Silver-containing particles, method and apparatus of manufacture, silver-containing devices made therefrom

Information

  • Patent Grant
  • 6689186
  • Patent Number
    6,689,186
  • Date Filed
    Friday, September 22, 2000
    24 years ago
  • Date Issued
    Tuesday, February 10, 2004
    20 years ago
Abstract
Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
Description




FIELD OF THE INVENTION




The present invention involves an aerosol method for producing silver containing particulate materials, powders including silver-containing particles producible by the method, uses of the powders in the manufacture of electronic and other devices and the d vices so manufactured.




BACKGROUND OF THE INVENTION




Silver particles are widely used in the manufacture of electrically conductive thick films or electronic devices and for other uses. Examples of thick film applications for silver particles include to make internal electrodes in multi-layer capacitors; interconnections in multi-chip components; conductive line in auto defoggers/deicers, photovoltaic modules, resistors, inductors, antennas and membrane switches; electromagnetic shielding (such as in cellular telephones), thermally conductive films; light reflecting films; and conducting adhesives. A trend continues, however, to produce ever smaller particles for these and other applications. Generally, desirable features in such small particles include a small particle size; a narrow particle size distribution; a dense, spherical particle morphology; and a crystalline grain structure. Existing technology for manufacturing silver-containing particles could, however, be improved with respect to attaining all, or substantially all, of these desired features for particles used in thick film applications.




One method that has been used to make small particles is to precipitate the particles from a liquid medium. Such liquid precipitation techniques are often difficult to control to produce particles with the desired characteristics. It is especially difficult by the liquid precipitation route to obtain particles having dense, spherical particle morphology and with good crystallinity.




Aerosol methods have also been used to make small silver particles. One aerosol method for making small particles is spray pyrolysis, in which an aerosol spray is generated and then converted in a reactor to the desired particles. Spray pyrolysis systems involving silver have, however, been mostly experimental, and unsuitable for commercial particle production. Furthermore, control of particle size distribution is a concern with spray pyrolysis. Also, spray pyrolysis systems are often inefficient in the use of carrier gasses that suspend and carry liquid droplets of the aerosol. This inefficiency is a major consideration for commercial applications of spray pyrolysis systems.




There is a need for improved silver-containing powders, for improved methods of manufacturing silver-containing powders and for improved products incorporating or made using improved silver-containing powders.




SUMMARY OF THE INVENTION




The present invention provides high quality, micro-size silver-containing particles of a variety of compositions and particle morphologies, and with carefully controlled particle size and size distribution, and an aerosol method for producing the particles. The particles are useful for making a variety of products.




Through careful control of the aerosol generation, and particularly when used in combination with other features of the present invention, the present invention permits preparation of very high quality powders of silver-containing particles that preferably have a weight average size in a range of from about 0.1 micron to about 4 microns, and for many applications with a range of from about 0.5 micron to about 2 microns in size. The powders have a narrow size distribution such that typically at least about 90 weight percent of the particles are smaller than about twice the weight average size of the particles. Furthermore, typically less than about 10 weight percent, and preferably less than about 5 weight percent, of the particles are smaller than about one-half the weight average size.




The invention includes both single-phase and multi-phase, or composite, particles useful for a variety of product applications, including for use as catalysts and in the preparation of thick film paste formulations, such as are used for depositing silver-containing films during manufacture of various electronic and other products. Multi-phase materials may be in a variety of morphological forms, for example in an intimate mixture of two or more phases or with one phase forming a surface coating over a core including another phase.




One preferred class of multi-phase particles includes a metallic silver-containing phase and a nonmetallic phase, which frequently includes a ceramic material. The nonmetallic phase could be in the form of a coating around a core of the metallic phase, in the form of small domains dispersed in a matrix of the metallic phase, or in some other form. A variety of ceramic materials can be used to effect a variety of beneficial modifications to particle properties, such as a modification of densification/sintering properties for improved compatibility and bonding with ceramic layers used in electronic devices, and especially when the silver-containing powder is used to make internal electrodes in multi-layer capacitors. An important use of these multi-phase particles is to reduce or delay film shrinkage during firing in the manufacture of electronic devices. One preferred group of ceramic materials for use in the multi-phase particles are titanates, as are frequently used in dielectric layers of multi-layer capacitors. Another preferred group of ceramic materials for use in multi-phase particles includes silica, alumina, titania and zirconia.




The silver in the powder, whether in single phase or multi-phase particles, is typically present in a metallic phase. In one embodiment, the particles in the powder include a high quality silver alloy, with one preferred alloy being with palladium. It has been found that the quality of the alloy is highly dependent upon the manner in which the process is carried out and the specific processing conditions. When preparing particles including a silver/palladium alloy, the reactor temperatures should preferably be in the range of from about 900° C. to about 1200° C., with even narrower temperature ranges being more preferred.




The process of the present invention for making the silver-containing particles involves processing of a high quality aerosol including a silver-containing precursor. The aerosol includes droplets of controlled size suspended in and carried by a carrier gas. In a thermal reactor, typically a furnace reactor, the liquid of the droplets is vaporized, permitting formation of the desired particles in an aerosol state. According to one embodiment of the present invention, an aerosol at a high droplet loading and at a high volumetric flow rate is fed to a reactor, where particles are formed. In addition to the high droplet loading and high volumetric flow rate, the aerosol also includes a narrow size distribution of droplets such that the particles exiting the reactor also have a narrow size distribution, with preferably at least about 75 weight percent, and more preferably at least 90 weight percent, of the particles being smaller than about twice the weight average particle size.




With the process, and accompanying apparatus, of the present invention, it is possible to produce high quality silver-containing powders at a high production rate using spray pyrolysis. This represents a significant advancement relative to the small laboratory-scale processes currently used.




An important aspect of the method of the present invention is aerosol generation, in which a high quality aerosol is produced having a controlled droplet size and narrow droplet size distribution, but at a high volumetric flow rate and with high droplet loading. An ultrasonic generator design is provided for generation of the high quality aerosol at a high generation rate.




The aerosol generation is particularly advantageous for producing aerosol droplets having a weight average size of from about 1 micron to about 5 microns, preferably with no greater than about 30 weight percent of the droplets being larger than about two times the average droplet size.




High quality aerosol production is accomplished also with high droplet loading in the aerosol. The droplet loading is preferably greater than about 5×10


6


droplets per cubic centimeter of the aerosol. Furthermore, the aerosol typically includes greater than about 0.083 milliliters of droplets in the aerosol per liter of carrier gas in the aerosol. This high droplet loading is also accomplished at a high aerosol production rate, which is typically at a rate of greater than about 25 milliliters of droplets of liquid feed per hour per ultrasonic transducer. Total aerosol flow rates are typically larger than about 0.5 liter per hour of liquid droplets at the high droplet loading and with the narrow droplet size distribution.




Aerosol generation for particle manufacture of the present invention is believed to represent a significant improvement relative to current powder manufacture operations, which are mainly for experimental purposes. These laboratory-scale processes typically use aerosols at only low rates and normally without a high aerosol density. With the aerosol generator of the present invention, however, high rates of droplet production are possible with efficient use of carrier gas. In one embodiment, the aerosol generator includes a plurality of ultrasonic transducers underlying a reservoir of liquid feed that is ultrasonically energized during operation. The aerosol generator includes multiple gas delivery outlets, or ports, for delivering the carrier gas to different portions of a liquid feed reservoir, so that droplets generated from the different portions of the reservoir are efficiently swept away to form the aerosol. A preferred embodiment includes at least one gas delivery outlet per ultrasonic transducer.




The process and the apparatus of the present invention are also capable of producing silver-containing powder at a high rate without high losses of silver in the system. This is accomplished through careful control of process equipment and operating parameters in a manner to reduce system residence times to inhibit high production losses. An important aspect of the process of the present invention is operation of a pyrolysis furnace at high flow rates and in a manner to reduce the potential for losses of silver. When operating at the high Reynolds numbers typically encountered in the furnace with the present invention, it is important to carefully control the furnace temperature and temperature profile. For example, it is important to operate the furnace so that both the average maximum stream temperature and the maximum furnace wall temperature are low enough to avoid undesirable volatilization of silver or other components.




In a further embodiment aspect of the process and apparatus of the invention, the particles may be advantageously cooled for collection in a manner to reduce potential for silver losses. The particle cooling may advantageously be accomplished with a very short residence time by radial feed of a quench gas into a cooling conduit through which the particle-containing aerosol stream flows. In this manner, a cool gas buffer is developed around the inner walls of the cooling conduit, thereby reducing thermophoretic losses of particles during cooling.




Also, the particle manufacturing process of the present invention is versatile and may be adapted for preparation of a variety of silver-containing particulate materials for a variety of applications. In that regard, one embodiment of the present invention includes concentration of the aerosol by at least a factor of about two, and more preferably by a factor of greater than about five, before introduction of the aerosol into the reactor. In this manner, substantial savings may be obtained through lower heating requirements in the reactor, lower cooling requirements for product streams from the reactor and smaller process equipment requirements.




In another embodiment, the process of the present invention involves classification by size of the droplets in the aerosol prior to introduction into the pyrolysis furnace. Preferably, droplets larger than about three times the average droplet size are removed, and even more preferably droplets larger than about two times the average droplet size are removed.




In yet another embodiment of the present invention, the particles are modified following manufacture, while still dispersed in an aerosol stream, prior to particle collection. In one aspect, the particles may be subjected to a coating following manufacture, such as by chemical vapor deposition or gas-to-particle conversion processes. Preferred coating processes include chemical vapor deposition and physical vapor deposition. In a further aspect, the particle modification may involve a structural modification, such as a post manufacture anneal to improve crystallinity or to alter particle morphology, and without agglomeration of the particles.




The present invention also includes thick film paste formulations including the silver-containing particles of the present invention and processes of manufacturing films from formulations. Also included in the present invention are methods for making electronic and other products using the palladium-containing particles. The present invention provides a variety of products made using powder of the present invention. These products include electronic devices, such as multi-layer capacitors and multi-chip modules, and other products, such as catalysts, electrochemical cells and others. Also, the powders are particularly useful for making high definition patterned circuit lines with a close line spacing.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a process block diagram showing one embodiment of the process of the present invention.





FIG. 2

is a side view of a furnace and showing one embodiment of the present invention for sealing the end of a furnace tube.





FIG. 3

is a view of the side of an end cap that faces away from the furnace shown in FIG.


2


.





FIG. 4

is a view of the side of an end cap that faces toward the furnace shown in FIG.


2


.





FIG. 5

is a side view in cross section of one embodiment of aerosol generator of the present invention.





FIG. 6

is a top view of a transducer mounting plate showing a


49


transducer array for use in an aerosol generator of the present invention.





FIG. 7

is a top view of a transducer mounting plate for a


400


transducer array for use in an ultrasonic generator of the present invention.





FIG. 8

is a side view of the transducer mounting plate shown in FIG.


7


.





FIG. 9

is a partial side view showing the profile of a single transducer mounting receptacle of the transducer mounting plate shown in FIG.


7


.





FIG. 10

is a partial side view in cross-section showing an alternative embodiment for mounting an ultrasonic transducer.





FIG. 11

is a top view of a bottom retaining plate for retaining a separator for use in an aerosol generator of the present invention.





FIG. 12

is a top view of a liquid feed box having a bottom retaining plate to assist in retaining a separator for use in an aerosol generator of the present invention.





FIG. 13

is a side view of the liquid feed box shown in FIG.


12


.





FIG. 14

is a side view of a gas tube for delivering gas within an aerosol generator of the present invention.





FIG. 15

shows a partial top view of gas tubes positioned in a liquid feed box for distributing gas relative to ultrasonic transducer positions for use in an aerosol generator of the present invention.





FIG. 16

shows one embodiment for a gas distribution configuration for the aerosol generator of the present invention.





FIG. 17

shows another embodiment for a gas distribution configuration for the aerosol generator of the present invention.





FIG. 15

is a top view of one embodiment of a gas distribution plate/gas tube assembly of the aerosol generator of the present invention.





FIG. 19

is a side view of one embodiment of the gas distribution plate/gas tube assembly shown in FIG.


18


.





FIG. 20

shows one embodiment for orienting a transducer in the aerosol generator of the present invention.





FIG. 21

is a top view of a gas manifold for distributing gas within an aerosol generator of the present invention.





FIG. 22

is a side view of the gas manifold shown in FIG.


21


.





FIG. 23

is a top view of a generator lid of a hood design for use in an aerosol generator of the present invention.





FIG. 24

is a side view of the generator lid shown in FIG.


23


.





FIG. 25

is a process block diagram of one embodiment in the present invention including an aerosol concentrator.





FIG. 26

is a top view in cross section of a virtual impactor that may be used for concentrating an aerosol according to the present invention.





FIG. 27

is a front view of an upstream plate assembly of the virtual impactor shown in FIG.


26


.





FIG. 28

is a top view of the upstream plate assembly shown in FIG.


27


.





FIG. 29

is a side view of the upstream plate assembly shown in FIG.


27


.





FIG. 30

is a front view of a downstream plate assembly of the virtual impactor shown in FIG.


26


.





FIG. 31

is a top view of the downstream plate assembly shown in FIG.


30


.





FIG. 32

is a side view of the downstream plate assembly shown in FIG.


30


.





FIG. 33

is a process block diagram of one embodiment of the process of the present invention including a droplet classifier.





FIG. 34

is a top view in cross section of an impactor of the present invention for use in classifying an aerosol.





FIG. 35

is a front view of a flow control plate of the impactor shown in FIG.


34


.





FIG. 36

is a front view of a mounting plate of the impactor shown in FIG.


34


.





FIG. 37

is a front view of an impactor plate assembly of the impactor shown in FIG.


34


.





FIG. 38

is a side view of the impactor plate assembly shown in FIG.


37


.





FIG. 39

shows a side view in cross section of a virtual impactor in combination with an impactor of the present invention for concentrating and classifying droplets in an aerosol.





FIG. 40

is a process block diagram of one embodiment of the present invention including a particle cooler.





FIG. 41

is a top view of a gas quench cooler of the present invention.





FIG. 42

is an end view of the gas quench cooler shown in FIG.


41


.





FIG. 43

is a side view of a perforated conduit of the quench cooler shown in FIG.


41


.





FIG. 44

is a side view showing one embodiment of a gas quench cooler of the present invention connected with a cyclone.





FIG. 45

is a process block diagram of one embodiment of the present invention including a particle coater.





FIG. 46

is a block diagram of one embodiment of the present invention including a particle modifier.





FIG. 47

shows cross sections of various particle morphologies of some composite particles manufacturable according to the present invention.





FIG. 48

shows a side view of one embodiment of apparatus of the present invention including an aerosol generator, an aerosol concentrator, a droplet classifier, a furnace, a particle cooler, and a particle collector.





FIG. 49

is a block diagram of one embodiment of the process of the present invention including the addition of a dry gas between the aerosol generator and the furnace.





FIG. 50

is a perspective view with partial cutaway of a multi-layer capacitor of the present invention.





FIG. 51

is a partial cross-sectional view of a stacked layer structure of one embodiment of a multi-layer capacitor of the present invention.





FIG. 52

is a partial cross-sectional view of a stacked layer structure of another embodiment of a multi-layer capacitor of the present invention.





FIG. 53

is a perspective view with a cut away end showing a multi-chip module with various electrical interconnections made using powder of the present invention.





FIG. 54

is a partial top view of a photovoltaic module showing a grid electrode made with powder of the present invention.





FIG. 55

is a rear view of an automobile showing a window deicer/defogger made using powder of the present invention.





FIG. 56

is a side view in cross-section showing a miniature alkaline cell including cathode material make using powder of the present invention.





FIG. 57

is a side view in cross-section showing the structure of a plate cell including a cathode make using powder of the present invention.





FIG. 58

is a partial top view showing a flat panel display including address electrodes made using powder of the present invention.





FIG. 59

is a partial side view in cross-section showing a DC plasma display including an address electrode made using powder of the present invention.





FIG. 60

is a partial side view in cross-section showing an AC plasma display including an address electrode made using powder of the present invention.





FIG. 61

is a photomicrograph showing palladium/silver alloy particles manufactured at a reactor temperature of 900° C.





FIG. 62

is a photomicrograph showing palladium/silver alloy particles manufactured at a reactor temperature of 1000° C.





FIG. 63

is a photomicrograph showing palladium/silver alloy particles manufactured at a reactor temperature of 1400° C.





FIG. 64

is a photomicrograph showing silver particles made at a reactor temperature of 1000° C.





FIG. 65

is a photomicrograph showing silver particles made at a reactor temperature of 1100° C., with a lower concentration of silver in the solution from which the aerosol is made.





FIG. 66

is a SEM photomicrograph showing a composite particle including 20 weight percent barium titanate and 80 weight percent of a 30:70 Pd:Ag alloy made at a reactor temperature of 1000° C.





FIG. 67

is a TEM photomicrograph showing composite particles including 20 weight percent barium titanate and 80 weight percent of a 30:70 Pd:Ag alloy made at a reactor temperature of 1000° C.





FIG. 68

is a TEM photomicrograph showing composite particles including 5 weight percent barium titanate and 95 weight percent of a 30:70 Pd:Ag alloy made at a reactor temperature of 1000° C.





FIG. 69

is an SEM photomicrograph showing composite particles including 93 weight percent carbon and 7 weight percent silver.











DETAILED DESCRIPTION OF THE INVENTION




In one aspect, the present invention provides a method for preparing silver-containing particulate product, and particularly silver-containing particulate product with a small size average particle size and narrow size distribution. A feed of liquid-containing, flowable medium, including a silver-containing precursor, is converted to aerosol form, with droplets of the medium being dispersed in and suspended by a carrier gas. Liquid from the droplets in the aerosol is then removed to permit formation in a dispersed state of the desired silver-containing particles. The liquid may be removed by vaporization at an elevated temperature. Alternatively, the liquid may be removed by mixing the aerosol with a dry gas, causing vaporization of the liquid to humidify the dry gas. In one embodiment, the silver-containing particles are subjected, while still in a dispersed state, to compositional or structural modification, if desired. Compositional modification may include, for example, coating the silver-containing particles. Structural modification may include, for example, crystallization, recrystallization or morphological alteration of the silver-containing particles. The term powder is often used herein to refer to the particulate product of the present invention. The use of the term powder does not indicate, however, that the particulate product must be dry or in any particular environment. The particulate product may be in a wet environment, such as in a slurry, or in a dry environment.




The process of the present invention is particularly well suited for the production of particulate products of finely divided silver-containing particles, with the particles having a weight average size, for most applications, in a range having a lower limit of about 0.1 micron, preferably about 0.3 micron, more preferably about 0.5 micron and most preferably about 0.8 micron; and having an upper limit of about 4 microns, preferably about 3 microns, more preferably about 2.5 microns and more preferably about 2 microns. A particularly preferred range for many applications is a weight average size of from about 0.5 micron to about 3 microns, and more particularly from about 0.5 micron to about 2 microns. For some applications, however, other weight average particle sizes may be particularly preferred.




In addition to making particles within a desired range of weight average particle size, with the present invention the silver-containing particles may be produced with a desirably narrow size distribution, thereby providing size uniformity that is desired for many applications involving the use of silver-containing powder, especially for thick film applications in microelectronic products.




In addition to control over particle size and size distribution, the method of the present invention provides significant flexibility for producing silver-containing particles of varying composition, crystallinity and morphology. For example, the present invention may be used to produce homogeneous particles involving only a single, silver-containing metallic phase, or multi-phase particles including one or more material phase in addition to a silver-containing metallic phase. In the case of multi-phase particles, the phases may be present in a variety of morphologies. For example, one phase may be uniformly dispersed throughout a matrix of another phase. Alternatively, one phase may form an interior core while another phase forms a coating that surrounds the core. Other morphologies are also possible, as discussed more fully below.




Referring now to

FIG. 1

, one embodiment of the process of the present invention is described. A liquid feed


102


, including a silver-containing precursor, and a carrier gas


104


are fed to an aerosol generator


106


where an aerosol


108


is produced. The aerosol


108


is then fed to a furnace


110


where liquid in the aerosol


108


is removed to produce silver-containing particles


112


that are dispersed in and suspended by gas exiting the furnace


110


. The particles


112


are then collected in a particle collector


114


to produce a silver-containing particulate product


116


.




As used herein, the liquid feed


102


is a feed that includes one or more flowable liquids as the major constituent(s), such that the feed is a flowable medium. The liquid feed


102


need not comprise only liquid constituents. The liquid feed


102


may comprise only constituents in one or more liquid phase, or it may also include particulate material suspended in a liquid phase. The liquid feed


102


must, however, be capable of being atomized to form droplets of sufficiently small size for preparation of the aerosol


108


. Therefore, if the liquid feed


102


includes suspended particles, those particles should be relatively small in relation to the size of droplets in the aerosol


108


. Such suspended particles should typically be smaller than about 1 micron in size, preferably smaller than about 0.5 micron in size; and more preferably smaller than about 0.3 micron in size and most preferably smaller than about 0.1 micron in size. Most preferably, the suspended particles should be able to form a colloid. The suspended particles could be finely divided particles, or could be agglomerate masses comprised of agglomerated smaller primary particles. For example, 0.5 micron particles could be agglomerates of nanometer-sized primary particles. When the liquid feed


102


includes suspended particles, the particles typically comprise no greater than about 25 to 50 weight percent of the liquid feed.




As noted, the liquid feed


102


includes at least one silver-containing precursor for preparation of the particles


112


. The silver-containing precursor may be a substance in either a liquid or solid phase of the liquid feed


102


. Typically, the silver-containing precursor will be a silver-containing material, such as a salt, dissolved in a liquid solvent of the liquid feed


102


. The precursor may undergo one or more chemical reactions in the furnace


110


to assist in production of the particles


112


. Alternatively, the precursor material may contribute to formation of the particles


112


without undergoing chemical reaction. This could be the case, for example, when the liquid feed


102


includes, as a precursor material, suspended particles that are not chemically modified in the furnace


110


. In any event, the particles.


112


comprise silver originally contributed by the silver-containing precursor of the liquid feed


102


.




The liquid feed


102


may include multiple precursor materials, which may be present together in a single phase or separately in multiple phases. For example, the liquid feed


102


may include multiple precursors in solution in a single liquid vehicle. Alternatively, one precursor material could be in a solid particulate phase and a second precursor material could be in a liquid phase. Also, one precursor material could be in one liquid phase and a second precursor material could be in a second liquid phase, such as could be the case when the liquid feed


102


comprises an emulsion. When the liquid feed


102


includes multiple precursors, more than one of the precursors may contain silver, or one or more of the precursors may contain a component other than silver that is contributed to the particles


112


. Different components contributed by different precursors may be present in the particles together in a single material phase, or the different components may be present in different material phases when the particles


112


are composites of multiple phases. Preferred silver precursors include silver salts, such as nitrate and acetate salts, which are soluble in aqueous liquids.




When the liquid feed


102


includes a soluble silver precursor, the silver precursor solution should be unsaturated to avoid the formation of precipitates. Solutions of silver salts will typically be used in concentrations in a range to provide a solution including from about 1 to about 50 weight percent silver. Most often, the liquid feed will include a solution with from about D weight percent to about 40 weight percent dissolved silver, and more preferably to about 30 weight percent silver. Preferably the solvent is aqueous-based for ease of operation, although other solvents, such as toluene or other organic solvents, may be desirable for specific materials. The use of organic solvents, however, can sometimes lead to undesirable carbon contamination in the silver-containing particles. The pH of the aqueous-based solutions can be adjusted to alter the solubility characteristics of the precursor or precursors in the solution.




The carrier gas


104


may comprise any gaseous medium in which droplets produced from the liquid feed


102


may be dispersed in aerosol form. Also, the carrier gas


104


may be inert, in that the carrier gas


104


does not participate in formation of the particles


112


. Alternatively, the carrier gas may have one or more active component(s), such as hydrogen gas, that contribute to formation of the particles


112


. In that regard, the carrier gas may include one or more reactive components that react in the furnace


110


to contribute to formation of the particles


112


.




The aerosol generator


106


atomizes the liquid feed


102


, to form droplets in a manner to permit the carrier gas


104


to sweep the droplets away to form the aerosol


108


. The droplets comprise liquid from the liquid feed


102


. The droplets may, however, also include nonliquid material, such as one or more small particles held in the droplet by the liquid. For example, when the particles


112


are composite, or multi-phase, particles, one phase of the composite may be provided in the liquid feed


102


in the form of suspended precursor particles and a second phase of the composite may be produced in the furnace


110


from one or more precursors in the liquid phase of the liquid feed


102


. Furthermore the precursor particles could be included in the liquid feed


102


, and therefore also in droplets of the aerosol


108


, for the purpose only of dispersing the particles for subsequent compositional or structural modification during or after processing in the furnace


110


.




An important aspect of the present invention is generation of the aerosol


108


with droplets of a small average size, narrow size distribution. In this manner, the silver-containing particles


112


may be produced at a desired small size with a narrow size distribution, which are advantageous for use in thick film deposition and other applications.




The aerosol generator


106


is capable of producing the aerosol


108


such that it includes droplets having a weight average size in a range having a lower limit of about 1 micron and preferably about 2 microns; and an upper limit of about 10 microns, preferably about 7 microns, more preferably about 5 microns and most preferably about 4 microns. A weight average droplet size in a range of from about 2 microns to about 4 microns is more preferred for most applications, with a weight average droplet size of about 3 microns being particularly preferred for some applications. The aerosol generator is also capable of producing the aerosol


108


such that it includes droplets in a narrow size distribution. Preferably, the droplets in the aerosol are such that at least about 70 percent (more preferably at least about 80 weight percent and most preferably at least about 85 weight percent) of the droplets are smaller than about 10 microns and more preferably at least about 70 weight percent (more preferably at least about 80 weight percent and most preferably at least about 85 weight percent) are smaller than about 5 microns. Furthermore, preferably no greater than about 30 weight percent, more preferably no greater than about 25 weight percent and most preferably no greater than about 20 weight percent, of the droplets in the aerosol


108


are larger than about twice the weight average droplet size.




Another important aspect of the present invention is that the aerosol


108


may be generated without consuming excessive amounts of the carrier gas


104


. The aerosol generator


106


is capable of producing the aerosol


108


such that it has a high loading, or high concentration, of the liquid feed


102


in droplet form. In that regard, the aerosol


108


preferably includes greater than about 1×10


6


droplets per cubic centimeter of the aerosol


108


, more preferably greater than about 5×10


6


droplets per cubic centimeter, still more preferably greater than about 1×10


7


droplets per cubic centimeter, and most preferably greater than about 5×10


7


droplets per cubic, centimeter. That the aerosol generator


106


can produce such a heavily loaded aerosol


108


is particularly surprising considering the high quality of the aerosol


108


with respect to small average droplet size and narrow droplet size distribution. Typically, droplet loading in the aerosol is such that the volumetric ratio of liquid feed


102


to carrier gas


104


in the aerosol


108


is larger than about 0.04 milliliters of liquid feed


102


per liter of carrier gas


104


in the aerosol


108


, preferably larger than about 0.083 milliliters of liquid feed


102


per liter of carrier gas


104


in the aerosol


108


, more preferably larger than about 0.167 milliliters of liquid feed


102


per liter of carrier gas


104


, still more preferably larger than about 0.25 milliliters of liquid feed


102


per liter of carrier gas


104


, and most preferably larger than about 0.333 milliliters of liquid feed


102


per liter of carrier gas


104


.




This capability of the aerosol generator


106


to produce a heavily loaded aerosol


108


is even more surprising given the high droplet output rate of which the aerosol generator


106


is capable, as discussed more fully below. It will be appreciated that the concentration of liquid feed


102


in the aerosol


108


will depend upon the specific components and attributes of the liquid feed


102


and, particularly, the size of the droplets in the aerosol


108


. For example, when the average droplet size is from about 2 microns to about 4 microns, the droplet loading is preferably larger than about 0.15 milliliters of aersol feed


102


per liter of carrier gas


104


, more preferably larger than about 0.2 milliliters of liquid feed


102


per liter of carrier gas


104


, even more preferably larger than about 0.2 milliliters of liquid feed


102


per liter of carrier gas


104


, and most preferably larger than about 0.3 milliliters of liquid feed


102


per liter of carrier gas


104


. When reference is made herein to liters of carrier gas


104


, it refers to the volume that the carrier gas


104


would occupy under conditions of standard temperature and pressure.




The furnace


110


may be any suitable device for heating the aerosol


108


to evaporate liquid from the droplets of the aerosol


108


and thereby permit formation of the particles


112


. For most applications, maximum average stream temperatures in the furnace


110


will generally be in a range of from about 800° C. to about 1500° C., and preferably in the range of from about 900° C. to about 1300° C. The maximum average stream temperature refers to the maximum average temperature that an aerosol stream attains while flowing through the furnace. This is typically determined by a temperature probe inserted into the furnace. Maximum average stream temperatures are preferably in a range having a lower limit of about 900° C., more preferably about 950° C. and most preferably about 975° C.; and having an upper limit of about 1200° C., more preferably about 1100° C. and most preferably about 1050° C. It has been found that the use of maximum average stream temperatures in the furnace


110


in the preferred ranges results in particularly high quality particles


112


.




Although longer residence times are possible, residence time in the heating zone of the furnace


110


of shorter than about 4 seconds is typical, with shorter than 2 seconds being preferred, shorter than about 1 second being more preferred and shorter than about 0.5 second being most preferred. The residence time should be long enough, however, to assure that the particles


112


attain the desired maximum average stream temperature for a given heat transfer rate. In that regard, with extremely short residence times, higher furnace temperatures could be used to increase the rate of heat transfer so long as the particles


112


attain a maximum average temperature within the desired stream temperature range. That mode of operation, however, is not preferred. Also, it is preferred that the maximum average stream temperature not be attained in the furnace


110


until substantially at the end of the heating zone in the furnace


110


. For example, the heating zone will often include a plurality of heating sections that are each independently controllable. The maximum average stream temperature should preferably not be attained until the final heating section, and more preferably until substantially at the end of the last heating section. This is important to reduce the potential for thermophoretic losses of material. Also, it is noted that, when used herein, residence time refers to the actual time for a material to pass through the relevant process equipment. In the case of the furnace, this includes the effect of increasing velocity with gas expansion on heating.




Typically, the furnace


110


will be a tube-shaped furnace, so that the aerosol


108


moving into and through the furnace does not encounter sharp edges on which droplets could collect. Loss of droplets to collection at sharp surfaces results in a lower yield of particles


112


. More important, however, the accumulation of liquid at sharp edges can result in re-release of undesirably large droplets back into the aerosol


108


, which can cause contamination of the particulate product


116


with undesirably large particles. Also, over time, such liquid collection at sharp surfaces can cause fouling of process equipment, impairing process performance.




The furnace


110


may include a heating tube made of any suitable material. The tube material may be a ceramic material, for example, mullite, silica or alumina. Alternatively, the tube may be metallic. Advantages of using a metallic tube are a low cost, ability to withstand steep temperature gradients and large thermal shocks, machinability and weldability, and ease of providing a seal between the tube and other process equipment. Disadvantages of using a metallic tube include limited operating temperature and increased reactivity in some reaction systems.




When a metallic tube is used in the furnace


110


, it is preferably a high nickel content stainless steel alloy, such as a 330 stainless steel, or a nickel-based super alloy. As noted, one of the major advantages of using a metallic tube is that the tube is relatively easy to seal with other process equipment. In that regard, flange fittings may be welded directly to the tube for connecting with other process equipment. Metallic tubes are generally preferred for making particles that do not require a maximum tube wall temperature of higher than about 1100° C. during manufacture. Thus metallic tubes are suitable, and preferred, for making most silver-containing powders.




When higher temperatures are required, ceramic tubes are typically used. One major problem with ceramic tubes, however, is that the tubes can be difficult to seal with other process equipment, especially when the ends of the tubes are maintained at relatively high temperatures, as is often the case with the present invention.




One configuration for sealing a ceramic tube is shown in

FIGS. 2

,


3


and


4


. The furnace


110


includes a ceramic tube


374


having an endcap


376


fitted to each end of the tube


374


, with a gasket


378


disposed between corresponding ends of the ceramic tube


374


and the endcaps


376


. The gasket may be of any suitable material for sealing at the temperature encountered at the ends of the tubes


374


. Examples of gasket materials for sealing at temperatures below about 250° C. include silicone, TEFLON™ and VITON™. Examples of gasket materials for higher temperatures include graphite, ceramic paper, thin sheet metal, and combinations thereof. Tension rods


380


extend over the length of the furnace


110


and through rod holes


382


through the endcaps


376


. The tension rods


380


are held in tension by the force of springs


384


bearing against bearing plates


386


and the endcaps


376


. The tube


374


is, therefore, in compression due to the force of the springs


384


. The springs


384


may be compressed any desired amount to form a seal between the endcaps


376


and the ceramic tube


374


through the gasket


378


. As will be appreciated, by using the springs


384


, the tube


374


is free to move to some degree as it expands upon heating and contracts upon cooling. To form the seal between the endcaps


384


and the ceramic tube


374


, one of the gaskets


378


is seated in a gasket seat


388


on the side of each endcap


376


facing the tube


374


. A mating face


390


on the side of each of the endcaps


376


faces away from the tube


374


, for mating with a flange surface for connection with an adjacent piece of equipment.




Also, although the present invention is described with primary reference to a furnace reactor, which is preferred, it should be recognized that, except as noted, any other thermal reactor, including a flame reactor or a plasma reactor, could be used instead. A furnace reactor is, however, preferred, because of the generally even heating characteristic of a furnace for attaining a uniform stream temperature.




The particle collector


114


, may be any suitable apparatus for collecting particles


112


to produce the particulate product


116


. One preferred embodiment of the particle collector


114


uses one or more filter to separate the particles


112


from gas. Such a filter may be of any type, including a bag filter. Another preferred embodiment of the particle collector uses one or more cyclone to separate the particles


112


. Other apparatus that may be used in the particle collector


114


includes an electrostatic precipitator. Also, collection should normally occur at a temperature above the condensation temperature of the gas stream in which the particles


112


are suspended. Also, collection should normally be at a temperature that is low enough to prevent significant agglomeration of the particles


112


.




The process and apparatus of the present invention are well-suited-for producing commercial-size batches of extremely high quality silver-containing particles. In that regard, the process and the accompanying apparatus provide versatility for preparing powder including a wide variety of materials, and easily accommodate shifting of production between different specialty batches of silver-containing particles.




Of significant importance to the operation of the process of the present invention is the aerosol generator


106


, which must be capable of producing a high quality aerosol with high droplet loading, as previously noted. With reference to

FIG. 5

, one embodiment of an aerosol generator


106


of the present invention is described. The aerosol generator


106


includes a plurality of ultrasonic transducer discs


120


that are each mounted in a transducer housing


122


. The transducer housings


122


are mounted to a transducer mounting plate


124


, creating an array of the ultrasonic transducer discs


120


. Any convenient spacing may be used for the ultrasonic transducer discs


120


. Center-to-center spacing of the ultrasonic transducer discs


120


of about 4 centimeters is often adequate. The aerosol generator


106


, as shown in

FIG. 5

, includes forty-nine transducers in a 7×7 array. The array configuration is as shown in

FIG. 6

, which depicts the locations of the transducer housings


122


mounted to the transducer mounting plate


124


.




With continued reference to

FIG. 5

, a separator


126


, in spaced relation to the transducer discs


120


, is retained between a bottom retaining plate


128


and a top retaining plate


130


. Gas delivery tubes


132


are connected to gas distribution manifolds


134


, which have gas delivery ports


136


. The gas distribution manifolds


134


are housed within a generator body


138


that is covered by generator lid


140


. A transducer driver


144


, having circuitry for driving the transducer discs


120


, is electronically connected with the transducer discs


120


via electrical cables


146


.




During operation of the aerosol generator


106


, as shown in

FIG. 5

, the transducer discs


120


are activated by the transducer driver


144


via the electrical cables


146


. The transducers preferably vibrate at a frequency of from about 1 MHz to about 5 MHz, more preferably from about 1.5 MHz to about 3 MHz. Frequently used frequencies are at about 1.6 MHz and about 2.4 MHz. Furthermore, all of the transducer discs


110


should be operating at substantially the same frequency when an aerosol with a narrow droplet size distribution is desired. This is important because commercially, available transducers can vary significantly in thickness, sometimes by as much as 10%. It is preferred, however, that the transducer discs


120


operate at frequencies within a range of 5% above and below the median transducer frequency, more preferably within a range of 2.5%, and most preferably within a range of 1%. This can be accomplished by careful selection of the transducer discs


120


so that they all preferably have thicknesses within 5% of the median transducer thickness, more preferably within 2.5%, and most preferably within 1%.




Liquid feed


102


enters through a feed inlet


148


and flows through flow channels


150


to exit through feed outlet


152


. An ultrasonically transmissive fluid, typically water, enters through a water inlet


154


to fill a water bath volume


156


and flow through flow channels


158


to exit through a water outlet


160


. A proper flow rate of the ultrasonically transmissive fluid is necessary to cool the transducer discs


120


and to prevent overheating of the ultrasonically transmissive fluid. Ultrasonic signals from the transducer discs


120


are transmitted, via the ultrasonically transmissive fluid, across the water bath volume


156


, and ultimately across the separator


126


, to the liquid feed


102


in flow channels


150


.




The ultrasonic signals from the ultrasonic transducer discs


120


cause atomization cones


162


to develop in the liquid feed


102


at locations corresponding with the transducer discs


120


. Carrier gas


104


is introduced into the gas delivery tubes


132


and delivered to the vicinity of the atomization cones


162


via gas delivery ports


136


. Jets of carrier gas exit the gas delivery ports


136


in a direction so as to impinge on the atomization cones


162


, thereby sweeping away atomized droplets of the liquid feed


102


that are being generated from the atomization cones


162


and creating the aerosol


108


, which exits the aerosol generator


106


through an aerosol exit opening


164


.




Efficient use of the carrier gas


104


is an important aspect of the aerosol generator


106


. The embodiment of the aerosol generator


106


shown in

FIG. 5

includes two gas exit ports per atomization cone


162


, with the gas ports being positioned above the liquid medium


102


over troughs that develop between the atomization cones


162


, such that the exiting carrier gas


104


is horizaontally directed at the surface of the atomization cones


162


, thereby efficiently distributing the carrier gas


104


to critical portions of the liquid feed


102


for effective and efficient sweeping away of droplets as they form about the ultrasonically energized atomization cones


162


. Furthermore, it is preferred that at least a portion of the opening of each of the gas delivery ports


136


, through which the carrier gas exits the gas delivery tubes, should be located below the top of the atomization cones


162


at which the carrier gas


104


is directed. This relative placement of the gas delivery ports


136


is very important to efficient use of carrier gas


104


. Orientation of the gas delivery ports


136


is also important. Preferably, the gas delivery ports


136


are positioned to horizontally direct jets of the carrier gas


104


at the atomization cones


162


. The aerosol generator


106


permits generation of the aerosol


108


with heavy loading with droplets of the carrier liquid


102


, unlike aerosol generator designs that do not efficiently focus gas delivery to the locations of droplet formation.




Another important feature of the aerosol generator


106


, as shown in

FIG. 5

, is the use of the separator


126


, which protects the transducer discs


120


from direct contact with the liquid feed


102


, which is often highly corrosive. The height of the separator


126


above the top of the transducer discs


120


should normally be kept as small as possible, and is often in the range of from about 1 centimeter to about 2 centimeters. The top of the liquid feed


102


in the flow channels above the tops of the ultrasonic transducer discs


120


is typically in a range of from about 2 centimeters to about 5 centimeters, whether or not the aerosol generator includes the separator


126


, with a distance of about 3 to 4 centimeters being preferred. Although the aerosol generator


106


could be made without the separator


126


, in which case the liquid feed


102


would be in direct contact with the transducer discs


120


, the highly corrosive nature of the liquid feed


102


can often cause premature failure of the transducer discs


120


. The use of the separator


126


, in combination with use of the ultrasonically transmissive fluid in the water bath volume


156


to provide ultrasonic coupling, significantly extends the life of the ultrasonic transducers


120


. One disadvantage of using the separator


126


, however, is that the rate of droplet production from the atomization cones


162


is reduced, often by a factor of two or more, relative to designs in which the liquid feed


102


is in direct contact with the ultrasonic transducer discs


102


. Even with the separator


126


, however, the aerosol generator


106


used with the present invention is capable of producing a high quality aerosol with heavy droplet loading, as previously discussed. Suitable materials for the separator


126


include, for example, polyamides (such as Kapton™ membranes from DuPont) and other polymer materials, glass, and plexiglass. The main requirements for the separator


126


are that it be ultrasonically transmissive, corrosion resistant and impermeable.




One alternative to using the separator


126


is to bind a corrosion-resistant protective coating onto the surface of the ultrasonic transducer discs


120


, thereby preventing the liquid feed


102


from contacting the surface of the ultrasonic transducer discs


120


. When the ultrasonic transudcer discs


120


have a protective coating, the aerosol generator


106


will typically be constructed without the water bath volume


156


and the liquid feed


102


will flow directly over the ultrasonic transducer discs


120


. Examples of such protective coating materials include platinum, gold, Teflon™, epoxies and various plastics. Such coating typically significantly extends transducer life. Also, when operating without the separator


126


, the aerosol generator


106


will typically produce the aerosol


108


with a much higher droplet loading than when the separator


126


is used.




One surprising finding with operation of the aerosol generator


106


of the present invention is that the droplet loading in the aerosol may be affected by the temperature of the liquid feed


102


. It has been found that when the liquid feed


102


includes an aqueous liquid at an elevated temperature, the droplet loading increases significantly. The temperature of the liquid feed


102


is preferably higher than about 30° C., more preferably higher than about 35° C. and most preferably higher than about 40° C. If the temperature becomes too high, however, it can have a detrimental effect on droplet loading in the aerosol


108


. Therefore, the temperature of the liquid feed


102


from which the aerosol


108


is made should generally be lower than about 50° C., and preferably lower than about 45° C. The liquid feed


102


may be maintained at the desired temperature in any suitable fashion. For example, the portion of the aerosol generator


106


where the liquid feed


102


is converted to the aerosol


108


could be maintained at a constant elevated temperature. Alternatively, the liquid feed


102


could be delivered to the aerosol generator


106


from a constant temperature bath maintained separate from the aerosol generator


106


. When the ultrasonic generator


106


includes the separator


126


, the ultrasonically transmissive fluid adjacent the ultrasonic transducer disks


120


are preferably also be at an elevated temperature in the ranges just discussed for the liquid feed


102


.




The design for the aerosol generator


106


based on an array of ultrasonic transducers is versatile and is easily modified to accommodate different generator sizes for different specialty applications. The aerosol generator


106


may be designed to include a plurality of ultrasonic transducers in any convenient number. Even for smaller scale production, however, the aerosol generator


106


preferably has at least nine ultrasonic transducers, more preferably at least 16 ultrasonic transducers, and even more preferably at least 25 ultrasonic transducers. For larger scale production, however, the aerosol generator


106


includes at least 40 ultrasonic transducers, more preferably at least 100 ultrasonic transducers, and even more preferably at least 400 ultrasonic transducers. In some large volume applications, the aerosol generator may have at least 1000 ultrasonic transducers.





FIGS. 7-24

show component designs for an aerosol generator


106


including an array of 400 ultrasonic transducers. Referring first to

FIGS. 7 and 8

, the transducer mounting plate


124


is shown with a design to accommodate an array of 400 ultrasonic transducers, arranged in four subarrays of 100 ultrasonic transducers each. The transducer mounting plate


124


has integral vertical walls


172


for containing the ultrasonically transmissive fluid, typically water, in a water bath similar to the water bath volume


156


described previously with reference to FIG.


5


.




As shown in

FIGS. 7 and 8

, four hundred transducer mounting receptacles


174


are provided in the transducer mounting plate


124


for mounting ultrasonic transducers for the desired array. With reference to

FIG. 9

, the profile of an individual transducer mounting receptacle


174


is shown. A mounting seat


176


accepts an ultrasonic transducer for mounting, with a mounted ultrasonic transducer being held in place via screw holes


178


. Opposite the mounting receptacle


176


is a flared opening


180


through which an ultrasonic signal may be transmitted for the purpose of generating the aerosol


108


, as previously described with reference to FIG.


5


.




A preferred transducer mounting configuration, however, is shown in

FIG. 10

for another configuration for the transducer mounting plate


124


. As seen in

FIG. 10

, an ultrasonic transducer disc


120


is mounted to the transducer mounting plate


124


by use of a compression screw


177


threaded into a threaded receptacle


179


. The compression screw


177


bears against the ultrasonic transducer disc


120


, causing an o-ring


181


, situated in an o-ring seat


182


on the transducer mounting plate, to be compressed to form a seal between the transducer mounting plate


124


and the ultrasonic transducer disc


120


. This type of transducer mounting is particularly preferred when the ultrasonic transducer disc


120


includes a protective surface coating, as discussed previously, because the seal of the o-ring to the ultrasonic transducer disc


120


will be inside of the outer edge of the protective seal, thereby preventing liquid from penetrating under the protective surface coating from the edges of the ultrasonic transducer disc


120


.




Referring now to

FIG. 11

, the bottom retaining plate


128


for a


400


transducer array is shown having a design for mating with the transducer mounting plate


124


(shown in FIGS.


7


-


8


). The bottom retaining plate


128


has eighty openings


184


, arranged in four subgroups


186


of twenty openings


184


each. Each of the openings


184


corresponds with five of the transducer mounting receptacles


174


(shown in

FIGS. 7 and 8

) when the bottom retaining plate


128


is mated with the transducer mounting plate


124


to create a volume for a water bath between the transducer mounting plate


124


and the bottom retaining plate


128


. The openings


184


, therefore, provide a pathway for ultrasonic signals generated by ultrasonic transducers to be transmitted through the bottom retaining plate.




Referring now to

FIGS. 12 and 13

, a liquid feed box


190


for a


400


transducer array is shown having the top retaining plate


130


designed to fit over the bottom retaining plate


128


(shown in FIG.


11


), with a separator


126


(not shown) being retained between the bottom retaining plate


128


and the top retaining plate


130


when the aerosol generator


106


is assembled. The liquid feed box


190


also includes vertically extending walls


192


for containing the liquid feed


102


when the aerosol generator is in operation. Also shown in

FIGS. 12 and 13

is the feed inlet


148


and the feed outlet


152


. An adjustable weir


198


determines the level of liquid feed


102


in the liquid feed box


190


during operation of the aerosol generator


106


.




The top retaining plate


130


of the liquid feed box


190


has eighty openings


194


therethrough, which are arranged in four subgroups


196


of twenty openings


194


each. The openings


194


of the top retaining plate


130


correspond in size with the openings


184


of the bottom retaining plate


128


(shown in FIG.


11


). When the aerosol generator


106


is assembled, the openings


194


through the top retaining plate


130


and the openings


184


through the bottom retaining plate


128


are aligned, with the separator


126


positioned therebetween, to permit transmission of ultrasonic signals when the aerosol generator


106


is in operation.




Referring now to

FIGS. 12-14

, a plurality of gas tube feed-through holes


202


extend through the vertically extending walls


192


to either side of the assembly including the feed inlet


148


and feed outlet


152


of the liquid feed box


190


. The gas tube feed-through holes


202


are designed to permit insertion therethrough of gas tubes


208


of a design as shown in FIG.


14


. When the aerosol generator


106


is assembled, a gas tube


208


is inserted through each of the gas tube feed-through holes


202


so that gas delivery ports


136


in the gas tube


208


will be properly positioned and aligned adjacent the openings


194


in the top retaining plate


130


for delivery of gas to atomization cones that develop in the liquid feed box


190


during operation of the aerosol generator


106


. The gas delivery ports


136


are typically holes having a diameter of from about 1.5 millimeters to about 3.5 millimeters.




Referring now to

FIG. 15

, a partial view of the liquid feed box


190


is shown with gas tubes


208


A,


208


B and


208


C positioned adjacent to the openings


194


through the top retaining plate


130


. Also shown in

FIG. 15

are the relative locations that ultrasonic transducer discs


120


would occupy when the aerosol generator


106


is assembled. As seen in

FIG. 15

, the gas tube


208


A, which is at the edge of the array, has five gas delivery ports


136


. Each of the gas delivery ports


136


is positioned to divert carrier gas


104


to a different one of atomization cones that develop over the array of ultrasonic transducer discs


120


when the aerosol generator


106


is operating. The gas tube


208


B, which is one row in from the edge of the array, is a shorter tube that has ten gas delivery ports


136


, five each on opposing sides of the gas tube


208


B. The gas tube


208


B, therefore, has gas delivery ports


136


for delivering gas to atomization cones corresponding with each of ten ultrasonic transducer discs


120


. The third gas tube,


208


C, is a longer tube that also has ten gas delivery ports


136


for delivering gas to atomization cones corresponding with ten ultrasonic transducer discs


120


. The design shown in

FIG. 15

, therefore, includes one gas delivery port per ultrasonic transducer disc


120


. Although this is a lower density of gas delivery ports


136


than for the embodiment of the aerosol generator


106


shown in

FIG. 5

, which includes two gas delivery ports per ultrasonic transducer disc


120


, the design shown in

FIG. 15

is, nevertheless, capable of producing a dense, high-quality aerosol without unnecessary waste of gas.




Referring now to

FIG. 16

, the flow of carrier gas


104


relative to atomization cones


162


during operation of the aerosol generator


106


having a gas distribution configuration to deliver carrier gas


104


from gas delivery ports on both sides of the gas tubes


208


, as was shown for the gas tubes


208


A,


208


B and


208


C in the gas distribution configuration shown in FIG.


14


. The carrier gas


104


sweeps both directions from each of the gas tubes


208


.




An alternative, and preferred, flow for carrier gas


104


is shown in FIG.


17


. As shown in

FIG. 17

, carrier gas


104


is delivered from only one side of each of the gas tubes


208


. This results in a sweep of carrier gas from all of the gas tubes


208


toward a central area


212


. This results in a more uniform flow pattern for aerosol generation that may significantly enhance the efficiency with which the carrier gas


104


is used to produce an aerosol. The aerosol that is generated, therefore, tends to be more heavily loaded with liquid droplets.




Another configuration for distributing carrier gas in the aerosol generator


106


is shown in

FIGS. 18 and 19

. In this configuration, the gas tubes


208


are hung from a gas distribution plate


216


adjacent gas flow holes


218


through the gas distribution plate


216


. In the aerosol generator


106


, the gas distribution plate


216


would be mounted above the liquid feed, with the gas flow holes positioned to each correspond with an underlying ultrasonic transducer. Referring specifically to

FIG. 19

, when the ultrasonic, generator


106


is in operation, atomization cones


162


develop through the gas flow holes


218


, and the gas tubes


208


are located such that carrier gas


104


exiting from ports in the gas tubes


208


impinge on the atomization cones and flow upward through the gas flow holes. The gas flow holes


218


, therefore, act to assist in efficiently distributing the carrier gas


104


about the atomization cones


162


for aerosol formation. It should be appreciated that the gas distribution plates


218


can be made to accommodate any number of the gas tubes


208


and gas flow holes


218


. For convenience of illustration, the embodiment shown in

FIGS. 18 and 19

shows a design having only two of the gas tubes


208


and only


16


of the gas flow holes


218


. Also, it should be appreciated that the gas distribution plate


216


could be used alone, without the gas tubes


208


. In that case, a slight positive pressure of carrier gas


104


would be maintained under the gas distribution plate


216


and the gas flow holes


218


would be sized to maintain the proper velocity of carrier gas


104


through the gas flow holes


218


for efficient aerosol generation. Because of the relative complexity of operating in that mode, however, it is not preferred.




Aerosol generation may also be enhanced through mounting of ultrasonic transducers at a slight angle and directing the carrier gas at resulting atomization cones such that the atomization cones are tilting in the same direction as the direction of flow of carrier gas. Referring to

FIG. 20

, an ultrasonic transducer disc


120


is shown. The ultrasonic transducer disc


120


is tilted at a tilt angle


114


. (typically less than 10 degrees), so that the atomization cone


162


will also have a tilt. It is preferred that the direction of flow of the carrier gas


104


directed at the atomization cone


162


is in the same direction as the tilt of the atomization cone


162


.




Referring now to

FIGS. 21 and 22

, a gas manifold


220


is shown for distributing gas to the gas tubes


208


in a


400


transducer array design. The gas manifold


220


includes a gas distribution box


222


and piping stubs


224


for connection with gas tubes


208


(shown in FIG.


14


). Inside the gas distribution box


222


are two gas distribution plates


226


that form a flow path to assist in distributing the gas equally throughout the gas distribution box


222


, to promote substantially equal delivery of gas through the piping stubs


224


. The gas manifold


220


, as shown in

FIGS. 21 and 22

, is designed to feed eleven gas tubes


208


. For the


400


transducer design, a total of four gas manifolds


220


are required.




Referring now to

FIGS. 23 and 24

, the generator lid


140


is shown for a


400


transducer array design. The generator lid


140


mates with and covers the liquid feed box


190


(shown in FIGS.


12


and


13


). The generator lid


140


, as shown in

FIGS. 23 and 24

, has a hood design to permit easy collection of the aerosol


108


without subjecting droplets in the aerosol


108


to sharp edges on which droplets may coalesce and be lost, and possibly interfere with the proper operation of the aerosol generator


106


. When the aerosol generator


106


is in operation, the aerosol


108


would be withdrawn via the aerosol exit opening


164


through tile generator lid


140


.




Although the aerosol generator


106


produces a high quality aerosol


108


having a high droplet loading, it is often desirable to further concentrate the aerosol


108


prior to introduction into the furnace


110


. Referring now to

FIG. 25

, a process flow diagram is shown for one embodiment of the present invention involving such concentration of the aerosol


108


. As shown in

FIG. 25

, the aerosol


108


from the aerosol generator


106


is sent to an aerosol concentrator


236


where excess carrier gas


238


is withdrawn from the aerosol


108


to produce a concentrated aerosol


240


, which is then fed to the furnace


110


.




The aerosol concentrator


236


typically includes one or more virtual impactors capable of concentrating droplets in the aerosol


108


by a factor of greater than about 2, preferably by a factor of greater than about 5, and more preferably by a factor of greater than about 10, to produce the concentrated aerosol


240


. According to the present invention, the concentrated aerosol


240


should typically contain greater than about 1×10


7


droplets per cubic centimeter, and more preferably from about 5×10


7


to about 5×10


8


droplets per cubic centimeter. A concentration of about 1×10


8


droplets per cubic centimeter of the concentrated aerosol is particularly preferred, because when the concentrated aerosol


240


is loaded more heavily than that, then the frequency of collisions between droplets becomes large enough to impair the properties of the concentrated aerosol


240


, resulting in potential contamination of the particulate product


116


with an undesirably large quantity of over-sized particles. For example, if the aerosol


108


has a concentration of about 1×10


7


droplets per cubic centimeter, and the aerosol concentrator


236


concentrates droplets by a factor of 10, then the concentrated aerosol


240


will have a concentration of about 1×10


8


droplets per cubic centimeter. Stated another way, for example, when the aerosol generator generates the aerosol


108


with a droplet loading of about 0.167 milliliters liquid feed


102


per liter of carrier gas


104


, the concentrated aerosol


240


would be loaded with about 1.67 milliliters of liquid feed


102


per liter of carrier gas


104


, assuming the aerosol


108


is concentrated by a factor of 10.




Having a high droplet loading in aerosol feed to the furnace provides the important advantage of reducing the heating demand on the furnace


110


and the size of flow conduits required through the furnace. Also, other advantages of having a dense aerosol include a reduction in the demands on cooling and particle collection components, permitting significant equipment and operational savings. Furthermore, as system components are reduced in size, powder holdup within the system is reduced, which is also desirable. Concentration of the aerosol stream prior to entry into the furnace


110


, therefore, provides a substantial advantage relative to processes that utilize less concentrated aerosol streams.




The excess carrier gas


238


that is removed in the aerosol concentrator


236


typically includes extremely small droplets that are also removed from the aerosol


108


. Preferably, the droplets removed with the excess carrier gas


238


have a weight average size of smaller than about 1.5 microns, and more preferably smaller than about 1 micron and the droplets retained in the concentrated aerosol


240


have an average droplet size of larger than about 2 microns. For example, a virtual impactor sized to treat an aerosol stream having a weight average droplet size of about three microns might be designed to remove with the excess carrier gas


238


most droplets smaller than about 1.5 microns in size. Other designs are also possible. When using the aerosol generator


106


with the present invention, however, the loss of these very small droplets in the aerosol concentrator


236


will typically constitute no more than about 10 percent by weight, and more preferably no more than about 5 percent by weight, of the droplets originally in the aerosol stream that is fed to the concentrator


236


. Although the aerosol concentrator


236


is useful in some situations, it is normally not required with the process of the present invention, because the aerosol generator


106


is capable, in most circumstances, of generating an aerosol stream that is sufficiently dense. So long as the aerosol stream coming out of the aerosol generator


102


is sufficiently dense, it is preferred that the aerosol concentrator not be used. It is a significant advantage of the present invention that the aerosol generator


106


normally generates such a dense aerosol stream that the aerosol concentrator


236


is not needed. Therefore, the complexity of operation of the aerosol concentrator


236


and accompanying liquid losses may typically be avoided.




It is important that the aerosol stream (whether it has been concentrated or not) that is fed to the furnace


110


have a high droplet flow rate and high droplet loading as would be required for most industrial applications. With the present invention, the aerosol stream fed to the furnace preferably includes a droplet flow of greater than about 0.5 liters per hour, more preferably greater than about 2 liters per hour, still more preferably greater than about 5 liters per hour, even more preferably greater than about 10 liters per hour, particularly greater than about 50 liters per hour and most preferably greater than about 100 liters per hour; and with the droplet loading being typically greater than about 0.04 milliliters of droplets per liter of carrier gas, preferably greater than about 0.083 milliliters of droplets per liter of carrier gas


104


, more preferably greater than about 0.167 milliliters of droplets per liter of carrier gas


104


, still more preferably greater than about 0.25 milliliters of droplets per liter of carrier gas


104


, particularly greater than about 0.33 milliliters of droplets per liter of carrier gas


104


and most preferably greater than about 0.83 milliliters of droplets per liter of carrier gas


104


.




One embodiment of a virtual impactor that could be used as the aerosol concentrator


236


will now be described with reference to

FIGS. 26-32

. A virtual impactor


246


includes an upstream plate assembly


248


(details shown in

FIGS. 27-29

) and a downstream plate assembly


250


(details shown in FIGS.


25


-


32


), with a concentrating chamber


262


located between the upstream plate assembly


248


and the downstream plate assembly


250


.




Through the upstream plate assembly


248


are a plurality of vertically extending inlet slits


254


. The downstream plate assembly


250


includes a plurality of vertically extending exit slits


256


that are in alignment with the inlet slits


254


. The exit slits


256


are, however, slightly wider than the inlet slits


254


. The downstream plate assembly


250


also includes flow channels


258


that extend substantially across the width of the entire downstream plate assembly


250


, with each flow channel


258


being adjacent to an excess gas withdrawal port


260


.




During operation, the aerosol


108


passes through the inlet slits


254


and into the concentrating chamber


262


. Excess carrier gas


238


is withdrawn from the concentrating chamber


262


via the excess gas withdrawal ports


260


. The withdrawn excess carrier gas


238


then exits via a gas duct port


264


. That portion of the aerosol


108


that is not withdrawn through the excess gas withdrawal ports


260


passes through the exit slits


256


and the flow channels


258


to form the concentrated aerosol


240


. Those droplets passing across the concentrating chamber


262


and through the exit slits


256


are those droplets of a large enough size to have sufficient momentum to resist being withdrawn with the excess carrier gas


238


.




As seen best in

FIGS. 27-32

, the inlet slits


254


of the upstream plate assembly


248


include inlet nozzle extension portions


266


that extend outward from the plate surface


268


of the upstream plate assembly


248


. The exit slits


256


of the downstream plate assembly


250


include exit nozzle extension portions


270


extending outward from a plate surface


272


of the downstream plate assembly


250


. These nozzle extension portions


266


and


270


are important for operation of the virtual impactor


246


, because having these nozzle extension portions


266


and


270


permits a very close spacing to be attained between the inlet slits


254


and the exit slits


256


across the concentrating chamber


262


, while also providing a relatively large space in the concentrating chamber


262


to facilitate efficient removal of the excess carrier gas


238


.




Also as best seen in

FIGS. 27-32

, the inlet slits


254


have widths that flare outward toward the side of the upstream plate assembly


248


that is first encountered by the aerosol


108


during operation. This flared configuration reduces the sharpness of surfaces encountered by the aerosol


108


, reducing the loss of aerosol droplets and potential interference from liquid buildup that could occur if sharp surfaces were present. Likewise, the exit slits


256


have a width that flares outward towards the flow channels


258


, thereby allowing the concentrated aerosol


240


to expand into the flow channels


258


without encountering sharp edges that could cause problems.




As noted previously, both the inlet slits


254


of the upstream plate assembly


248


and the exit slits


256


of the downstream plate assembly


250


are vertically extending. This configuration is advantageous for permitting liquid that may collect around the inlet slits


254


and the exit slits


256


to drain away. The inlet slits


254


and the exit slits


256


need not, however, have a perfectly vertical orientation. Rather, it is often desirable to slant the slits backward (sloping upward and away in the direction of flow) by about five to ten degrees relative to vertical, to enhance draining of liquid off of the upstream plate assembly


248


and the downstream plate assembly


250


. This drainage function of the vertically extending configuration of the inlet slits


254


and the outlet slits


256


also inhibits liquid build-up in the vicinity of the inlet slits


248


and the exit slits


250


, which liquid build-up could result in the release of undesirably large droplets into the concentrated aerosol


240


.




As discussed previously, the aerosol generator


106


of the present invention produces a concentrated, high quality aerosol of micro-sized droplets having a relatively narrow size distribution. It has been found, however, that for many applications the process of the present invention is significantly enhanced by further classifying by size the droplets in the aerosol


108


prior to introduction of the droplets into the furnace


110


. In this manner, the size and size distribution of particles in the particulate product


116


are further controlled.




Referring now to

FIG. 33

, a process flow diagram is shown for one embodiment of the process of the present invention including such droplet classification. As shown in

FIG. 33

, the aerosol


108


from the aerosol generator


106


goes to a droplet classifier


280


where oversized droplets are removed from the aerosol


108


to prepare a classified aerosol


282


. Liquid


284


from the oversized droplets that are being removed is drained from the droplet classifier


280


. This drained liquid


284


may advantageously be recycled for use in preparing additional liquid feed


102


.




Any suitable droplet classifier may be used for removing droplets above a predetermined size. For example, a cyclone could be used to remove over-size droplets. A preferred droplet classifier for many applications, however, is an impactor. One embodiment of an impactor for use with the present invention will now be described with reference to

FIGS. 34-38

.




As seen in

FIG. 34

, an impactor


288


has disposed in a flow conduit


286


a flow control plate


290


and an impactor plate assembly


292


. The flow control plate


290


is conveniently mounted on a mounting plate


294


.




The flow control plate


290


is used to channel the flow of the aerosol stream toward the impactor plate assembly


292


in a manner with controlled flow characteristics that are desirable for proper impaction of oversize droplets on the impactor plate assembly


292


for removal through the drains


296


and


314


. One embodiment of the flow control plate


290


is shown in FIG.


35


. The flow control plate


290


has an array of circular flow ports


296


for channeling flow of the aerosol


108


towards the impactor plate assembly


292


with the desired flow characteristics.




Details of the mounting plate


294


are shown in FIG.


36


. The mounting plate


294


has a mounting flange


298


with a large diameter flow opening


300


passing therethrough to permit access of the aerosol


108


to the flow ports


296


of the flow control plate


290


(shown in FIG.


35


).




Referring now to

FIGS. 37 and 38

, one embodiment of an impactor plate assembly


292


is shown. The impactor plate assembly


292


includes an impactor plate


302


and mounting brackets


304


and


306


used to mount the impactor plate


302


inside of the flow conduit


286


. The impactor plate


302


and the flow channel plate


290


are designed so that droplets larger than a predetermined size will have momentum that is too large for those particles to change flow direction to navigate around the impactor plate


302


.




During operation of the impactor


288


, the aerosol


108


from the aerosol generator


106


passes through the upstream flow control plate


290


. Most of the droplets in the aerosol navigate around the impactor plate


302


and exit the impactor


288


through the downstream flow control plate


290


in the classified aerosol


282


. Droplets in the aerosol


108


that are too large to navigate around the impactor plate


302


will impact on the impactor plate


302


and drain through the drain


296


to be collected with the drained liquid


284


(as shown in FIG.


34


).




The configuration of the impactor plate


302


shown in

FIG. 33

represents only one of many possible configurations for the impactor plate


302


. For example, the impactor


288


could include an upstream flow control plate


290


having vertically extending flow slits therethrough that are offset from vertically extending flow slits through the impactor plate


302


, such that droplets too large to navigate the change in flow due to the offset of the flow slits between the flow control plate


290


and the impactor plate


302


would impact on the impactor plate


302


to be drained away. Other designs are also possible.




In a preferred embodiment of the present invention, the droplet classifier


280


is typically designed to remove droplets from the aerosol


108


that are larger than about 15 microns in size, more preferably to remove droplets larger than about 10 microns in size, even more preferably to remove droplets of a size larger than about 8 microns in size and most preferably to remove droplets larger than about 5 microns in size. The droplet classification size in the droplet classifier is preferably smaller than about 15 microns, more preferably smaller than about 10 microns, even more preferably smaller than about 8 microns and most preferably smaller than about 5 microns. The classification size, also called the classification cut point, is that size at which half of the droplets of that size are removed and half of the droplets of that size are retained. Depending upon the specific application, however, the droplet classification size may be varied, such as by changing the spacing between the impactor plate


302


and the flow control plate


290


or increasing or decreasing aerosol velocity through the jets in the flow control plate


290


. Because the aerosol generator


106


of the present invention initially produces a high.quality aerosol


108


, having a relatively narrow size distribution of droplets, typically less than about 30 weight percent of liquid feed


102


in the aerosol


108


is removed as the drain liquid


284


in the droplet classifier


288


, with preferably less than about 25 weight percent being removed, even more preferably less than about 20 weight percent being removed and most preferably less than about 15 weight percent being removed. Minimizing the removal of liquid feed


102


from the aerosol


108


is particularly important for commercial applications to increase the yield of high quality particulate product


116


. It should be noted, however, that because of the superior performance of the aerosol generator


106


, it is frequently not required to use an impactor or other droplet classifier to obtain a desired absence of oversize droplets to the furnace. This is a major advantage, because the added complexity and liquid losses accompanying use of an impactor may often be avoided with the process of the present invention.




Sometimes it is desirable to use both the aerosol concentrator


236


and the droplet classifier


280


to produce an extremely high quality aerosol stream for introduction into the furnace for the production of particles of highly controlled size and size distribution. Referring now to

FIG. 39

, one embodiment of the present invention is shown incorporating both the virtual impactor


246


and the impactor


288


. Basic components of the virtual impactor


246


and the impactor


288


, as shown in

FIG. 39

, are substantially as previously described with reference to

FIGS. 26-38

. As seen in

FIG. 39

, the aerosol


108


from the aerosol generator


106


is fed to the virtual impactor


246


where the aerosol stream is concentrated to produce the concentrated aerosol


240


. The concentrated aerosol


240


is then fed to the impactor


288


to remove large droplets therefrom and produce the classified aerosol


282


, which may then be fed to the furnace


110


. Also, it should be noted that by using both a virtual impactor and an impactor, both undesirably large and undesirably small droplets are removed, thereby producing a classified aerosol with a very narrow droplet size distribution. Also, the order of the aerosol concentrator and the aerosol classifier could be reversed, so that the aerosol concentrator


236


follows the aerosol classifier


280


.




One important feature of the design shown in

FIG. 39

is the incorporation of drains


310


,


312


,


314


,


316


and


296


at strategic locations. These drains are extremely important for industrial-scale particle production because buildup of liquid in the process equipment can significantly impair the quality of the particulate product


116


that is produced. In that regard, drain


310


drains liquid away from the inlet side of the first plate assembly


248


of the virtual impactor


246


. Drain


312


drains liquid away from the inside of the concentrating chamber


262


in the virtual impactor


246


and drain


314


removes liquid that deposits out of the excess carrier gas


238


. Drain


316


removes liquid from the vicinity of the inlet side of the flow control plate


290


of the impactor, while the drain


296


removes liquid from the vicinity of the impactor plate


302


. Without these drains


310


,


312


,


314


,


316


and


296


, the performance of the apparatus shown in

FIG. 39

would be significantly impaired. All liquids drained in the drains


310


,


312


,


314


,


316


and


296


may advantageously be recycled for use to prepare the liquid feed


102


.




With some applications of the process of the present invention, it may be possible to collect the particles


112


directly from the output of the furnace


110


. More often, however, it will be desirable to cool the particles


112


exiting the furnace


110


prior to collection of the particles


112


in the particle collector


114


. Referring now to

FIG. 40

, one embodiment of the process of the present invention is shown in which the particles


112


exiting the furnace


110


are sent to a particle cooler


320


to produce a cooled particle stream


322


, which is then feed to the particle collector


114


. Although the particle cooler


320


may be any cooling apparatus capable of cooling the particles


112


to the desired temperature for introduction into the particle collector


114


, traditional heat exchanger designs are not preferred. This is because a traditional heat exchanger design ordinarily directly subjects the aerosol stream, in which the hot particles


112


are suspended, to cool surfaces. In that situation, significant losses of the particles


112


occur due to thermophoretic deposition of the hot particles


112


on the cool surfaces of the heat exchanger. According to the present invention, a gas quench apparatus is provided for use as the particle cooler


320


that significantly reduces thermophoretic losses compared to a traditional heat exchanger.




Referring now to

FIGS. 41-43

, one embodiment of a gas quench cooler


330


is shown. The gas quench cooler includes a perforated conduit


332


housed inside of a cooler housing


334


with an annular space


336


located between the cooler housing


334


and the perforated conduit


332


. In fluid communication with the annular space


336


is a quench gas inlet box


338


, inside of which is disposed a portion of an aerosol outlet conduit


340


. The perforated conduit


332


extends between the aerosol outlet conduit


340


and an aerosol inlet conduit


342


. Attached to an opening into the quench gas inlet box


338


are two quench gas feed tubes


344


. Referring specifically to

FIG. 43

, the perforated tube


332


is shown. The perforated tube


332


has a plurality of openings


345


. The openings


345


, when the perforated conduit


332


is assembled into the gas quench cooler


330


, permit the flow of quench gas


346


from the annular space


336


into the interior space


348


of the perforated conduit


332


. Although the openings


345


are shown as being round holes, any shape of opening could be used, such as slits. Also, the perforated conduit


332


could be a porous screen. Two heat radiation shields


347


prevent downstream radiant heating from the furnace. In most instances, however, it will not be necessary to include the heat radiation shields


347


, because downstream radiant heating from the furnace is normally not a significant problem. Use of the heat radiation shields


347


is not preferred due to particulate losses that accompany their use.




With continued reference to

FIGS. 41-43

, operation of the gas quench cooler


330


will now be described. During operation, the particles


112


, carried by and dispersed in a gas stream, enter the gas quench cooler


330


through the aerosol inlet conduit


342


and flow into the interior space


348


of perforated conduit


332


. Quench gas


346


is introduced through the quench gas feed tubes


344


into the quench gas inlet box


338


. Quench gas


346


entering the quench gas inlet box


338


encounters the outer surface of the aerosol outlet conduit


340


, forcing the quench gas


346


to flow, in a spiraling, swirling manner, into the annular space


336


, where the quench gas


346


flows through the openings


345


through the wails of the perforated conduit


332


. Preferably, the gas


346


retains some swirling motion even after passing into the interior space


348


. In this way, the particles


112


are quickly cooled with low losses of particles to the walls of the gas quench cooler


330


. In this manner, the quench gas


346


enters in a radial direction into the interior space


348


of the perforated conduit


332


around the entire periphery, or circumference, of the perforated conduit


332


and over the entire length of the perforated conduit


332


. The cool quench gas


346


mixes with and cools the hot particles


112


, which then exit through the aerosol outlet conduit


340


as the cooled particle stream


322


. The cooled particle stream


322


can then be sent to the particle collector


114


for particle collection. The temperature of the cooled particle stream


322


is controlled by introducing more or less quench gas. Also, as shown in

FIG. 41

, the quench gas


346


is fed into the quench cooler


330


in counter flow to flow of the particles. Alternatively, the quench cooler could be designed so that the quench gas


346


is fed into the quench cooler in concurrent flow with the flow of the particles


112


. The amount of quench gas


346


fed to the gas quench cooler


330


will depend upon the specific material being made and the specific operating conditions. The quantity of quench gas


346


used, however, must be sufficient to reduce the temperature of the aerosol steam including the particles


112


to the desired temperature. Typically, the particles


112


are cooled to a temperature at least below about 200° C., and often lower. The only limitation on how much the particles


112


are cooled is that the cooled particle stream


322


must be at a temperature that is above the condensation temperature for water as another condensible vapor in the stream. The temperature of the cooled particle stream


322


is often at a temperature of from about 50° C. to about 120° C.




Because of the entry of quench gas


346


into the interior space


348


of the perforated conduit


322


in a radial direction about the entire circumference and length of the perforated conduit


322


, a buffer of the cool quench gas


346


is formed about the inner wall of the perforated conduit


332


, thereby significantly inhibiting the loss of hot particles


112


due to thermophoretic deposition on the cool wall of the perforated conduit


332


. In operation, the quench gas


346


exiting the openings


345


and entering into the interior space


348


should have a radial velocity (velocity inward toward the center of the circular cross-section of the perforated conduit


332


) of larger than the thermophoretic velocity of the particles


112


inside the perforated conduit


332


in a direction radially outward toward the perforated wall of the perforated conduit


332


.




As seen in

FIGS. 41-43

, the gas quench cooler


330


includes a flow path for the articles


112


through the gas quench cooler of a substantially constant cross-sectional shape and area. Preferably, the flow path through the gas quench cooler


330


will have the same cross-sectional shape and area as the flow path through the furnace


110


and through the conduit delivering the aerosol


108


from the aerosol generator


106


to the furnace


110


. In one embodiment, however, it may be necessary to reduce the cross-sectional area available for flow prior to the particle collector


114


. This is the case, for example, when the particle collector includes a cyclone for separating particles in the cooled particle stream


322


from gas in the cooled particle stream


322


. This is because of the high inlet velocity requirements into cyclone separators.




Referring now to

FIG. 44

, one embodiment of the gas quench cooler


330


is shown in combination with a cyclone separator


392


. The perforated conduit


332


has a continuously decreasing cross-sectional area for flow to increase the velocity of flow to the proper value for the feed to cyclone separator


392


. Attached to the cyclone separator


392


is a bag filter


394


for final clean-up of overflow from the cyclone separator


392


. Separated particles exit with underflow from the cyclone separator


392


and may be collected in any convenient container. The use of cyclone separation is particularly preferred for powder having a weight average size of larger than about 1 micron, although a series of cyclones may sometimes be needed to get the desired degree of separation. Cyclone separation is particularly preferred for powders having a weight average size of larger than about 1.5 microns. Also, cyclone separation is best suited for high density materials. Preferably, when particles are separated using a cyclone, the particles have a composition with specific gravity of greater than about 5.




In an additional embodiment, the process of the present invention can also incorporate compositional modification of the particles


112


exiting the furnace. Most commonly, the compositional modification will involve forming on the particles


112


a material phase that is different than that of the particles


112


, such as by coating the particles


112


with a coating material. One embodiment of the process of the present invention incorporating particle coating is shown in FIG.


45


. As shown in

FIG. 45

, the particles


112


exiting from the furnace


110


go to a particle coater


350


where a coating is placed over the outer surface of the particles


112


to form coated particles


352


, which are then sent to the particle collector


114


for preparation of the particulate product


116


.




In the particle coater


350


, the particles


112


are coated using any suitable particle coating technology, such as by gas-to-particle conversion. Preferably, however, the coating is accomplished by chemical vapor deposition (CVD) and/or physical vapor deposition (PVD). In CVD coating, one or more vapor phase coating precursors are reacted to form a surface coating on the particles


112


. Preferred coatings deposited by CVD include oxides, such as silica, and elemental metals. In PVD coating, coating material physically deposits on the surface of the particles


112


. Preferred coatings deposited by PVD include organic materials and elemental metals, such as elemental silver, copper and gold. Another possible surface coating method is surface conversion of the surface portion of the particles


112


by reaction with a vapor phase reactant to convert a surface portion of the particles to a different material than that originally contained in the particles


112


. Although any suitable apparatus may be used for the particle coater


350


, when a gaseous coating feed involving coating precursors is used, such as for CVD and PVD, feed of the gaseous coating feed is introduced through a circumferentially perforated conduit, such as was described for the quench cooler


330


with reference to

FIGS. 41-44

. In some instances, the quench cooler


330


may also act as the particle coater


350


, when coating material precursors are included in the quench gas


346


.




With continued reference primarily to

FIG. 45

, in a preferred embodiment, when the particles


112


are coated according to the process of the Present invention, the particles


112


are also manufactured via the aerosol process of the present invention, as previously described. The process of the present invention can, however, be used to coat particles that have been premanufactured by a different process, such as by a liquid precipitation route. When coating particles that have been premanufactured by a different route, such as by liquid precipitation, it is preferred that the particles remain in a dispersed state from the time of manufacture to the time that the particles are introduced in slurry form into the aerosol generator


106


for preparation of the aerosol


108


to form the dry particles


112


in the furnace


110


, which particles


112


can then be coated in the particle coater


350


. Maintaining particles in a dispersed state from manufacture through coating avoids problems associated with agglomeration and redispersion of particles if particles must be redispersed in the liquid feed


102


for feed to the aerosol generator


106


. For example, for particles originally precipitated from a liquid medium, the liquid medium containing the suspended precipitated particles could be used to form the liquid feed


102


to the aerosol generator


106


. It should be noted that the particle coater


350


could be an integral extension of the furnace


110


or could be a separate piece of equipment.




In a further embodiment of the present invention, following preparation of the particles


112


in the furnace


110


, the particles


112


may then be structurally modified to impart desired physical properties prior to particle collection. Referring now to

FIG. 46

, one embodiment of the process of the present invention is shown including such structural particle modification. The particles


112


exiting the furnace


110


go to a particle modifier


360


where the particles are structurally modified to form modified particles


362


, which are then sent to the particle collector


114


for preparation of the particulate product


116


. The particle modifier


360


is typically a furnace, such as an annealing furnace, which may be integral with, the furnace


110


or may be a separate heating device. Regardless, it is important that the particle modifier


360


have temperature control that is independent of the furnace


110


, so that the proper conditions for particle modification may be provided separate from conditions required of the furnace


110


to prepare the particles


112


. The particle modifier


360


, therefore, typically provides a temperature controlled environment and necessary residence time to effect the desired structural modification of the particles


112


.




The structural modification that occurs in the particle modifier


360


may be any modification to the crystalline structure or morphology of the particles


112


. For example, the particles


112


may be annealed in the particle modifier


360


to densify the particles


112


or to recrystallize the particles


112


into a polycrystalline or single crystalline form. Also, especially in the case of composite particles


112


, the particles may be annealed for a sufficient time to permit redistribution within the particles


112


of different material phases.




The initial morphology of composite particles made in the furnace


110


, according to the present invention, could take a variety of forms, depending upon the specified materials involved and the specific processing conditions. Examples of, some possible composite particle morphologies, manufacturable according to the present invention are shown in FIG.


47


. These morphologies could be of the particles as initially produced in the furnace


110


or that result from structural modification in the particle modifier


360


. Furthermore, the composite particles could include a mixture of the morphological attributes shown in FIG.


47


.




Referring now to

FIG. 48

, an embodiment of the apparatus of the present invention is shown that includes the aerosol generator


106


(in the form of the 400 transducer array design) the aerosol concentrator


236


(in the form of a virtual impactor), the droplet classifier


280


(in the form of an impactor), the furnace


110


, the particle cooler


320


(in the form of a gas quench cooler) and the particle collectors


114


(in the form of a bag filter). All process equipment components are connected via appropriate flow conduits that are substantially free of sharp edges that could detrimentally cause liquid accumulations in the apparatus. Also, it should be noted that flex connectors


370


are used upstream and downstream of the aerosol concentrator


236


and the droplet classifier


280


. By using the flex connectors


370


, it is possible to vary the angle of slant off vertically extending slits in the aerosol concentrator


236


and/or the droplet classifier


280


. In this way, a desired slant for the vertically extending slits may be set to optimize the.draining characteristics off the vertically extending slits.




Aerosol generation with the process of the present invention has thus far been described with respect to the ultrasonic aerosol generator. Use of the ultrasonic generator is preferred for the process of the present invention because of the extremely high quality and dense aerosol generated. In some instances, however, the aerosol generator for the process of the present invention may have a different design depending upon the specific application. For example, when larger particles are desired, such as those having a weight average size of larger than about 3 microns, a spray nozzle atomizer may be preferred. For smaller-particle applications, however, and particularly for those applications to produce particles smaller than about 3 microns, and preferably smaller than about 2 microns in size, as is generally desired with the silver-containing particles of the present invention, the ultrasonic generator, as described herein, is particularly preferred. In that regard, the ultrasonic generator of the present invention is particularly preferred for when making particles with a weight average size of from about 0.2 micron to about 3 microns.




Although ultrasonic aerosol generators have been used for medical applications and home humidifiers, use of ultrasonic generators for spray pyrolysis particle manufacture has largely been confined to small-scale, experimental situations. The ultrasonic aerosol generator of the present invention described with reference to

FIGS. 5-24

, however, is well suited for commercial production of high quality silver-containing powders with a small average size and a narrow size distribution. In that regard, the aerosol generator produces a high quality aerosol, with heavy droplet loading and at a high rate of production. Such a combination of small droplet size, narrow size distribution, heavy droplet loading, and high production rate provide significant advantages over existing aerosol generators that usually suffer from at least one of inadequately narrow size distribution, undesirably low droplet loading, or unacceptably low production rate.




Through the careful and controlled design of the ultrasonic generator of the present invention, an aerosol may be produced typically having greater than about 70 weight percent (and preferably greater than about 80 weight percent) of droplets in the size range of from about 1 micron to about 10 microns, preferably in a size range of from about 1 micron to about 5 microns and more preferably from about 2 microns to about 4 microns. Also, the ultrasonic generator of the present invention is capable of delivering high output rates of liquid feed in the aerosol. The rate of liquid feed, at the high liquid loadings previously described, is preferably greater than about 25 milliliters per hour per transducer, more preferably greater than about 37.5 milliliters per hour per transducer, even more preferably greater than about 50 milliliters per hour per transducer and most preferably greater than about 100 millimeters per hour per transducer. This high level of performance is desirable for commercial operations and is accomplished with the present invention with a relatively simple design including a single precursor bath over an array of ultrasonic transducers. The ultrasonic generator is made for high aerosol production rates at a high droplet loading, and with a narrow size distribution of droplets. The generator preferably produces an aerosol at a rate of greater than about 0.5 liter per hour of droplets, more preferably greater than about 2 liters per hour of droplets, still more preferably greater than about 5 liters per hour of droplets, even more preferably greater than about 10 liters per hour of droplets and most preferably greater than about 40 liters per hour of droplets. For example, when the aerosol generator has a


400


transducer design, as described with reference to

FIGS. 7-24

, the aerosol generator is capable of producing a high quality aerosol having high droplet loading as previously described, at a total production rate of preferably greater than about 10 liters per hour of liquid feed, more preferably greater than about 15 liters per hour of liquid feed, even more preferably greater than about 20 liters per hour of liquid feed and most preferably greater than about 40 liters per hour of liquid feed.




Under most operating conditions, when using such an aerosol generator, total particulate product produced is preferably greater than about 0.5 gram per hour per transducer, more preferably greater than about 0.75 gram per hour per transducer, even more preferably greater than about 1.0 gram per hour per transducer and most preferably greater than about 2.0 grams per hour per transducer.




The concentrations of soluble precursors in the liquid feed


102


will vary depending upon the particular materials involved and the particular particle composition and particle morphology desired. For most applications, when soluble precursor(s) are used, the soluble precursor(s) are present at a concentration of from about 1-50 weight percent of the liquid feed.


102


. In any event, however, when soluble precursors are used, the precursors should be at a low enough concentration to permit the liquid feed to be ultrasonically atomized and to prevent premature precipitation of materials from the liquid feed


102


. The concentration of suspended particulate precursors will also vary depending upon the particular materials involved in the particular application.




One significant aspect of the process of the present invention for manufacturing particulate materials is the unique flow characteristics encountered in the furnace relative to laboratory scale systems. The maximum Reynolds number attained for flow in the furnace


110


with the present invention is very high, typically in excess of 500, preferably in excess of 1,000 and more preferably in excess of 2,000. In most instances, however, the maximum Reynolds number for flow in the furnace will not exceed 10,000, and preferably will not exceed 5,000. This is significantly different from lab-scale systems where the Reynolds number for flow in a reactor is typically lower than 50 and rarely exceeds 100.




The Reynolds number is a dimensionless quantity characterizing flow of a fluid which, for flow through a circular cross sectional conduit is defined as:








Re=ρvdμ








where:ρ=fluid density;




v=fluid mean velocity;




d=conduit inside diameter; and




μ=fluid viscosity.




It should be noted that the values for density, velocity and viscosity will vary along the length of the furnace


110


. The maximum Reynolds number in the furnace


110


is typically attained when the average stream temperature is at a maximum, because the gas velocity is at a very high value due to gas expansion upon heating.




One problem with operating under flow conditions at a high Reynolds number is that undesirable volatilization of components is much more likely to occur than in systems having flow characteristics as found in laboratory-scale systems. The volatilization problem occurs with the present invention, because the furnace is typically operated over a substantial section of the heating zone in a constant wall heat flux mode, due to limitations in heat transfer capability. This is significantly different than operation of a furnace at a laboratory scale, which typically involves operation of most of the heating zone of the furnace in a uniform wall temperature mode, because the heating load is sufficiently small that the system is not heat transfer limited.




With the present invention, it is typically preferred to heat the aerosol stream in the heating zone of the furnace as quickly as possible to the desired temperature range for particle manufacture. Because of flow characteristics in the furnace and heat transfer limitations, during rapid heating of the aerosol the wall temperature of the furnace can significantly exceed the maximum average target temperature for the stream. This is a problem because, even though the average stream temperature may be within the range desired, the wall temperature may become so hot that components in the vicinity of the wall are subjected to temperatures high enough to undesirably volatilize the components. This volatilization near the wall of the furnace can cause formation of significant quantities of ultrafine particles that are outside of the size range desired.




Therefore, with the present invention, it is preferred that when the flow characteristics in the furnace are such that the Reynolds number through any part of the furnace exceeds 500, more preferably exceeds 1,000, and most preferably exceeds 2,000, the maximum wall temperature in the furnace should be kept at a temperature that is below the temperature at which a desired component of the final particles would exert a vapor pressure not exceeding about 200 millitorr, more preferably not exceeding about 100 millitorr, and most preferably not exceeding about 50 millitorr. Furthermore, the maximum wall temperature in the furnace should also be kept below a temperature at which an intermediate component, from which a final component is to be at least partially derived, should also have a vapor pressure not exceeding the magnitudes noted for components of the final product.




For example, when the particles being manufactured are substantially pure silver, the maximum wall temperature should be kept at a temperature at which silver exerts a vapor pressure not exceeding about 200 millitorr, preferably not exceeding about 100 millitorr, and most preferably not exceeding about 50 millitorr. In that regard, silver exerts a vapor pressure of about 200 millitorr at about 1210° C., a vapor pressure of about 100 millitorr at about 1180° C., and a vapor pressure of about 50 millitorr at about 1130° C. Furthermore, it should be noted that when making an alloy, such as a silver/palladium alloy, the alloy composition will often exert a much lower vapor pressure than would pure silver. Nevertheless, the maximum wall temperature should preferably be maintained at a temperature at which the vapor pressure of pure silver would not exceed the stated vapor pressure levels. This is because that during pyrolysis in the furnace, silver may volatilize prior to alloying with the other metal, causing the undesirable formation of ultrafine silver particles.




In addition to maintaining the furnace wall temperature below a level that could create volatilization problems, it is also important that this not be accomplished at the expense of the desired average stream temperature. The maximum average stream temperature must be maintained at a high enough level so that the particles will have a desired high density. The maximum average stream temperature should, however, generally be a temperature at which a component in the final particles, or an intermediate component from which a component in the final particles is at least partially derived, would exert a vapor pressure not exceeding about 100 millitorr, preferably not exceeding about 50 millitorr, and most preferably not exceeding about 25 millitorr.




So long as the maximum, wall temperature and the average stream temperature are kept below the point at which detrimental volatilization occurs, it is generally desirable to heat the stream as fast as possible and to remove resulting particles from the furnace immediately after the maximum average stream temperature is reached in the furnace. With the present invention, the average residence time in the heating zone of the furnace may typically be maintained at shorter than about 4 seconds, preferably shorter than about 2 seconds, more preferably shorter than about 1 second and most preferably shorter than about 0.5 second.




Another significant issue with respect to operating the process of the present invention, which includes high aerosol flow rates, is loss within the system of materials intended for incorporation into the final particulate product. Material losses in the system can be quite high if the system is not properly operated. If system losses are too high, the process would not be practical for use in the manufacture of particulate products of many materials. This has typically not been a major consideration with laboratory-scale systems.




One significant potential for loss with the process of the present invention is thermophoretic losses that occur when a hot aerosol stream is in the presence of a cooler surface. In that regard, the use of the quench cooler, as previously described, with the process of the present invention provides an efficient way to cool the particles without unreasonably high thermophoretic losses. There is also, however, significant potential for losses occurring at the end section of the furnace and between the furnace and the cooling unit.




It has been found that thermophoretic losses in the back end of the furnace can be significantly controlled if the heating zone of the furnace is operated such that the maximum average stream temperature is not attained until hear the end of the heating zone in the furnace, and at least not until the last third of the heating zone. When the heating zone includes a plurality of heating sections, the maximum average stream temperature should not occur until at least the last heating section. Furthermore, the heating zone should extend to as close to the exit of the furnace as possible. This is counter to conventional thought which is to typically maintain the exit portion of the furnace at a low temperature to avoid having to seal the furnace outlet at a high temperature. Such cooling of the exit portion of the furnace, however, significantly promotes thermophoretic losses. Furthermore, the potential for operating problems that could result in thermophoretic losses at the back end of the furnace are reduced with the very short residence times in the furnace for the present invention, as discussed previously.




Ideally, upon exiting the furnace the aerosol would be cooled instantaneously. This is not possible. It is possible, however, to make the residence time between the furnace outlet and the cooling unit as short as possible. Furthermore, it is desirable to insulate the aerosol conduit occurring between the furnace exit and the cooling unit entrance. Even more preferred is to insulate that conduit and, even more preferably, to also heat that conduit so that the wall temperature of that conduit is at least as high as the average stream temperature of the aerosol stream. Furthermore, it is desirable that the cooling unit operate in a manner such that the aerosol is quickly cooled in a manner to prevent thermophoretic losses during cooling. The quench cooler, described previously, is very effective for cooling with low losses. Furthermore, to keep the potential for thermophoretic losses very low, it is preferred that the residence time of the aerosol stream between attaining the maximum average stream temperature in the furnace and a point at which the aerosol has been cooled to an average stream temperature below about 200° C. is shorter than about 2 seconds, more preferably shorter than about 1 second, and even more preferably shorter than about 0.5 second and most preferably shorter than about 0.1 second. In most instances, the maximum average stream temperature attained in the furnace will be greater than about 800° C. Furthermore, the total residence time from the beginning of the heating zone in the furnace to a point at which the average stream temperature is at a temperature below about 200° C. should typically be shorter than about 5 seconds, preferably shorter than about 3 seconds, more preferably shorter than about 2 seconds, and most preferably shorter than about 1 second.




Another part of the process with significant potential for thermophoretic losses is after particle cooling until the particles are finally collected. Proper particle collection is very important to reducing losses within the system. The potential for thermophoretic losses is significant following particle cooling because the aerosol stream is still at an elevated temperature to prevent detrimental condensation of water in the aerosol stream. Therefore, cooler surfaces of particle collection equipment can result in significant thermophoretic losses.




To reduce the potential for thermophoretic losses before the particles are finally collected, it is important that the transition between the cooling unit and particle collection be as short as possible. Preferably, the output from the quench cooler is immediately sent to a particle separator, such as a filter unit or a cyclone. In that regard, the total residence time of the aerosol between attaining the maximum average stream temperature in the furnace and the final collection of the particles is preferably shorter than about 2 seconds, more preferably shorter than about 1 second, still more preferably shorter than about 0.5 second and most preferably shorter than about 0.1 second. Furthermore, the residence time between the beginning of the heating zone in the furnace and final collection of the particles is preferably shorter than about 6 seconds, more preferably shorter than about 3 seconds, even more preferably shorter than about 2 seconds, and most preferably shorter than about 1 second. Furthermore, the potential for thermophoretic losses may further be reduced by insulating the conduit section between the cooling unit and the particle collector and, even more preferably, by also insulating around the filter, when a filter is used for particle collection. The potential for losses may be reduced even further by heating of the conduit section between the cooling unit and the particle collection equipment, so that the internal equipment surfaces are at least slightly warmer than the aerosol stream average stream temperature. Furthermore, when a filter is used for particle collection, the filter could be heated. For example, insulation could be wrapped around a filter unit, with electric heating inside of the insulating layer to maintain the walls of the filter unit at a desired elevated temperature higher than the temperature of filter elements in the filter unit, thereby reducing thermophoretic particle losses to walls of the filter unit.




Even with careful operation to reduce thermophoretic losses, some losses will still occur. For example, some particles will inevitably be lost to walls of particle collection equipment, such as the walls of a cyclone or filter housing. One way to reduce these losses, and correspondingly increase product yield, is to periodically wash the interior of the particle collection equipment to remove particles adhering to the sides. In most cases, the wash fluid will be water, unless water would have a detrimental effect on one of the components of the particles. For example, the particle collection equipment could include parallel collection paths. One path could be used for active particle collection while the other is being washed. The wash could include an automatic or manual flush without disconnecting the equipment. Alternatively, the equipment to be washed could be disconnected to permit access to the interior of the equipment for a thorough wash. As an alternative to having parallel collection paths, the process could simply be shut down occasionally to permit disconnection of the equipment for washing. The removed equipment could be replaced with a clean piece of equipment and the process could then be resumed while the disconnected equipment is being washed.




For example, a cyclone or filter unit could periodically be disconnected and particles adhering to interior walls could be removed by a water wash. The particles could then be dried in a low temperature dryer, preferably at a temperature of lower than about 50° C.




In one embodiment, wash fluid used to wash particles from the Interior walls of particle collection equipment includes a surfactant. Some of the surfactant will adhere to the surface of the particles. This could be advantageous to reduce agglomeration tendency of the particles and to enhance dispersibility of the particles in a thick film past formulation. The surfactant could be selected for compatibility with the specific paste formulation anticipated.




Another area for potential losses in the system, and for the occurrence of potential operating problems, is between the outlet of the aerosol generator and the inlet of the furnace. Losses here are not due to thermophoresis, but rather to liquid coming out of the aerosol and impinging and collecting on conduit and equipment surfaces. Although this loss is undesirable from a material yield standpoint, the loss may be even more detrimental to other aspects of the process. For example, water collecting on surfaces may release large droplets that can lead to large particles that detrimentally contaminate the particulate product. Furthermore, if accumulated liquid reaches the furnace, the liquid can cause excessive temperature gradients within the furnace tube, which can cause furnace tube failure, especially for ceramic tubes. One way to reduce the potential for undesirable liquid buildup in the system is to provide adequate drains, as previously described. In that regard, it is preferred that a drain be placed as close as possible to the furnace inlet to prevent liquid accumulations from reaching the furnace. The drain should be placed, however, far enough in advance of the furnace inlet such that the stream temperature is lower than about 80° C. at the drain location.




Another way to reduce the potential for undesirable liquid buildup is for the conduit between the aerosol generator outlet and the furnace inlet be of a substantially constant cross sectional area and configuration. Preferably, the conduit beginning with the aerosol generator outlet, passing through the furnace and continuing to at least the cooling unit inlet is of a substantially constant cross sectional area and geometry.




Another way to reduce the potential for undesirable buildup is to heat at least a portion, and preferably the entire length, of the conduit between the aerosol generator and the inlet to the furnace. For example the conduit could be wrapped with a heating tape to maintain the inside walls of the conduit at a temperature higher than the temperature of the aerosol. The aerosol would then tend to concentrate toward the center of the conduit due to thermophoresis. Fewer aerosol droplets would, therefore, be likely to impinge on conduit walls or other surfaces making the transition to the furnace.




Another way to reduce the potential for undesirable liquid buildup is to introduce a dry gas into the aerosol between the aerosol generator and the furnace. Referring now to

FIG. 49

, one embodiment of the process is shown for adding a dry gas


119


to the aerosol


108


before the furnace


110


. Addition of the dry gas


118


causes vaporization of at least a part of the moisture in the aerosol


108


, and preferably substantially all of the moisture in the aerosol


108


, to form a dried aerosol


119


, which is then introduced into the furnace


110


.




The dry gas


118


will most often be dry air, although in some instances it may be desirable to use dry nitrogen gas or some other dry gas. If a sufficient quantity of the dry gas


118


is used, the droplets of the aerosol


108


are substantially completely dried to beneficially form dried precursor particles in aerosol form for introduction into the furnace


110


, where the precursor particles are then pyrolyzed to make a desired particulate product. Also, the use of the dry gas


118


typically will reduce the potential for contact between droplets of the aerosol and the conduit wall, especially in the critical area in the vicinity of the inlet to the furnace


110


. In that regard, a preferred method for introducing the dry gas


118


into the aerosol


108


is from a radial direction into the aerosol


108


. For example, equipment of substantially the same design as the quench cooler, described previously with reference to

FIGS. 41-43

, could be used, with the aerosol


108


flowing through the interior flow path of the apparatus and the dry gas


118


being introduced through perforated wall of the perforated conduit. An alternative to using the dry gas


118


to dry the aerosol


108


would be to use a low temperature thermal preheater/dryer prior to the furnace


110


to dry the aerosol


108


prior to introduction into the furnace


110


. This alternative is not, however, preferred.




Still another way to reduce the potential for losses due to liquid accumulation is to operate the process with equipment configurations such that the aerosol stream flows in a vertical direction from the aerosol generator to and through the furnace. For smaller-size particles, those smaller than about 1.5 microns, this vertical flow should, preferably, be vertically upward. For larger-size particles, such as those larger than about 1.5 microns, the vertical flow is preferably vertically downward.




Furthermore, with the process of the present invention, the potential for system losses is significantly reduced because the total system residence time from the outlet of the generator until collection of the particles is typically shorter than about 12 seconds, preferably shorter than about 10 seconds, more preferably shorter than about 7 seconds and most preferably shorter than about 5 seconds.




According to the process of the present invention, and using the apparatus of the present invention, silver-containing particles of a variety of compositions and for a variety of uses may be made. Many of the these particles are producible in novel powder form and include many compositions believed to have not been heretofore produced by spray pyrolysis processing.




Many applications use silver-containing powders, and it is usually desirable that particles of the powder have one or more of the following properties: high purity; high crystallinity; high density; small particle size; narrow particle size distribution; spherical morphology; controlled surface chemistry; and reduced agglomeration. The particles of the present invention are well suited for such applications and may be used to replace silver-containing particles of the prior art that may currently be used.




Important applications for the silver-containing particles of the present invention are in the manufacture of electronic products. In some instances, the particles will be used in the electronic products in particulate form, while in other instances the particles may be sintered onto a substrate or onto a monolithic mass.




For example, the particles may be used in electrically conductive or electrically resistive portions of electronic products. One such application is for the manufacture of electronic products including silver-containing thick film features that are active in the function of the product when used. For example, the particles may be used to make capacitor electrodes for chip capacitor designs, including supercapacitors, and especially for multi-layer capacitors. Also, the particles may be used in the manufacture of resistive films, such as may be used in serpentine meander circuits in surge protector resistor systems. Also, the particles could be used to make resistive heating lines in a pattern on a window for deicing and defogging, such as used in the rear window of many automobiles.




Another application is to make thick film metallized terminations on electronic components. These terminations are common on surface mount components to permit easy interconnection of the component into an electrical circuit. For example, the component may be mounted on a circuit board by soldering to the metallized terminations.




Another application is to make thick film electrical interconnections within electronic products. For example, the particles may be used to make electrical interconnections within a multi-chip module or other circuit board.




Another application is to make a thick film grid for collecting or distributing electrical current. For example, the particles may be used to make the lines for resistive heating on windows for deicing and/or defogging. Also, the particles may be used to make a grid electrode for a photovoltaic module.




Still another application is as a particulate component in paste or powder formulations incorporated into various electronic products. For example, the particles may be included in resistor powder or paste formulations for resistors. Also, the particles may be included in powder or paste electrode formulations, such as may be used in electrochemical cells, including batteries and fuel cells.




Another important application for the powder is to make silver-containing films for electromagnetic shielding to prevent interference of electromagnetic waves with the operation of electronic components, such as in cellular telephones and computers. For example, such films are used in cellular telephones to prevent interference of certain electronic components with radio frequency signals being processed in the device.




Another important application for the powder is to make thermally conductive films for conducting heat away from active electronic components, such as resistors, inductors, capacitors, transistors and integrated circuits, which often generate significant heat during operation that must be removed to avoid malfunction of the device. Many other application are also possible for the silver-containing powder of the present invention, some of which are discussed below.




The powder of the present invention is of a high quality that is desirable for many applications. The silver-containing particles of the powder have a small average particle size. Although the preferred average size of the particles will vary according to the particular application, the number average particle size is typically in a range having a lower limit of about 0.1 micron, preferably about 0.2 micron, more preferably about 0.5 micron and most preferably about 0.8 micron; and having an upper limit of about 5 microns, preferably about 3 microns and more preferably about 2 microns.




Another indication of the high quality of the powder is based on the weight average particle size and size distribution of silver-containing particles on a weight basis. This is because a weight basis is more sensitive to the presence of oversize particles, which are usually more detrimental in the powder of the present invention than undersize particles, although both are generally undesirable. In that regard, it is preferred that the silver-containing powder has a weight average particle size in a range having a lower limit of about 0.1 micron, preferably about 0.2 micron, more preferably about 0.5 micron and most preferably about 0.8 micron; and having an upper limit of about 5 microns, preferably about 3 microns and more preferably about 2 microns.




The silver-containing particles of the powder also typically have a narrow particle size distribution, such that the majority of particles are substantially the same size. Preferably, at least about 75 percent by number, more preferably at least about 85 percent by number, even more preferably at least about 90 percent by number and most preferably at least about 95 percent by number of the particles are smaller than twice the number average particle size. Thus, when the number average particle size is about 2 microns it is preferred, for example, that at least about 75 number percent of the particles are smaller than about 4 microns. Furthers, it is preferred that at least about 75 number percent, more preferably at least about 85 number percent, even more preferably at least about 90 number percent and most preferably at least about 95 number percent of the particles are smaller than about 1.5 times the number average particle size. Thus, when the number average particle size is about 2 microns, it is preferred, for example, that at least about 75 number percent of the particles are smaller than about 3 microns.




Furthermore, the silver-containing particles of the powder have a particle size distribution such that preferably at least about 75 weight percent of the particles, more preferably at least about 85 weight percent of the particles, still more preferably at least about 90 weight percent of the particles, and most preferably at least about 95 weight percent of the particles are smaller than twice the weight average particle size; and even more preferably smaller than about 1.5 times the weight average particle size, in a manner as stated previously with the particle size distribution with respect to number average particle size.




The silver-containing particles of the powder typically have a high degree of purity, and it is preferred that the particles include less than about 0.1 weight percent impurities and more preferably less than about 0.01 weight percent impurities. Most preferably the particles are substantially free of contaminants. The purity of the particles of the present invention is one major advantage over particles manufactured by liquid phase routes. The powders of the present invention are substantially free of contaminants; and particularly surfactants and other organic materials that are often left as residue in powders made by liquid routes. The substantial absence of residual surfactants and other organics is important in making pastes for thick film applications, because the surfactants, or other organics, are often incompatible with other paste ingredients. Also, the presence of such organics or surfactants can sometimes cause complications during film bake-out, and can impair film performance, especially if high electrical conductivity is desired.




The silver-containing particles of the powder also typically have a very high density. Preferably, the powder exhibits a particle density, as measured by helium pycnometry, of at least about 80 percent of theoretical, more preferably at least about 90 percent of theoretical density and even more preferably at least about 95 percent of the theoretical density. Most preferably, the powders exhibit a particle density, as measured by helium pycnometry, of at least about 99 percent of the theoretical density. The theoretical density is that density that the particles would have assuming zero pore volume within the particles.




The silver-containing particles of the powder are also typically substantially spheroidal in shape. A high degree of sphericity is advantageous because the particles are able to be dispersed more readily, imparting advantageous rheological characteristics to paste formulations, including the particles. The powders of the present invention are substantially non-agglomerated and have good dispersibility in a variety of liquid vehicles used in thick film paste formulations.




The silver-containing particles or the powder also typically have good crystallinity. The metallic phase including the silver typically preferably includes a mean crystallite size of larger than about 50 nanometers, and more preferably larger than about 100 nanometers. The metallic phase may be polycrystalline, depending upon manufacturing conditions, or may be single crystal. For example, when the particles consist essentially of only a metallic phase, such as of pure silver or a silver-containing alloy, then the particles may be substantially single crystals of the metallic phase.




Although the silver in the particles may be in any form, including in the form of silver oxide, it is preferred that substantially all of the silver be in elemental form in a metallic phase. This metallic phase may be a silver-containing alloy or may consist essentially of only silver. When reference is made herein to alloys, it should be recognized that the discussion applies equally to intermetallic compounds, which are not true alloys. Preferred alloy metals include palladium (Pd), nickel (Ni), copper (Cu), platinum (Pt), molybdenum (Mo), tungsten (W), tantalum (Ta), aluminum (Al), gold (Au), indium (In), lead (Pb), tin (Sn), bismuth (Bi) and the like. When alloyed with one or more other metals, silver will typically comprise from about 1 weight percent to about 99 weight percent. In one embodiment, the alloy includes less than about 30 weight percent silver, while in another embodiment the alloy includes greater than about 50 weight percent silver, or even greater than about 70 weight percent silver. The desired composition of an alloy will vary depending upon the specific application.




One preferred alloy is with palladium. Particles including an Ag:Pd alloy are particularly preferred for use in making internal electrodes of multi-layer capacitors and for electrical interconnections in multi-chip modules. In that regard, however, it has traditionally been difficult to prepare a true alloy between silver and palladium, i.e., homogeneous at the molecular level. This has also been found to be the case with spray pyrolysis unless the conditions of particle manufacture are carefully controlled.




The particular alloy composition will depend upon the specific application for which the particles are intended. For most applications, however, silver/palladium alloys of the present invention preferably include from about 30 weight percent to about 90 weight percent silver and from about 10 weight percent to about 70 weight percent palladium, with more specific alloys in that preferred range being more preferred for different applications.




For electronic components, including multi-layer capacitors and multi-chip modules, manufactured in low fire processes (with firing temperatures generally lower than about 700° C.), silver-rich alloys with palladium are preferred. Preferred alloys for low fire processes include from about 10 weight percent to about 30 weight percent palladium and from about 70 weight percent to about 90 weight percent silver. Particularly preferred for low fire processes are alloys having a weight ratio of Pd:Ag of about 20:80 and 30:70.




For electronic components, such as multi-layer capacitors and multi-chip modules, manufactured in high fire processes (with firing temperatures generally above about 800° C.), palladium-rich alloys are preferred. Preferred alloys for high fire processes include from about 50 weight percent to about 70 weight percent palladium and from about 30 weight percent to about 50 weight percent silver. Particularly preferred for high fire processes are alloys having a weight ratio of Pd:Ag of about 50:50 and 70:30.




According to the present invention, it has, surprisingly, been found that certain spray pyrolysis manufacturing conditions are particularly conducive to preparation of a true alloy between silver and palladium.




According to the process of the present invention, when making particles including a silver/palladium alloy, or for making pure silver, the maximum average stream temperature of the aerosol the furnace should ordinarily be in a range with a lower limit of about 900° C., preferably about 950° C., more preferably about 975° C., and even more preferably about 1000° C.; and with an upper limit of about 1300° C., preferably about 1200 ° C., more preferably about 1150° C., even more preferably about 1100° C., and still more preferably about 1050° C. If the temperature is too low, the particles do not adequately densify and significant porosity in the particles can result. As the temperature exceeds about 1100° C., however, the vapor pressure of silver can become significant, and significant vaporization of silver during particle manufacture appears to occur, which can result in the production of undesirable ultrafines of silver. This problem becomes particularly pronounced above about 1200° C. Such vaporization can result in significant segregation of silver and defeat the objective of preparing an alloy between silver and palladium. The presence of a segregated, unalloyed silver chase in a powder is undesirable because of the high mobility of silver in microelectronic devices when the silver is in an unalloyed state and because the palladium will tend to be more susceptible to undesirable oxidation during manufacture of microelectronic devices as more of the silver segregates.




When making alloys of palladium and silver, maximum average stream temperatures in the furnace should preferably be in a range of from about 950° C. to about 1100° C. More preferred is a temperature range of from about 975° C. to about 1050° C., wish a manufacture temperature of approximately 1,000° C. being particularly preferred. These temperatures are also preferred for silver-rich alloys, such as one including about 30 weight percent palladium and 70 weight percent silver.




Furthermore, it has been found that the vapor pressure of silver should generally be maintained at a relatively low level during processing to avoid the production of ultrafines that degrade the quality of the particulate product. This is especially important when preparing alloys. When the temperature of the furnace is maintained at a temperature low enough to prevent the vapor pressure of the silver from exceeding about 100 millitorr, and more preferably about 50 millitorr, it has been most surprisingly found that the resulting particles are generally of a higher quality, with a reduced amount of silver fines.




The silver-containing particles may include only a single material phase, which would include the silver. Alternatively, the silver-containing particles may be multi-phase, or composite, particles. In multi-phase particles, the silver is present in a first material phase. The particles also include a second material phase that is different than the first material phase. The multi-phase particles may, however, include more than two material phases.




Single phase particles will typically consist essentially of a single metallic phase of silver metal or a silver-containing alloy. Multi-phase particles also typically include a silver-containing metallic phase and at least one other phase. Besides the silver-containing metallic phase, the other phases that may be present are other metallic phases, that are preferably substantially free of silver, or nonmetallic phases, that are also preferably substantially free of silver.




For many applications, whether single phase or multi-phase particles are used, the silver-containing metallic phase will frequently comprise greater than about 50 weight percent silver, preferably greater than about 60 weight percent silver, more preferably greater than about 70 weight percent silver, even more preferably greater than about 80 weight percent silver and most preferably greater than about 90 weight percent silver. Examples of applications when an essentially pure silver or silver-rich metallic phase is desirable include internal electrodes for multi-layer capacitors manufactured in a process involving a low firing temperature (such as lower than about 700° C.), thick film metallized terminations for surface-mountain electronic components, conductive lines for printed circuits, horizontal interconnects in multi-chip modules and vertical interconnects in multi-chip modules. It should be recognized, however, that many applications exist where silver may be present in much lower proportions. For example, the metallic phase of some particles may include 30 weight percent or less of silver, especially for multi-layer capacitors manufactured in a process involving a high firing temperature (such as higher than about 800° C.).




Multi-phase particles may be desirable for a number of reasons, including: (1) a reduction in the amount of the expensive silver that is used in the particle to provide electrical conductivity by incorporating a second material phase that is a less expensive filler material; (2) to improve flowability of the particles in a paste and to improve resistance of particles to deformations; (3) to modify physical properties of the particles for improved compatibility with a substrate supporting a conductive film made using the particles, including modifications of the thermal coefficient of linear expansion, modification of sintering/densification characteristics, and modification of surface energy to alter wetability of the particles; and (4) to modify electrical or dielectric properties for customized electronic components. Some examples of uses of the multi-phase, silver-containing particles include use as catalysts or catalytic supports and as particles in paste formulations used in thick film applications, including manufacture of multi-layer capacitors, multi-chip components, super capacitors and other electronic components, batteries and fuel cells.




In the case of multi-phase particles, the particles include at least a first material phase and a second material phase. Additional material phases may be present, if desired. The first material phase includes silver, and is typically an electrically conductive metallic phase, with the silver being in the form of substantially pure silver or an alloy with one or more other metal. The second material phase, which is different than the first material phase, is typically substantially free of silver.




The second material phase may be a metallic phase. When the second material phase is a metallic phase, it may consist essentially of a single metal, or may include an alloy of two or more metals. Examples of some metals that may be included in the second material phase include palladium, nickel, copper, platinum, molybdenum, tungsten, tantalum, aluminum, gold, indium, lead, tin, bismuth, and the like.




For most applications, however, the second material phase will be nonmetallic, in which case the second material phase will also typically not be electrically conductive. Preferred in a nonmetallic second material phase are a variety of ceramic materials, glass materials or other materials that would alter the sintering characteristics of the particles. Control of sintering characteristics of the particles is particularly important when the particles are to be used in a paste for manufacture of a silver-containing film on a substrate including a ceramic layer, which is typically dielectric, to more closely match with the sintering and shrinkage characteristics of the powder particles with those of the substrate, thereby reducing the occurrence of problems such as film cracking and delamination. This is particularly important when layers are to be cofired.




The second material phase may include an oxide material, such as oxides of zinc, tin, barium, molybdenum, manganese, vanadium, niobium, tantalum, tungsten, iron, silver, chromium, cobalt, nickel, copper, yttrium, iridium, beryllium, silicon, zirconium, aluminum, bismuth, magnesium, thorium and gadolinium. Some preferred oxides are silica, alumina, titania, zirconia, yttria, and oxides of copper, bismuth and tin. Another preferred group of oxides includes borates, titanates, silicates (including borosilicates and aluminosilicates), aluminates, niobates, zirconates and tantalates. Examples include mullite, cordierite, barium titanate, neodymium titanate, magnesium titanate, calcium titanate, strontium titanate and lead titanate. Additional materials that could be used as the second material phase include glass materials, such as glass frits and glazes. Particularly preferred are second material phases including titanates, and especially including a titanate of one or more of barium, strontium, neodymium, calcium, magnesium and lead. The titanate may be of a single metal or may be a mixed metal titanate, such as, for example Ba


x


Sr


1−x


TiO


3


. Furthermore, a variety of other ceramic materials may be used in the second material phase, such as carbides and nitrides, including silicon nitride. Also, porcelain could be used in the second material phase.




The multi-phase particles of the present invention may typically be used in place of single phase metallic particles for most application, so long as the proportion of the second material phase making up the particles is small enough not to be detrimental to the application. Often, however, the use of multi-phase particles significantly enhances the performance of films made using the particles relative to the use of single phase metallic particles.




One use for the multi-phase particles of the present invention is to form a film including silver in a metallic phase, often electrically conductive, adjacent to a layer of nonmetallic material, often dielectric. In that case, the multi-phase particles will typically include in the second phase a nonmetallic material that enhances suitability for use with the nonmetallic layer, resulting in improved compatibility and bonding between the nonmetallic layer and the film including the metallic phase. For example, if the silver-containing film is a conductive electrode line on a silicon-based photovoltaic layer, the silver-containing particles may include a glass frit in the second material phase of the silver-containing particles. For many of these applications, the multi-phase silver-containing particles will include in the second material phase a nonmetallic material that is also present in an adjacent nonmetallic layer. Thus, when the nonmetallic layer is of a dielectric material, that dielectric material is also present in the second material phase. When the nonmetallic layer is a ceramic layer, for example, the multi-phase particles could include in the second phase a ceramic material that is also present in the ceramic layer. As one specific example, titanate materials are often used in the dielectric layers of multi-layer capacitors, and the silver-containing particles used to make internal electrodes for the multi-layer capacitor could include in the second material phase the same titanate that is present in the dielectric layers.




Generally, for applications involving the use of multi-phase particles to form a metallic electrically conductive phase adjacent a dielectric layer, the second material phase of the particles typically comprises less than about 30 weight percent of the particles, preferably less than about 20 weight percent of the particles, and more preferably less than about 10 weight percent of the particles.




Multiphase particles having a very low content of the second material phase are generally preferred when the particles will be used to make electrically conductive features, because the second material phase is typically dielectric and reduces electrical conductivity. In many instances, therefore, and especially those including silica, alumina or a titanate as the second material phase, the second material phase typically comprises less than about 10 weight percent of the particles, more preferably less than about 5 weight percent of the particles, and even more preferably less than about 2 weight percent of the particles; but the second material phase will typically be at least about 0.5 weight percent of the particles. In this way, enhanced compatibility between the dielectric layer and the electrically conductive film may be accomplished without significant detrimental impact to electrical conductivity. Also, the use of the multiphase particles to make electrically conductive films will typically result in improved adhesion for better bonding with the dielectric layer, thereby reducing the potential for delaminations.




One preferred powder of multi-phase particles includes the metallic first phase and a second phase including carbon. The carbon is typically an electrically conductive form of carbon, such as in the form of graphite or carbon black. The metallic phase is typically substantially pure silver. Those multi-phase particles are particularly well suited for use as electrode materials, especially in electrochemical cells. These multi-phase particles may also be advantageously used as conductive filler particles in electrically conductive adhesive formulations.




A number of different variations of the process of the present invention are possible for making the multi-phase particles. In one embodiment, a silver-containing precursor for the first material phase and a second precursor for the second material phase may both be included in the liquid feed


102


(referring back, to

FIGS. 1-47

and the discussion relating thereto). In such a case, both precursors could be in solution in a flowable liquid of the liquid feed


102


. Alternatively, one or both of the precursors could be particles suspended in the flowable liquid. Also, it is possible that the liquid feed


102


could include more than two precursors for the multi-phase particles. In another embodiment, the silver-containing precursor could initially be in the liquid feed


102


, which is then processed in aerosol form in the furnace


110


to prepare silver-containing precursor particles. The precursor particles are then coated with the second material phase in a separate step, in a manner similar to that described previously with reference to FIG.


45


. This two-step process of initially preparing silver-containing precursor particles and then coating the precursor particles on the fly in an aerosol state is particularly advantageous because problems are avoided that are encountered in particle manufacture procedures, such as liquid route precipitation, in which precursor particles would have to be collected and then redispersed prior to coating. Not only is collection and redispersion cumbersome, but problems are often encountered due to particle agglomeration, which is avoided with the on-the-fly coating of the present invention. Avoidance of particle agglomeration is very important when a uniform particle coating is desired.




As noted previously, the multi-phase particles of the present invention may include a variety of particle morphologies. With reference again to

FIG. 47

, the multi-phase particles may include an intimate mixture of the first material phase and the second material phase, as in the multi-phase particle


500


. Typically, with such an intimate mixture, the first material phase is a continuous phase throughout which the second material phase is dispersed. Another possible morphology is for the first material phase to be in the form of a large core that is covered by a thin coating layer of the second material phase, as shown for particles


502


and


504


in FIG.


47


. Whether such coatings form a smooth coating, such as shown in particle


502


, or a rough and bumpy coating, such as shown in particle


504


, will depend upon the wetability characteristics of the first and second material phases and the conditions under which the materials are processed, and especially the processing temperature. For example, in gas-to-particle conversion processes, higher temperatures during the coating operation tends to result in smoother, more continuous coatings. The multi-phase particles could also include a small core of one material phase surrounded by a thick layer of the other material phase, as shown for particle


506


. Also, the first and second material phase could completely segregate in a manner shown for particle


508


. Furthermore, the multi-phase particles are not limited to two material phases. For example, particle


510


in

FIG. 47

shows a multi-phase particle including a core of second material phase domains dispersed in a matrix of the first material phase, and with the core being coated by a third material phase.




With continued reference to

FIG. 47

, it should be noted that the first material phase and the second material phase could constitute any of the phases in particles


500


,


502


,


504


,


506


,


508


and


510


. For most applications, however, the first material phase, which includes silver, will be the more abundant phase, and the second material phase will be the less abundant phase.




In the case of coated particles, the second material phase will often be in the form of a coating around a core including the first material phase. In the case or catalyst materials, however, the first material phase may be a coating or a disperse phase on the surface of a support of the second material phase. For particles including intimate mixtures of the two phases, the first material phase will typically be the continuous phase and the second material phase will typically be the disperse phase.




For most applications, the multi-phase particles will include greater than about 50 weight percent of the first material phase, more preferably greater than about 60 weight percent of the first material phase, even more preferably greater than about 70 weight percent of the first material phase and most preferably greater than about 80 weight percent of the first material phase. In the case of multi-phase particles including thin coating layers of the second material phase, the first material phase may comprise 90 weight percent or more of the particles. Conversely, the second material phase typically will comprise less than about 50 weight percent of the multi-phase particles, preferably less than about 40 weight percent, more preferably less than about 30 weight percent and even more preferably less than about 20 weight percent. In the case of thin coatings of the second material phase, the second material phase may comprise 10 percent or less of the particles. Even in the case of coated particles, however, the second material phase will typically comprise greater than about 0.5 weight percent, and preferably greater than about 1 weight percent, of the particles.




Because most applications for multi-phase particles of the present invention include the use of either a particle including the first material phase in a large core surrounded by a thin coating of the second material phase or an intimate mixture of the first material phase as a continuous phase with the second material as a disperse phase, those particular situations will now be discussed below in greater detail.




One preferred class of multi-phase particles are coated particles in which the first material phase forms a core and the second material chase forms a thin coating layer about the outer surface of the core. The second material phase may include any of the materials previously listed as being suitable for the second material phase.




With the present invention, the coating including the second material phase may be made as a relatively uniform layer that substantially entirely covers the core of the first material phase. One method for making multi-phase particles including the second material phase as a uniform coating is as described previously with reference to FIG.


45


. In that regard, the second material phase is typically formed on a precursor particle, which includes the first material phase, by techniques as previously described. A preferred coating technique is CVD. CVD is a well known deposition technique in which a precursor for the second material phase is reacted in the vapors phase to form the second material phase. Generally, precursors for CVD are metal-containing compounds, for example, inorganic compounds, metal organics and organometallics. Examples of some vapor phase precursors for CVD of inorganic coatings include silanes, metal formates, metal acetates, metal oxalates, metal carboxylates, metal alkyls, metal aryls, metal alkoxides, metal ketonates (especially beta-diketonates), metal amides, metal hydrides, metal oxyhalides, and metal halides (especially metal chlorides and metal bromides). For example, to deposit a coating of silica, a vaporous silane precursor, such as silicon tetrachloride, may be decomposed and converted to silica at elevated temperature in the presence of oxygen or water vapor, with the silica then depositing on the surface of silver-containing precursor particles.




Typically, a coating deposited by CVD or by PVD will result in an average coating thickness of from about 10 nanometers to about 200 nanometers. Preferred coatings have an average thickness of thinner than about 100 nanometers, more preferably thinner than about 50 nanometers and most preferably thinner than about 25 nanometers.




Applications for coated multi-phase particles include the manufacture of electrically conductive films for electronic devices, such as multi-layer capacitors and multi-chip modules. In the case of many coatings such as silica, the coating is useful to beneficially alter the sintering and/or shrinkage characteristics of the particle for improved compatibility with a ceramic substrate.




Another way to make coated multi-phase particles is to provide precursors for both the first material phase and the second material phase in the feed liquid


102


(as described with respect to FIGS.


1


-


49


). As noted previously, each precursor in the feed, liquid


102


could be either in the liquid phase, e.g., in solution in a flowable liquid, or in the form of particles suspended by the flowable liquid. The multi-phase particles would then form in the furnace


110


as liquid is removed from aerosol droplets. It should be noted that, in the case of multiple phases forming simultaneously in the furnace, the different phases are typically initially formed as an intimate mixture of the phases. Generally, higher processing temperatures and longer residence times will result in redistribution of the material phases to the desired morphology of a coating of one material phase about a core of the other material phase, assuming that the two material phases have the proper wetability characteristics. Alternatively, it is possible that redistribution of the phases could result in complete segregation of the phases, as shown by the multi-phase particles


508


in FIG.


47


. When redistribution of the material phases is desired to form a coated particle morphology, a processing embodiment such as that described previously with reference to

FIG. 46

may be advantageous.




When making coated particles with precursors for both the first material phase and the second material phase in the liquid feed


102


, a first precursor for the silver-containing first material phase could comprise preformed silver-containing particles to be coated. The precursor for the second material phase could also be in particulate form, or could be in solution in a liquid phase. For example, a soluble precursor, such as from dissolution of a metal alkoxide could be used as a precursor for the second material phase. In the case of metal alkoxides, it should be recognized that in aqueous solution the dissolved metal alkoxide usually reacts to form other soluble components, which will function as a soluble precursor. This could be the case in the preparation of particles including titania or alumina as the second material phase. In the case of silica as the second material phase, the precursor will typically be small silica particles, which are preferably of colloidal size, or silica dissolved in solution.




The manufacture of multi-phase particles with an intimately mixed morphology for the different material phases is typically accomplished by initially including a precursor for both the first material phase and the second material phase in a liquid feed


102


, as previously described. As noted, the process may be substantially the same as the process used to prepare particles with a coating morphology, except the processing conditions may be altered so that the material phases do not redistribute, and are instead retained in an intimately mixed state. Generally, lower operating temperatures in the furnace


110


and shorter residence times, with rapid particle cooling, promote an intimate mixture of the phases.




Multi-phase particles of an intimately mixed morphology are particularly useful for modifying sintering/densification temperatures of the particle, reducing shrinkage that occurs during firing in thick film applications, and modifying the electrical or other properties of the particle for special applications.




As noted previously, the silver-containing particles of the present invention may be used in the manufacture of a variety of products, which products are also within the scope of the present invention, as are the methods for making those products. The powders typically may include silver-containing particles of only a single phase and/or including any of the multi-phase particles previously discussed. The use of multi-phase particles, however, is often preferred. Furthermore, for all of the applications discussed below, a powder having any combination of the characteristics of size, size distribution, sphericity, crystallinity and any other characteristic described herein for the powders of the present invention. In general, high levels of sphericity and crystallinity and with a narrow size distribution are preferred. Although average particle sizes may be any convenient size described previously. For some applications, particular particle size ranges are more preferred, as noted when applicable.




The silver-containing powders of the present invention may be used in the manufacture of a variety of electronic products, with the powders typically being used to form electrically conductive features, of varying resistivity, in the products.





FIG. 50

shows one embodiment of a multi-layer capacitor


400


made using the particles of the present invention. The capacitor includes a structure of stacked layers, including electrically conductive internal electrode layers


404


separated by dielectric layers


402


. The dielectric layers may include a variety of dielectric materials, mostly ceramics.




The internal electrode layers


404


are made using a silver-containing powder of the present invention. The capacitor also includes metallized terminations


406


at either end of the capacitor that serve as electrical contacts for interconnecting the capacitors in an electrical circuit when the capacitor is used. The terminations


406


are typically made from a paste including particles of an electrically conductive metal. The terminations


406


are preferably also made from a silver-containing powder of the present invention, as is discussed in greater detail below. The discussion here focuses on use of the particles of the present invention for making the internal electrode layers


404


.




There are a variety of structures and configurations known in the art for multi-layer capacitors, any of which may be made using a silver-containing powder of the present invention. The manufacturing techniques are well known in the art and need not be significantly altered to accommodate use of the silver-containing powders of the present invention. Furthermore, it should be appreciated that although a multi-layer capacitor is discussed as an example, the same principles apply to other capacitor designs, including supercapacitors, that include silver-containing electrodes made by thick film techniques.




The silver-containing powder, however, used to make the internal electrode layers


404


preferably has a weight average particle size in a range having a lower limit of preferably about 0.2 micron and more preferably about 0.3 micron; and an upper limit of preferably about 1 micron, more preferably about 0.8 micron and even more preferably about 0.6 micron. Particularly preferred is a weight average particle size in a range of from about 0.3 micron to about 0.6 micron.




The silver-containing powders of the present invention used to make the internal electrode layers


406


may include the silver in single phase particles having only a silver-containing metallic phase, which is frequently a silver-palladium alloy. Alternatively, in a preferred embodiment, the internal electrode layers


404


are made using, at least in part, silver-containing multi-phase particles that include at least a second material phase, as previously discussed, that modifies the sintering and/or densification properties of the silver-containing particles for enhanced bonding and compatibility with the dielectric layers


402


. Although the second material phase could include any of the materials previously listed, the second material phase preferably includes a dielectric material that is also present in the dielectric layers


404


. Therefore, if the dielectric layers


402


include a titanate, as previously discussed, then the second phase of the silver-containing particles used to make the internal electrode layers


404


would also include at least some of that same titanate. When the stacked layers are then cofired, a bonding zone develops at the interface between adjacent ones of the internal electrode layers


404


and the dielectric layers


402


, with enhanced bonding in the bonding zone due to the inclusion of the dielectric material in the second phase of the multi-phase particles. The use of the multi-phase particles of the present invention to make the internal electrode layers


410


provides a significant performance advantage in terms of bonding and compatibility with the dielectric layers


402


, relative to the use of a simple mixture of dielectric particles and metallic silver-containing particles.




When using multi-phase particles to make the internal electrode layers


404


, it should be recognized that a paste preparation for making the internal electrode layers


404


could include only the multi-phase particles of the present invention, provided that the quantity of the electrically conductive first material phase is sufficient to provide a desired degree of electrical conductivity. Alternatively, a paste from which the internal electrode layers


404


are made could include a mixture of the multi-phase particles and single-phase particles including only a silver-containing electrically conductive metallic phase. Also, particles of any other composition could be added to the paste as deemed desirable.




Referring now to

FIG. 51

, a preferred embodiment of the stacked structure of the multi-layered capacitor


400


is shown. Interposed between the dielectric layers


402


are the electrically conductive internal electrode layers


404


made with silver-containing powder of the present invention. In the structure shown in

FIG. 51

, the internal electrode layers


404


each include only a single silver-containing film. The single silver-containing film is made using single or multi-phase particles, or mixtures of particles.




In another embodiment, however, the internal electrode layers


404


could include sublayers to provide a transition from the dielectric material of the dielectric layers


402


to the metallic material of the internal electrode layers


404


.

FIG. 52

shows stacked layers of one embodiment of a multi-layer capacitor including internal electrode layers


404


comprised of sublayers for gradation of the metallic content in the internal electrode layers


404


. The internal electrode layers


404


each include two first sublayers


408


and one second sublayer


410


. The first sublayers


408


are leaner in a silver-containing, electrically conductive metallic phase than the second sublayers


410


. The first sublayers


408


act as interlayers to enhance bonding and compatibility between the dielectric layers


402


and the more electricity conductive second sublayers


410


. For example, the first sublayers


408


could be made from multi-phase particles, as previously discussed, while the second sublayers


410


are made from single-phase metallic particles. As an alternative, the first sublayers


408


could be made from multi-phase particles having a higher content of dielectric material and the second sublayers


410


could be made from multi-phase particles having a lower content of dielectric material. As yet another alternative, the first sublayers


408


could be made from a mixture of multi-phase and single-phase particles including a higher proportion and the second sublayers


410


could be made from a mixture of multi-phase particles including smaller proportion of the multi-phase particles. As will be appreciated, other alternatives are also possible for obtaining a compositional gradient between sublayers


408


and


410


of the internal electrode layers


404


. Also, more than two sublayers could be used, or the internal electrode layers could include a continuous gradation of composition.




Another important application for the silver-containing powders of the present invention is for use in making metallized terminations on electronic components. Through the metallized terminations, the electronic components may be interconnected into an electrical circuit. These terminations are typically on components adopted for surface mounting, such as on a circuit board, via a solder connection between the metallized terminations of the component and metallized portions of the circuit board. The particles of the present invention may be used in the manufacture of terminations for a variety of electronic components, including capacitors (including multi-layer capacitors, supercapacitors, etc.), inductors (including multi-layer inductors), resistors, fuses, resonators, trimmers, potentiometers, thermisters, varistors and the wrap-around terminations for hybrid circuits. These components are frequently ceramic chip components.




By way of example, metallized terminations are now discussed with reference again to FIG.


50


. Although

FIG. 50

specifically concerns a multi-layer capacitor, the discussion concerning terminations applies equally to metallized terminations on other electronic components. As shown in

FIG. 50

, the multi-layer capacitor


400


includes metallized terminations


406


on opposite ends of the multi-layer capacitor


400


. These metallized terminations


406


may advantageously be used to solder the component for surface mounting, such as on a circuit board, which may be a single-layer board a multi-layer package.




With continued reference to

FIG. 50

, the metallized terminations


406


include at least one electrically-conductive film made using silver-containing powder of the present invention. The powder will often include only single-phase particles; however, multi-phase particles may be used to modify sintering and densification characteristics of the film for better compatibility with a dielectric material of the component, if desired. To make the metallized terminations


406


, the particles are applied from a paste or slurry including the particles by any appropriate technique, such as by dip coating, spraying, brushing or printing. The terminations


406


are then fired to develop a dense, electrically conductive film. Although any convenient firing temperature may be used, firing temperatures are often in the range of from about 300° C. to about 700° C. For making the metallized terminations


406


, the silver-containing powder will preferably have a weight average particle size of from about 0.5 micron to about 2 microns. Furthermore, although the metallic phase of the particles of the present invention are often pure silver for making the metallized terminations


406


, the silver may be in an alloy with another metal when higher performance applications are required. Preferred alloy metals are palladium and/or platinum. Also, as with all of the applications for the silver-containing powders, an additional metal, such as palladium or platinum, could be present in a separate phase in the particles, if desired. This is an alternative to providing another metal in an alloy with silver.




With continued reference to

FIG. 50

, the terminations


406


may comprise only a single layer made using the silver-containing particles of the present invention. Alternatively, however, the terminations


406


may include multiple metallic layers for enhanced performance, and especially for enhanced solderability. For example, one commonly used metallized termination structure includes a silver base film which may be made using powder of the present invention, a nickel barrier film overcoating the base film and a tin plating film overcoating the nickel barrier film.




Another important application of the silver-containing powders of the present invention is to make circuit interconnections in electronic products, and particularly in circuit boards. Such a circuit board may comprise a single layer structure or may comprise a multi-layer structure. Preferred circuit boards are those including one or more dielectric layers of low temperature cofired ceramic on and/or through which electrical interconnections are made using silver-containing powder of the present invention. By low temperature cofired ceramic, it is meant ceramic compositions fireable at a relatively low temperature in a single firing operation in which thick film metallizations are also fired. Firing temperatures for such low temperature cofirings are frequently at a temperature of lower than about 800° C. For cofiring operations, powders of the present invention including multi-phase particles may be advantageously used, although single-phase particles could be used if desired. In the case of a single layer board, the particles of the present invention are useful for making conductive lines for interconnecting different portions of the board where components may be mounted. For multi-layer packages, the silver-containing powders of the present invention may advantageously be used for both horizontal interconnections and vertical interconnections.




The boards may come in a variety of configurations, but all are designed so that electronic components may be mounted on and bound to a surface of the board in a manner to provide desired electrical interconnection between the mounted components. The electronic components could be any components, for example capacitors, inductors, resistors and integrated circuits. Electronic components may be mounted on only one side of the board or may be mounted on both sides of the board. Multi-layer packages may also have electronic components embedded between dielectric layers.




Single-layer boards (those having only a single dielectric layer) are often referred to as hybrid circuit boards, whereas boards having a plurality of stacked dielectric layers are referred to by a variety of names, including multi-layer packages, multi-layer ceramic packages, and multi-chip modules.




With reference now to

FIG. 53

, one embodiment of a multi-layer ceramic package


420


is shown, including examples of several interconnections that may be made using silver-containing powder of the present invention. As seen in

FIG. 53

, the multi-layer ceramic package


420


includes three stacked dielectric layers


422


, which are typically made from low temperature cofired ceramic materials. Shown in

FIG. 53

are conductor lines


424


, to provide horizontal interconnections in the multi-layer ceramic package


420


. Also shown is a filled via


426


providing a vertical interconnection that extends across the entire thickness of the stacked structure. The filled via


426


is covered with a metallized cover pad


428


which enhances the interconnection between the filled via


426


and one of the conductor lines


424


. Also shown is a blind via


430


, which provides vertical interconnection only across one of the dielectric layers


422


. Also shown is an edge metallization


432


, which is a metallic film providing a vertical interconnection across the entire thickness at the edge of the multi-layer ceramic package


420


, and providing a connection to one of the conducting lines


424


.




It should be recognized that the multi-layer ceramic package


420


shown in

FIG. 53

is a very simplified structure showing some features that may be present in a multi-layer ceramic package. It will be appreciated that multi-layer ceramic packages may be constructed having any number of dielectric layers and having a wide variety of vertical and horizontal interconnections. For example, a multi-layer ceramic package may include coated vias, in which the bore of the via is coated with a conductive film.




Any of the horizontal and vertical interconnections in the multi-layer ceramic package.


420


, including the cover pad


428


, may be advantageously made using silver-containing powder of the present invention. The powder may include single-phase metallic particles and/or multi-phase particles. Furthermore, the metallic phase in the particles will often be pure silver, but may include other metals, such as palladium, platinum and/or gold, preferably in an alloy with the silver. Preferably, the silver-containing powder for making interconnections in multi-layer ceramic packages, and in other circuit boards, will have a weight average particle size of from about 0.5 micron to about 2 microns.




Furthermore, it will be appreciated that the surface layer of multi-layer ceramic packages will typically include metallized bonding locations for the mounting of electronic components. These bonding locations may include, for example, wire bond pads or solder pads. These metallized bonding locations may also be made using silver-containing powder of the present invention.




Boards including interconnections made from powder of the present invention may be manufactured by any suitable process known in the art, and need not be significantly modified to accommodate the making of interconnections using powder of the present invention. Typically, multi-layer ceramic packages are made by sequential processing and stacking of ceramic green tapes. The green tapes are punched and formed to provide desired structural features. The metallized features are then added, such as by screen printing of conduction lines and filling of vias by syringe or otherwise. The metallized ceramic layers are then stacked to form a layered structure which is then cofired. Any convenient firing temperature may be used. Often, firing temperatures of from about 300° C. to about 700° C. are used.




In addition to interconnections on circuit boards, silver-containing powder of the present invention may also be advantageously used to form patterned circuit lines for a variety of other applications. Examples include patterned lines for grid electrodes on photovoltaic modules, window deicers/defoggers, antennas, surge resistors, spiral inductors and membrane switches, and lines for flat panel display electrodes. A preferred powder for making these patterned lines has an acceptable average particle size of from about 0.5 micron to about 2 microns.




Referring now to

FIG. 54

, a grid electrode on a photovoltaic module is shown. As shown in

FIG. 54

, a photovoltaic module


440


includes an active photovoltaic layer


442


on top of which a grid electrode has been formed using silver-containing powder of the present invention. The grid electrode includes primary collector lines


444


, each of which collects electric current from different portions of the active photovoltaic layer


442


. The grid electrode also includes a secondary collector line


446


which drains current from the primary collector lines


444


and also collects some current directly from the active photovoltaic layer


442


. The secondary collector line


446


, therefore, acts primarily as an electrical bus to the primary collector lines


444


. When the photovoltaic module


440


includes a plurality of secondary conductor lines


446


, then those secondary conductor lines


446


are further connected together for removing current from the photovoltaic module


440


for use in an electric circuit. Grid electrodes of the type shown in

FIG. 54

may be a front or back electrode, but are most often used for a front electrode. By a front electrode, it is meant that it is on the side of the photovoltaic module facing the sun during operation. A back electrode would be on the side facing away from the sun during operation. The active photovoltaic layer


442


may be of any photovoltaic cell design, but often includes a silicon layer. These types of grid electrodes are frequently used on silicon-based photovoltaic modules, and particularly on those of polycrystalline silicon. When silver used to make the grid electrode is in the form of an alloy, it is often an alloy with aluminum.




Another example of patterned current lines is shown in

FIG. 55

for a window defogger/deicer.

FIG. 55

shows a car


460


including a rear, window


462


on which a circuit grid for a deicer/defogger


464


is located. The deicer/defogger includes a plurality of resistive heating lanes


466


connected between with bus lines


468


, which are connected to leads


470


, through which the deicer/defogger


464


is interconnected into the electrical system of the automobile


460


. The resistive heating lines


466


provide parallel paths for current flow and include a sufficient amount of electrical resistance to accomplish, the heating required to maintain the rear window


462


free of ice and fog when in operation. The resistive heating lines


466


will typically include silver as a major component, but will include other components to provide required resistance for heating. For example, a small amount of a resistive metal ruthenate may be included to provide resistivity. Also, the metal ruthenate could be provided in multi-phase particles with the silver. The bus lines


468


are very low resistance lines for effective distribution of current among the resistive heating lines


466


. The bus lines


468


may also advantageously be made using silver-containing powder of the present invention. The leads


470


, which provide interconnection to the electrical system of the automobile


460


, may also advantageously be made using silver-containing powder of the present invention.




As noted, other patterned circuit lines that may be made with silver-containing powder of the present invention include antennas. One example is the antenna often printed on automobile rear windows in a “T” pattern. Also lines for antennas used in cellular telephones may be made using the silver-containing powders. Single or multi-phase particles may be used, and the metallic phase may be pure silver or may include another metal, preferably palladium or platinum, in an alloy with the silver.




Another application for patterned circuit lines are the resistive lines in surge resistors. Such resistors have serpentine meander circuit patterns of resistive lines for handling high current surges. The slaver-containing powder of the present invention may be mixed with powder of a resistive material, such as a metal ruthenate, to provide the proper resistivity. Also, the particles could include the resistive material in a second phase in multi-phase silver-containing particles. The silver will typically be a pure silver metallic phase or as an alloy, preferably with palladium. Yet other applications for patterned circuit lines include conductor lines on spiral, two-dimensional inductors and membrane switches. In a membrane switch, the silver-containing powder is used to make conductive lines on a flexible membrane used to close the switch when depressed.




Another application for the silver-containing particles of the present invention is for use in the preparation of electrode materials for electrochemical cells, including fuel cells. These electrochemical cells may be in a variety of product forms, including miniature alkaline cells, batteries having a plurality of the cells packaged in a common container, and fuel cells. Furthermore, the electrochemical cells may be primary or secondary cells.




Referring now to

FIG. 56

, a miniature alkaline cell


480


is shown. The miniature alkaline cell


480


includes a cathode


482


and an anode


484


that are separated by a separator


486


. The miniature alkaline cell also includes a can


488


and a lid


490


, which are sealed using a gasket


492


to contain the contents of the miniature alkaline cell


480


. When the miniature alkaline cell


480


is connected in an electrical circuit, the can


488


acts as a contact for the anode side and the lid


490


acts as a contact for the cathode side.




The cathode


482


is made using silver-containing powder of the present invention. The cathode


482


includes a powdered silver oxide wetted with an alkaline electrolyte, which is typically an aqueous solution of sodium hydroxide or potassium hydroxide. Silver in the silver oxide of the cathode


482


may be in monovalent or divalent form. Silver oxide may be made in powder form directly via the aerosol route of the present invention, as described previously. When making powder including silver oxide directly by the aerosol route, the furnace temperature should be high enough to decompose the silver precurser, typically silver nitrate, but low enough so that the silver oxide does not decompose. Aerosol temperatures in the furnace of from about 300° C. to about 400° C. are preferred. Frequently, however, the cathode will be made with silver powder that is then electroformed to prepare the silver oxide for the charged cell. The silver-containing powder of the present invention may be mixed with other cathode materials to make the cathode


482


. For example, carbon powder, such as of graphite or carbon black, may be mixed with the silver-containing powder of the present invention. Alternatively, other cathode materials could be provided in multi-phase particles along with the silver, such as composite particles of silver and carbon.




With continued reference to

FIG. 56

, the anode


484


usually comprises powdered zinc mixed with the electrolyte. Other materials that could be used for the electrode include cadmium and iron. The separator


486


is a semipermeable material, such as cellophane.




Referring row to

FIG. 57

, one embodiment of an electrochemical cell arrangement is shown that would be suitable for use in preparing a storage battery including a plurality of cells. As shown in

FIG. 57

, an electrochemical cell


500


includes an anode


502


and a cathode


504


. The anode


502


and the cathode


504


are separated by a first separator layer


506


and a second separator layer


508


.




The first separator layer


506


is typically a semipermeable membrane, such as of cellophane. The second separator layer


508


is typically a nonwoven synthetic fiber mesh which is saturated with electrolyte solution (e.g., aqueous solution of potassium hydroxide) to assure adequate contact of the anode


502


and the cathode


504


with the electrolyte. The anode


502


is typically made by pasting or pressing zinc powder or zinc oxide onto a grid or by electroplating zinc to form a spongy zinc deposit. The cathode


504


includes silver oxide and is made using silver-containing powder of the present invention. The cathode


504


may be prepared by applying silver or silver oxide powder to a metallic grid. The grid may be of silver, copper, nickel or another convenient material. The silver or silver oxide powder is pressed or sintered to the grid to form plates. The plates are then electroformed in alkaline solution to assure that the cathode


504


is in a fully charged state. Other techniques for producing cathodes including silver are also known. Also, the cell may be in any form, including a flexible rolled form or a rigid plate form. Also, these cells may be incorporated into a primary or a secondary battery as is known in the art.




One use for silver-containing powder of the present invention is for electrode material for zinc-air cells and for fuel cells. In a zinc-air cell, the cathode material generally includes a primary cathode material, such as carbon, along with a smaller amount of a metal, such as silver, as a catalyst to catalyze the cathode reaction. The cathode material is often in powdered form mixed with electrolyte. The cathode reactant is oxygen that is supplied by diffusion from the air. The anode material is zinc and the electrolyte is typically an aqueous alkaline solution, such as of sodium hydroxide or potassium hydroxide. Carbon powder and silver powder of the present invention may be mixed and processed to form the cathode. Preferably, however, the silver and the carbon are provided in multi-phase particles of the present invention. The composite particles may have any relative quantities of silver and carbon, but silver content of from about 5 to about 10 weight percent is preferred, with about 7 weight percent being more preferred. One preferred embodiment for a zinc-air cell is a miniature cell. Such a miniature cell would have a design similar to the miniature alkaline cell shown in

FIG. 56

, except the volume in the cell devoted to the anode material is much larger because the cathode volume is significantly reduced. The cathode side of the cell must, however, have holes or other passageways to permit oxygen to enter the cathode volume for use as the cathode reactant.




In a fuel cell, active anode material is hydrogen and active cathode material is oxygen. Carbon/silver anode material similar to that described for the cathode material in the zinc-air cell may also be used in a fuel cell, and preferably as cathode material in the fuel cell.




Another use of silver-containing powder of the present invention as electrode material is for powder electrodes in oxygen sensors. For example, the reference and working electrodes in a yttria-stabilized zirconia sensor may be made using silver powder of the present invention.




When used as an electrode material, the silver-containing powder of the present invention preferably has a weight average size of from about 0.5 micron to about 3 microns.




Another important application for silver-containing powder of the present invention is in the manufacture of flat panel displays, and particularly to make address electrodes for addressing a pixel area in the display. The pixel area may be a whole pixel, such as would typically be the case in a monochrome display, or the pixel area may be a subpixel of one component color of a whole pixel, such as would typically be the case in a color display. Although the description provided here is exemplified primarily with a discussion of monochrome flat panel displays, the principles discussed apply equally to color flat panel displays. Plasma flat panel displays are particularly preferred for use of silver-containing address electrodes made using powder of the present invention. For making address electrodes in flat panel displays, the silver-containing powder preferably has a weight average particle size of from about 1 micron to about 2.5 microns, more preferably from about 1.5 microns to about 2 microns.




Referring now to

FIG. 58

, one embodiment of a flat panel display


520


is shown. The flat panel display


520


includes a plurality of display electrodes


522


and a plurality of address electrodes


524


. The area of overlap between a display electrode


522


and an address electrode


524


defines a pixel area


526


. During operation of the display panel


520


, when a voltage is applied between a display electrode


522


and the corresponding address electrode


524


, then the pixel area


526


to which the voltage is applied is energized to illuminate phosphor material located in the pixel area


526


.




With continued reference to

FIG. 58

, the display electrodes


522


are often called front electrodes because they are on the front side of the flat bed display that faces the viewer during use. Therefore, the display electrode is typically made of a transparent material, such indium tin oxide. The address electrodes


524


are often called back electrodes because they are on the side of the flat panel display


520


that faces away from the viewer during use. The address electrodes


524


are advantageously made using silver-containing powder of the present invention.




One preferred flat panel display for manufacture using silver-containing powder of the present invention are plasma flat panel displays. Plasma flat panel displays illuminate through the activation of phosphor materials by an ionic plasma, typically a plasma of neon or another noble gas. Referring now to

FIG. 59

, one embodiment of a DC plasma flat panel display


530


is shown. The DC plasma flat panel display


530


includes display electrodes


532


and address electrodes


534


with a vapor space


535


being located between the display electrodes


532


and the address electrodes


534


. Inside the vapor space


535


is a gas, such as argon, which will form the ionic plasma when energized. The DC plasma flat panel display


530


also includes phosphor material


536


in pixel areas adjacent the display electrodes


532


and opposite the address electrodes


534


. The address electrodes


534


are separated by dielectric ribs


538


. The display electrodes


532


and he phosphor material


536


are supported on a transparent, dielectric front substrate


540


, commonly glass. The address electrodes


534


and the ribs


538


are supported on a back substrate


542


, such as of glass or a ceramic material. The display electrodes


534


are made using silver-containing powder of the present invention.




With continued reference to

FIG. 59

, when the DC plasma flat panel display


530


is in operation, a circuit will be completed in an area of overlap between one of the display electrodes


532


and one of the address electrodes


534


corresponding with the pixel area in which phosphor material


536


is to be illuminated through the creation of a plasma in the vapor space


535


corresponding with the pixel area. The ribs


538


provide some protection against inadvertent illumination of adjacent pixel areas.




Referring now to

FIG. 60

, one embodiment of an AC plasma flat panel display


550


is shown. The design is similar to that shown for the DC flat panel plasma display shown in FIG.


59


and the reference numerals in

FIG. 60

refer to the same elements as discussed with respect to

FIG. 59

the DC plasma display


530


, except as noted. As shown in

FIG. 60

, the AC plasma flat panel display


550


does not include ribs or other barrier partitions to separate the address electrodes


534


. The AC plasma display panel


550


does, however, include a front dielectric layer


552


, which protects the display electrodes


532


, and a back dielectric layer


554


, which protects the address electrode layers


534


. In color display applications, it would generally be advisable even in AC devices to include some type of barrier partition between the address electrodes


534


to prevent inadvertent illumination o an adjacent sub-pixel of a color that is not desired. Several configurations are known for both DC and AC devices and for monochrome and color devices, all of which are within the scope of the present invention. The examples shown in

FIGS. 59 and 60

are illustrative only.




The applications discussed above use silver-containing powder of the present invention to make a current carrying feature for use in an electrical circuit. Use of the silver-containing powders of the present invention, however, is not limited to features used in an electrical circuit. For example, one use of powder of the present invention is to make silver-containing films for electromagnetic shielding to prevent detrimental interference between electronic components. Such shielding is important in many communications and computer products in which the operation of electronic components in close proximity could detrimentally affect each other if shielding between the components is not provided. For example, in cellular telephones, shielding is important to prevent fields induced by operating electronic components from distorting or otherwise corrupting radio signals being received, transmitted or processed by the device. A film made from silver-containing powder of the present invention may be interposed between the receiver and/or transmitter and other electronic components. To provide the shielding, a divider including a silver-containing film on an electrically insulating substrate is placed between components to be isolated. The dielectric substrate may be of any suitable material, and is frequently made of a ceramic material or a plastic material. Preferred powder for use in making film for electromagnetic shielding has a weight average particle size of from about 0.5 micron to about 2 microns.




Another application for the silver-containing powder of the present invention is to make thermally conductive films to assist in the cooling of electronic components that generate significant amounts of heat during operation. Typically, the thermally conductive film is placed on the external surface of the electrical component to conduct heat away from the electrical component to the air or to a substrate on which the component is mounted. The thermally conductive film is often applied as a thermally conductive adhesive, and may act as an adhesive between the component and a board or other substrate on which the component is mounted. Preferred powder for making thermally conductive films has a weight average particle size from about 0.5 micron to about 2 microns.




Another application for silver-containing powder of the present invention is to make light reflecting surfaces. For example, a light reflecting surface is often used to provide back lighting in a liquid crystal display panel. The powder typically includes pure silver. A preferred powder has a weight average particle size of from about 0.5 micron to about 2 microns.




Yet another application for the silver-containing powder is as a filler material in polymer compositions to impart electrical or thermal conducting properties. One preferred composition is an epoxy adhesive filled with the silver-containing powder. The powder is preferably pure silver and has a weight average particle size of from about 0.5 micron to about 3 microns.




Many of the applications just described include one or more silver-containing films made using silver-containing powder of the present invention. The film may extend over a large area, such as would be the case, for example, for internal electrodes of multi-layer capacitors, metallized terminations and films providing electromagnetic shielding, thermal conduction or light reflection. Alternatively, the film may be in the form of a narrow line, or pattern of lines, such as would be the case, for example, for conductive lines in multi-chip modules, serpentine resistor circuits, spiral inductors, antennas in cellular telephones, window defoggers/deicers, photovoltaic grid electrodes, flat panel display electrodes and membrane switches.




The silver-containing films are typically made by a thick film deposition technique. Thick film deposition techniques generally involve application of a layer of a slurry, or paste, including the silver-containing powder on a substrate. The slurry is often in the form of a thick paste. The slurry may be applied by any technique, such as by screen printing, doctor blading, dip coating, spray coating or other technique for applying a uniform layer. Screen printing is generally preferred for making thinner films and for making lines, or another film pattern. The applied layer is eventually fired, or cured, at temperatures typically higher than about 300° C., to remove residual organic components and to sinter/densify the material of the silver-containing particles to form a dense, silver-containing film on the substrate. For some applications firing temperatures may be 1000° C. or more. In some applications, the silver-containing film will be cofired with other layers. For example, a multi-layer capacitor is manufactured by forming a stack of multiple alternating layers of ceramic substrate (often based on a titanate, such as barium titanate or neodymium titanate) and solid residue of the thick film paste. The entire stack is then fired together in a single firing. Some processes use high firing temperatures (generally above about 800° C.) and some processes use low firing temperatures (generally below about 700° C.). Also, the ceramic substrates for cofiring are most often low temperature cofire ceramics.




The thick film slurry, or paste, typically includes the particles of the silver-containing powder dispersed in a liquid vehicle, which acts as a carrier liquid and is often referred to as a solvent. Paste compositions are well known in the art and can have a reasonably complex chemistry, including solvents, binders and other additives to aid in the dispersion and flow properties of the paste. The silver-containing powder of the present invention may be substituted for silver-containing particles currently used in thick film paste compositions, without significant modification of the paste formulation. Pastes manufactured with the silver-containing powder of the present invention will, however, exhibit improved performance due to the superior properties of the powder, as discussed previously. In addition to silver-containing powder, and a solvent, the pastes of the present invention typically include a binder, a thickener or resin, a stabilizing agent and a wetting agent. The relative quantities of binders, thickeners, solvents, stabilizing agents and wetting agents are known in the art and will vary depending upon the specific application. The binder can be, for example, a glass frit which controls the sintering characteristics of the film. The thickener imparts a desired viscosity to the paste and also acts as a binding agent in the unfired film. Examples of thickeners include ethyl cellulose and polyvinyl acetates. The liquid carrier/solvent assists in mixing of the components into a homogenous paste and evaporates rapidly upon application of the film. Usually the solvent is a volatile liquid such as methanol, ethanol, other alcohols or the like. The stabilizing agents prevent oxidation and degradation, stabilize the viscosity or buffer the pH of the paste.




The silver-containing powder of the present invention exhibits good dispersibility of particles in a paste due to the narrow particle size distribution, a low degree of particle agglomeration and spheroidal particle shape. Improved dispersion in the paste results in smoother prints, having fewer lump counts, and sharper print edges. The dispersibility and flowability may be further improved, however, if desired. One method for improving the dispersibility is to include in the particles a second material phase, as previously discussed, such as a metal oxide, that improves the dispersibility/flowability of the particles in a paste. Also, silver-containing particles can advantageously be coated with an organic layer to provide improved dispersibility. The organic layer can advantageously be placed, for example, onto a previously formed oxide coating over silver-containing metallic cores. For example, an appropriate organic group could be bonded to a silica coating, or to another oxide coating, through the use of a silane coupling agent. Examples of silanes that could be used as such a coupling agent include halo, amido and alkoxy silanes.




The use of the silver-containing powder of the present invention for thick film applications is particularly preferred for these thick film applications because of ability of the powder to make a high performance thick film with the use of a smaller quantity of silver than with silver-containing powders currently used in thick film applications. This is because of the extremely high quality of the powder of the present invention, as previously described. This result is even more surprising when it is considered that the powder of the present invention can often be made less expensively than powders in current use, resulting in significant cost savings for applications using large quantities of silver. This significant cost savings is particularly surprising considering the higher performance characteristics of the powder.




One significant performance advantage of the silver-containing powder of the present invention is that it can be used to make a very thin thick film with highly definable edges. This is particularly important when reducing device thickness, such as with multi-layer capacitors, or providing an increased density of conductive lines, such as in multi-chip modules, is desirable. In that regard, the thick films made with the present invention, after firing, may be made with a thickness of smaller than about 10 microns, preferably smaller than about 8 microns, more preferably smaller than about 6 microns, and most preferably smaller than about 4 microns.




Furthermore, when making thick film electrically conductive lines, the lines may be made with a sharp edge definition, due to the characteristics of the powder. Lines of a narrow width may be made and with a very close pitch. Lines may be made wit a width of smaller than about 50 microns, preferably smaller than about 25 microns, and more preferably smaller than about 15 microns. Line pitch may be smaller than about 100 microns, more preferably smaller than about 50 microns, and most preferably smaller than about 30 microns. The line pitch is the center-to-center spacing of the lines.




To make extremely narrow lines with a small pitch, it is frequently desirable to first deposit lines by thick film techniques and then trim the lines for better edge definition. Trimming may be accomplished by known methods, such as for example laser trimming. A preferred method for obtaining the desired edge definition, however, is to use a photolithographic technique, such as the FODEL™ process of DuPont. For example, the powder may be mixed with a photocurable polymer to permit photolithographic patterning using a mask. Undeveloped areas are removed by use of a solvent. The remaining polymer is then removed when the film is fired.




Another major advantage of the silver-containing powders of the present invention is that they can be made substantially free of organic contaminants, such as surfactants, which are a problem with powders made by liquid precipitation. Because of the absence of such organic contaminants in the particles of the powder, a conductive film of very high conductivity may be prepared, even when the film is in the form of a thin, narrow conductive line as previously described. The high electrical conductivity is further enhanced because of the highly crystalline morphology of silver that may be made with the present invention. Preferably, when maximum conductivity is desired, the film made using silver-containing powder of the present invention has an electrical conductivity of at least about 80%, more preferably at least about 85%, and most preferably at least about 90% of the bulk electrical conductivity of the metallic phase of the film, which may be of pure silver or of silver and one or more other metal, such as in a silver-based alloy. Preferred alloys for conductive lines include palladium or platinum. Such high conductivity lines are particularly important in some devices, such as, for example, cellular telephones and other high frequency applications.




Another significant advantage of using the silver-containing powder of the present invention is that multi-phase particles may be used to alter densification, sintering and other characteristics for improved compatibility with another layer. For example, sintering of a silver-containing metallic phase in the powders may be delayed, and/or adhesion to a substrate improved, by incorporation of one or more other phases. For example, the powder may include multi-phase particles having an intimate mixture of a silver-containing metallic phase and a second phase including silica or another ceramic material. Also, the particles may include a surface coating of a material, such as silica, that delays sintering of a core of a silver-containing metallic phase and also provides enhanced adhesion to a substrate. As one example, the top dielectric layer of multi-chip modules is often a glass layer. Using silver for conductive lines or other features adjoining the glass layer is problematic because at the high sintering temperature of the glass, the silver is highly mobile and will diffuse into the glass. This problem can be somewhat reduced by mixing in some palladium particles with the silver particles, but silver migration is still a problem. The mobility of silver can be significantly reduced if the silver is alloyed with palladium, but the alloy generally does not adhere well to the glass dielectric, which could cause delaminations to occur. With the powder of the present invention, the silver could be in multi-phase particles having a coating or intimate mixture or silica or another adhesion promoting material that also delays sintering of the silver to reduce mobility of silver.




EXAMPLES




The following examples are provided to aid in understanding of the present invention, and are not intended to in any way limit the scope of the present invention.




Example 1




This example demonstrates the preparation of silver-containing particles in which the silver is present in an alloy with palladium.




An aqueous solution is prepared including dissolved palladium and silver as nitrates. The total amount of palladium and silver in the solution is 5 weight percent, with the relative proportions of palladium/silver being 70/30 on a weight basis, so that, if the silver and the palladium fully alloy, a 70/30 Pd/Ag alloy will be obtained in the particles. An aerosol is generated from a single transducer ultrasonic generator operating at a frequency of 1.6 MHz using a carrier gas of nitrogen. Generated aerosols are sent to a furnace to prepare the palladium-containing particles. Reactor temperatures are varied from 900° C. to 1400° C. The samples are cooled and collected.




Several particle samples are subjected to TGA testing in air to evaluate the weight gain of the particles as an indication of susceptibility to palladium oxidation. Also, several particle samples are subjected to atomic absorption spectroscopy (AAS) to estimate the alloy composition. TGA and AAS results are shown in Table 1. The high TGA weight gains indicate that a significant portion of the palladium is susceptible to oxidation, indicating that a significant amount of the palladium is not adequately alloyed with silver. Furthermore, the AAS results indicate that a significant amount of silver does not alloy with the palladium in the particles manufactured at higher temperatures. The TGA information also indicates, however, that oxidation resistance of palladium is very high for particles manufactured at 1000° C. and 1100° C. cases, and is particularly good for the 1000° C. case, indicating the formation of a good alloy between the silver and the palladium. For example, for the particles manufactured at 1000° C., only about 13% of the palladium appears to be susceptible to oxidation, based on the TGA, assuming that all weight gain during the TGA is attributable to palladium oxidation. Also, the AAS data indicates that for the particles manufactured at the lower temperatures, a greater proportion of the available silver alloys with the palladium.












TABLE 1











Example 1






70/30 Pd/Ag Feed















Est. Alloy






Reactor Temp.




TGA Max. Weight Gain




Composition


(1)








(° C.)




(% of original Pd wt.)




(Wt. % Ag)
















900




30




27.6






1000




13






1100




25




21.3






1400




33




15.9













(1)


Atomic absorption spectroscopy













Referring now to

FIG. 61

, an SEM photomicrograph is shown of the particles produced at 900° C. As seen in

FIG. 61

, there is significant porosity that appears in the particles, accounting for the low resistance to palladium oxidation indicated by the TGA results at that temperature.

FIG. 62

is an SEM photomicrograph showing particles prepared at 1000° C. These particles are significantly more dense and, accordingly, do not exhibit the same susceptibility to oxidation of palladium as samples at 900° C. As the manufacturing temperature increases, a significant amount of ultrafine silver particles is found. These ultrafine silver particles (typically 30-50 nanometers in size) are believed to be formed from the significant quantifies of silver that vaporize at higher manufacturing temperatures. This accounts for the low levels of silver found in the palladium/silver alloys, as previously noted for higher manufacturing temperatures.

FIG. 63

is an SEM photomicrograph of particles prepared at 1400° C. in which the appearance of significant quantities of the ultrafine particles can clearly be seen. Generally, the loss of silver from the alloy increases with increasing temperature, especially as the temperature approaches the melting range for the desired alloy. In that regard, the melting range for a 70/30 palladium/silver alloy is about 1374.5° C. to about 1431.5° C.




Example 2




This example demonstrates the detrimental effect on palladium oxidation resistance of using air as a carrier gas in the manufacture of particles with a palladium/silver alloy.




Palladium/silver alloy particles are made according to the procedure of Example 1, including a 70/30 Pd/Ag weight ratio in the liquid feed, except that air is used as the carrier gas instead of nitrogen. The particles are manufactured with a reactor temperature of 1000° C.




Based on TGA testing of the particles in air, assuming all weight gain is attributable to palladium oxidation, about 26 percent of the palladium is susceptible to oxidation, or about twice as much as shown in Example 1 when nitrogen is used as the carrier gas.




Example 3




This example demonstrates the addition of calcium to a 70/30 Pd/Ag alloy.




Particles are prepared according to the procedure of Example 1, except that 0.25 weight percent calcium relative to palladium is added in nitrate form to the liquid feed. Particles are produced at a reactor temperature of 1000° C. TGA indicates that about 18 percent of the palladium in the particles is susceptible to oxidation, indicating that the calcium addition has not improved oxidation resistance relative to processing at 1000° C. in the absence of calcium, as shown in Example 1. This result is particularly surprising considering the teachings of U.S. Pat. No. 5,402,305 by Asada describing the beneficial effects of adding calcium to palladium powders.




Example 4




Particles are prepared according to the procedure of Example 1, except that palladium and silver in the feed solution are in a weight ratio of 30/70 Pd/Ag. Particles are prepared at reactor temperatures of 900° C., 1000° C., 1100° C., 1225° C., 1300° C., 1400° C., and 1500° C.




Similar to the results obtained for 70/30 Pd/Ag tests, the 30/70 Pd/Ag test results show that appreciable amounts of silver vaporize during manufacture at higher particle manufacture temperatures, and particularly for those of 1300° C. and above. Again, the segregation of silver becomes a larger problem as the manufacture temperature approaches or exceeds the melting range for the desired alloy. The melting range for an alloy of 30/70 Pd/Ag is from 1164.5° C. to 1209.5° C. This segregation of silver is particularly detrimental for microelectronic thick film applications, because the unalloyed silver is significantly more mobile than alloyed silver and can significantly impair the operation of many microelectronic devices.




Furthermore, for particles prepared significantly below 1000° C., the particles can exhibit significant porosity, which is undesirable. Temperatures of from about 900° C. to 1200° C. are preferred, with temperatures of from about 950° C. to 1100° C. being more preferred for 30/70 Pd/Ag compositions.




Example 5




This example demonstrates preparation of particles made with only silver.




Solutions of silver nitrate including 30 weight percent silver by weight are prepared. Aerosols of the solution are generated with an ultrasonic aerosol generator having a single ultrasonic transducer operating at 1.6 MHz and using air as a carrier gas. The aerosols pass through an impactor to remove excessively large droplets and the classified aerosol exiting the impactor is then sent to a hot-wall tubular reactor. Reactor temperatures are varied from 1000° C. to 1400° C. in increments of 100° C.

FIG. 64

shows a photomicrograph of particles made at a reactor temperature of 1000° C.




Example 6




This example further demonstrates the preparation of particles including only silver.




The procedure of Example 5 is repeated except that the solution includes silver in an amount of only 3 weight percent.

FIG. 65

shows a photomicrograph of particles made at a reactor temperature of 1100° C. Due to the lower concentration of silver in the solution, the particles shown in

FIG. 65

are of a substantially smaller weight average particle size than those produced in Example 5. The particles do, however, retain a very desirable, narrow size distribution.




Example 7




This example demonstrates preparation of multi-phase particles including barium titanate and a 30/70 Pd/Ag alloy.




A barium titanate precursor solution is prepared by dissolving 2.8 grams of barium nitrate in 50 milliliters of titanium tetraisopropoxide, with rapid stirring, and finally adding 2 milliliters of concentrated nitric acid.




A Pd/Ag alloy precursor solution is prepared with 2.5 weight percent palladium and silver in a weight ratio of Pd:Ag of 30:70, with the palladium and silver in the form of dissolved nitrates.




Various mixtures are prepared of the barium titanate precursor solution and the Pd/Ag alloy solution for preparation of particles with different relative quantities of the alloy arc barium titanate. Compositions include those with from 10 weight percent to 90 weight percent barium titanate in 10 weight percent increments and also a composition including only 5 weight percent barium titanate.




Aerosols are prepared using an ultrasonic aerosol generator including a single ultrasonic transducer operating at 1.6 MHz and with an impactor prior to entry of the aerosol into a furnace reactor where the particles are made. The particles are characterized by powder x-ray diffraction, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA) and helium pycnometry (for density). Maximum stream temperatures in the furnace are varied from 600° C. to 1100° C. Air is used as a carrier gas.





FIG. 66

shows an SEM photomicrograph of a composite particle including 20 weight percent barium titanate made at 1000° C.





FIG. 67

shows a TEM photomicrograph of composite particles including 20 weight percent barium titanate, made at 1000° C., showing areas indicated by EDS to be rich in the Pd/Ag alloy and areas rich in the barium titanate.

FIG. 68

shows a TEM photomicrograph of composite particles including 5 weight percent barium titanate made at 1000° C., showing areas indicated by EDS to be, rich in the Pd/Ag alloy and rich in the barium titanate.




Example 8




This example demonstrates preparation of multi-phase particles including silver metal and carbon.




In 20 milliliters of distilled water is dissolved 0.47 gram of silver nitrate, followed by the addition of 20 milliliters of a suspension including 20 weight percent of nano-size carbon black particles in water (Cab-o-Jet™ from Cabot Corp.). The resulting mixture was converted to a aerosol by ultrasonic generation at 1.6 MHz using nitrogen as a carrier gas. The aerosol is processed in a furnace at a temperature of about 500° C. A black powder including sliver/carbon black composite particles with an average size of 2 to 3 microns is obtained, as shown in the SEM photomicrograph shown in FIG.


69


. Furthermore, the particles include significant porosity, which is preferred for use as an electrode material in an electrochemical cell.




While various specific embodiments of the process of the present invention and the apparatus of the present invention for preparing silver-containing particles are described in detail, it should be recognized that the features described with respect to each embodiment may be combined, in any combination, with features described in any other embodiment, to the extent that the features are compatible. For example, any or all of the aerosol concentrator, aerosol classifier, particle cooler, particle coater, particle modifier and addition of dry gas may be incorporated into the apparatus and/or process of the present invention. Also, additional apparatus and/or process steps may be incorporated to the extent they do not substantially interfere with operation of the process of the present invention or the apparatus useful therefore. For example, to further control the size distribution of particles produced accordingly to the process of the present invention, a particle classifier could be used after particle cooling and before particle collection. Other modifications will become apparent to those skilled in the art. All such modifications are intended to be within the scope of the present invention.




Also, while various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. It is to be expressly understood, however, that such modifications and adaptations are within the scope of the present invention, as set forth in the claims below. Further, it should be recognized that any feature of any embodiment disclosed herein can be combined with any other feature of any other embodiment in any combination.



Claims
  • 1. A multi-phase silver-containing particulate product, the particulate product comprising:substantially spheroidal particles having a density, as measured by helium pycnometry, of greater than about 80% of theoretical, having a weight average size of from about 0.1 micron to about 4 microns and having a size distribution such that at least about 90 weight percent of said particles are smaller than twice said weight average size, said particles including a first material phase being metallic and comprising silver and said particles also including a second material phase being substantially free of silver.
  • 2. The multi-phase particulate product of claim 1, wherein:said first material phase comprises greater than about 50 weight percent of said particles.
  • 3. The multi-phase particulate product of claim 1, wherein:said first material phase comprises greater than about 70 weight percent of said particles.
  • 4. The multi-phase particulate product of claim 1, wherein:said first material phase comprises greater than about 90 weight percent of said particles.
  • 5. The multi-phase particulate product of claim 1, wherein:said second material phase comprises less than about 30 weight percent of said particles.
  • 6. The multi-phase particulate product of claim 1, wherein:said second material phase comprises less than about 10 weight percent of said particles.
  • 7. The multi-phase particulate product of claim 1, wherein:said second material phase comprises greater than about 0.5 weight percent of said particles.
  • 8. The multi-phase particulate produce of claim 1, wherein:said second material phase comprises greater than about 1 weight percent of said particles.
  • 9. The multi-phase particulate product of claim 1, wherein:said first material phase is electrically conductive and said second material phase is dielectric.
  • 10. The multi-phase particulate product of claim 1, wherein:said second material phase comprises an oxide material.
  • 11. The multi-phase particulate product of claim 1, wherein:said second material phase comprises a ceramic material.
  • 12. The multi-phase particulate product of claim 1, wherein:said second material phase comprises at least one of silica, alumina, titania, zirconia, copper, gold, platinum, molybdenum, tungsten, an oxide of copper, an oxide of bismuth, an oxide of neodymium, an oxide of calcium, an oxide of magnesium, an oxide of barium, an oxide of strontium and an oxide of tin.
  • 13. The multi-phase particulate product of claim 1, wherein:said second material phase is dispersed throughout a matrix of said first material phase.
  • 14. The multi-phase particulate product of claim 1, wherein:said second material phase is a support on which said first material phase is supported.
  • 15. The multi-phase particulate product of claim 1, wherein:said first material phase includes an alloy of silver and a second metal selected from the group consisting of palladium, nickel, copper, platinum, molybdenum, tungsten, tantalum, aluminum, gold, indium, lead, tin and bismuth.
  • 16. The multi-phase particulate product of claim 15, wherein:said second metal is palladium.
  • 17. The multi-phase particles of claim 16, wherein:said alloy comprises from about 10 weight percent to about 70 weight percent palladium and from about 30 weight percent to about 90 weight percent silver.
  • 18. The multi-phase particles of claim 7, wherein:said first material phase has a mean crystallite size of larger than about 50 nanometers.
  • 19. A multi-phase silver-containing particulate product, the particulate product comprising:substantially spheroidal particles having a density, as measured by helium pycnometry, of greater than about 80% of theoretical, having a weight average size of from about 0.1 micron to about 4 microns and having a size distribution such that at least about 90 weight percent of said particles are smaller than twice said weight average size, said particles including a first material phase being metallic and comprising silver and said particles also including a second material phase being substantially free of silver, wherein said second material phase includes at least one of a borate, a titanate, a zirconate, a silicate, an aluminate, a niobate and a tantalate.
  • 20. The multi-phase particulate product of claim 19, wherein:said second material phase comprises a titanate.
  • 21. The multi-phase particulate product of claim 19, wherein:said second material phase comprises a titanate of at least one of barium, strontium, neodymium, calcium, magnesium and lead.
  • 22. A multi-phase silver-containing particulate product, the particulate product comprising:substantially spheroidal particles having a density, as measured by helium pycnometry, of greater than about 80% of theoretical, having a weight average size of from about 0.1 micron to about 4 microns and having a size distribution such that at least about 90 weight percent of said particles are smaller than twice said weight average size, said particles including a first material phase being metallic and comprising silver and said particles also including a second material phase being substantially free of silver, wherein said second material phase forms a coating around a core including said first material phase.
  • 23. The multi-phase particulate product of claim 22, wherein:said coating substantially entirely surrounds said core.
  • 24. The multi-phase particulate product of claim 22, wherein:said second material phase includes an organic material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 09/028,277, entitled “SILVER-CONTAINING PARTICLES, METHOD AND APPARATUS OF MANUFACTURE, SILVER-CONTAINING DEVICES MADE THEREFROM”, filed Feb. 24, 1998, now U.S. Pat. No. 6,277,169, the enter contents of which is incorporated herein, and which claims priority to U.S. Provisional Patent Application No. 6/039,450 filed Feb. 24, 1997 and to U.S. Provisional Patent Application No. 60/038,258 filed Feb. 24, 1997, the content of both of which are incorporated herein.

US Referenced Citations (24)
Number Name Date Kind
3846345 Mason et al. Nov 1974 A
4023961 Douglas et al. May 1977 A
4130671 Nagesh et al. Dec 1978 A
4274877 Collier et al. Jun 1981 A
4396420 Schmidberger et al. Aug 1983 A
4539041 Figlarz et al. Sep 1985 A
4804167 Kock et al. Feb 1989 A
4897110 Kock et al. Jan 1990 A
5073409 Anderson et al. Dec 1991 A
5126915 Pepin et al. Jun 1992 A
5236523 Shibata Aug 1993 A
5250229 Hara et al. Oct 1993 A
5288430 Amemiya Feb 1994 A
5356842 Yamakawa et al. Oct 1994 A
5358585 Shibata Oct 1994 A
5420744 Asada et al. May 1995 A
5429657 Glicksman et al. Jul 1995 A
5439502 Kodas et al. Aug 1995 A
5495386 Kulkarni Feb 1996 A
5512379 Kawasumi et al. Apr 1996 A
5852768 Jacobsen et al. Dec 1998 A
6103393 Kodas et al. Aug 2000 A
6159267 Hampden-Smith et al. Dec 2000 A
6316100 Kodas et al. Nov 2001 B1
Foreign Referenced Citations (7)
Number Date Country
0 537 502 Apr 1993 EP
0 593 167 Apr 1994 EP
0 776 717 Jun 1997 EP
62-2404 Jan 1987 JP
63-31522 Feb 1988 JP
6-172802 Jun 1994 JP
8-170112 Jul 1996 JP
Non-Patent Literature Citations (11)
Entry
Ducamp-Sanguesa, C. et al., “Synthesis and Characterization of Fine and Monodisperse Silver Particles of Uniform Shape,” J. Solid State Chem., 100 (1992), pp. 272-280.
Gurav, Adhijit et al., “Aerosol Processing of Materials,” Aerosol Sci. & Tech., 19 (1993), pp. 411-452.
Kang, Yun Chan and Seung Bin Park, “Morphology and Size of Fine Silver Particles Prepared by Using the Filter Expansion Aerosol Generator,” J. Korean Institute of Chemical Engineers, vol. 34, No. 2 (Apr. 1996), pp. 183-187 [Korean Text, with English Abstract].
Nagashima, K. et al., “Properties of conductive films made from fine spherical silver-palladium alloy particles,” J. Mater Sci., 26 (1991), pp. 2477-2482.
Park, Seung Bin and Yun Chan Kang, “Preparation of Fine Silver Particles by Decomposing Droplets Produced from Filter Expansion Aerosol Generator,” J. Aerosol Sci., vol. 26, Suppl. 1 (1995), pp. S605-S606.
Pluym, Tammy C. et al., “Silver-palladium alloy particle production by spray pyrolysis,” J. Mater. Res., vol. 10, No. 7 (Jul. 1995), pp. 1661-1673.
Pluym, T.C. et al., “Solid Silver Particle Production by Spray Pyrolysis,” J. Aerosol Sci., vol. 24, No. 3 (1993), pp. 383-392.
Wang, Sea Fue et al., “Silver-Palladium Thick-Film Conductors,” J. Am. Ceram. Soc., vol. 77, No. 12 (1994), pp. 3051-3072.
U.S. patent application Ser. No. 09/659,638; filed on Sep. 12, 2000, by Kodas et al., entitled Platinum Powders, Methods for Producing Powders and Devices Fabricated from same (Divisional of U.S. Pat. No. 6,165,247 filed on Feb. 24, 1998).
U.S. patent application Ser. No. 09/030,051; filed on Feb. 28, 1998, by Kodas et al., entitled Copper Powders Methods for Producing Powders and Devices Fabricated from Same..
U.S. patent application Ser. No. 09/668,947; filed on Sep. 22, 2000, by Hampden-Smith et al., entitled Aerosol Method and Apparatus, Particulate Products, and Electronic Devices Made Therefrom. (Divisional of U.S. Pat. Ser. No. 09/030,057 filed on Feb. 24, 1998).
Provisional Applications (2)
Number Date Country
60/039450 Feb 1997 US
60/038258 Feb 1997 US
Continuations (1)
Number Date Country
Parent 09/028277 Feb 1998 US
Child 09/668805 US