 1345-1348, XP-002491959, Jul. 15, 1993. |
Ogawa, et al., “Dry Cleaning Technology for Removal of Silicon Native Oxide Employing Hot NH3/NF3 Exposure”, Japanese Journal of Applied Physics, pp. 5349-5358, Aug. 2002, vol. 41 Part 1, No. 8. |
Ota, et al., “Stress Controlled Shallow Trench Isolation Technology to Suppress the Novel Anti-Isotropic Impurity Diffusion for 45nm-Node High Performance CMOSFETs,” Symposium on VLSI Technology Digest of Technical Papers, 2005, pp. 138-139. |
Pearlstein, Fred. “Eiectroless Plating,” J. Res. Natl. Bur. Stan., Ch. 31 (1974), pp. 710-747. |
Qian, et al., “High Density Plasma Deposition and Deep Submicron Gap Fill with Low Dielectric Constant SiOF Films,” ISMIC, DUMIC Conference Feb. 21-22, 1995, 1995, pp. 50-56. |
Robles, et al. “Effects of RF Frequency and Deposition Rates on the Moisture Resistance of PECVDTEOS-Based Oxide Films”, ECS Extended Abstracts, Abstract No. 129, May 1992, pp. 215-216, vol. 92-1. |
Saito, et al., “Eiectroless deposition of Ni-B, Co-B and Ni-Co-B alloys using dimethylamineborane as a reducing agent,” Journal of Applied Electrochemistry 28 (1998), pp. 559-563. |
Schacham-Diamond, et al., “Electrochemically deposited thin film alloys for ULSI and MEMS applications,” Microelectronic Engineering 50 (2000), pp. 525-531. |
Schacham-Diamond, et al. “Material properties of electroless 100-200 nm thick CoWP films,” Electrochemical Society Proceedings, vol. 99-34, pp. 102-110. |
Shapiro, et al. “Dual Frequency Plasma CVD Fluorosilicate Glass: Water Absorption and Stability”, ISMIC, DUMIC Conference Feb. 21-22, 1995, 1995. pp. 118-123. |
Smayling, et al., “APF® Pitch-Halving for 2nm Logic Cells using Gridded Design Rules”, proceedings of the SPIE, 2008, 8 pages. |
S.M. Sze, VLSI Technology, McGraw-Hill Book Company, pp. 107, 108. |
U.S. Appl. No. 60/803,499, filed May 30, 2006, 56 pages. |
U.S. Appl. No. 11/875,250, filed Oct. 19, 2007, 36 pages. |
Usami, et al., “Low Dielectric Constant Interlayer Using Fluorine-Doped Silicon Oxide”, Jpn. J. Appl. Phys., Jan. 19, 1994. pp. 408-412, vol. 33 Part 1, No. 1B. |
Vassiliev, et al., “Trends in void-free pre-metal CVC dielectrics,” Solid State Technology, Mar. 2001, pp. 129-136. |
Wang et al.; Ultra High-selectivity silicon nitride etch process using an inductively coupled plasma source; J. Vac. Sci. Techno!. A 16(3),May/Jun. 1998, pp. 1582-1587. |
Weston, et al., “Ammonium Compounds,” Kirk-Othmer Encyclopedia of Chemical Technology, 2003,30 pages see pp. 717-718, John Wiley & Sons, Inc. |
Wolf et al.; Silicon Processing for the VLSI Era; vol. 1; 1986; Lattice Press, pp. 546, 547, 618, 619. |
Yosi Shacham-Diamond, et al. “High Aspect Ratio Quarter-Micron Electroless Copper Integrated Technology”, Microelectronic Engineering 37/38 (1997) pp. 77-88. |
Yu, et al., “Step Coverage Study of Peteos Deposition for Intermetal Dielectric Applications,” abstract, VMIC conference, Jun. 12-13, 1990, 7 pages, No. 82. |
Yutaka, et al., “Selective Etching of Silicon Native Oxide with Remote-Plasma-Excited Anhydrous Hydrogen Fluoride,” Japanese Journal of Applied Physics, 1998, vol. 37, pp. L536-L538. |
Number | Date | Country | |
---|---|---|---|
20140057447 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61678964 | Aug 2012 | US |